首页 / 专利库 / 微电子学 / 外延生长 / GaN성장용 복합기판

GaN성장용 복합기판

阅读:775发布:2024-01-02

专利汇可以提供GaN성장용 복합기판专利检索,专利查询,专利分析的服务。并且본 발명은 용점이 1000℃보다 높은 열전도 전기전도층(1)과 상기 열전도 전기전도층(1) 위에 위치하는 GaN단결정(2)을 포함하는 GaN 성장용 복합기판을 제시한다. 열전도 전기전도층(1)과 GaN단결정층(2) 사이는 반 데르 발스 본딩 또는 유연성 매질층(3)을 통해 본딩된다. 상기 복합기판은 GaN단결정층 내부, 저부 또는 저면에 위치하는 반사층(4)도 포함할 수 있다. 본 발명의 복합기판은 GaN에피텍시에 필요한 호모에피텍시를 겸비하고, 결정체 품질을 높일 뿐만 아니라, 수직구조 LED를 직접 제조할 수 있으며, 박층의 GaN단결정층만 사용하기 때문에 비용을 대폭 줄이고, 응용면에서 유리하다.,下面是GaN성장용 복합기판专利的具体信息内容。

  • 열전도 전기전도층과 상기 열전도 전기전도층 위에 위치하는 GaN단결정층을 포함하며, 상기 열전도 전기전도층의 용점이 1000℃보다 높은 것을 특징으로 하는 GaN 성장용 복합기판.
  • 제 1 항에 있어서,
    상기 열전도 전기전도층의 두께가 10μm ~ 3000μm이고, 바람직하게는 50μm ~ 400μm이며, 상기 GaN단결정층의 두께가 0.1μm ~ 100μm이고, 바람직하게는1μm ~ 50μm인 것을 특징으로 하는 복합기판.
  • 제 1 항에 있어서,
    상기 열전도 전기전도층의 재료가 용점이 1000℃보다 높은 원소금속 또는 합금 또는 준합금인 것을 특징으로 하는 복합기판.
  • 제 1 항에 있어서,
    상기 열전도 전기전도층의 재료가 금속 W, Ni, Mo, Pd, Au 및 Cr중에서 선택된 일종 또는 일종 이상의 합금이거나, 또는 이러한 금속 중의 일종 또는 일종 이상과 Cu의 합금이거나, 또는 Si결정체, SiC결정체 또는 AlSi결정체인 것을 특징으로 하는 복합기판.
  • 제 1 항에 있어서,
    상기 열전도 전기전도층과 GaN단결정층 사이에 유연성 매질 본딩층이 형성되어 있는 것을 특징으로 하는 복합기판.
  • 제 1 항에 있어서,
    상기 복합기판 내에 반사층이 더 구비되며, 상기 반사층은 GaN단결정층의 내부, 저부 또는 저면에 위치하고, 상기 GaN단결정층의 저면은 GaN단결정층과 열전도 전기전도층이 연결된 일면인 것을 특징으로 하는 복합기판.
  • 제 6 항에 있어서,
    상기 열전도 전기전도층 위에 본딩층, 반사층 및 GaN단결정층이 차례로 있는 것을 특징으로 하는 복합기판.
  • 제 7 항에 있어서,
    상기 반사층이 금속 반사층인 것을 특징으로 하는 복합기판.
  • 제 6 항에 있어서,
    상기 반사층이 광학격자 또는 광자 결정격자 구조를 갖는 주기성 구조층으로서, GaN단결정층의 내부 또는 저부에 위치하는 것을 특징으로 하는 복합기판.
  • 제 9 항에 있어서,
    상기 반사층이 굴절률 GaN과 다르고, 용점이 1000℃이상인 재료로 형성된 주기성 구조이며, GaN단결정층 내에 끼워지는 것을 특징으로 하는 복합기판.
  • 제 10 항에 있어서,
    상기 반사층이 Si0 2 또는SiN로 형성된 주기성 구조이고, GaN단결정층 내에 끼워지는 것을 특징으로 하는 복합기판.
  • 제 9 항에 있어서,
    상기 반사층은 GaN단결정층 저부에 형성된 주기성 패턴인 것을 특징으로 하는 복합기판.
  • 说明书全文

    GaN성장용 복합기판{COMPOSITE SUBSTRATE USED FOR GAN GROWTH}

    본 발명은 반도체 광전자 소자 및 금속 유기 화학 기상 증착(MOCVD) 기술분야에 관한 것으로, 특히, GaN에픽텍셜 웨이퍼(Epitaxial Wafer) 성장에 사용되는 기판에 관한 것이다.

    GaN(질화갈륨)과 InGaN(인듐질화갈륨) 및 AlGaN(알루미늄질화갈륨)을 대표로 하는 Ⅲ/Ⅳ족 질화물은 최근 주목을 받는 반도체 재료이다. 1.9eV-6.2eV사이에서 연속 변할수 있는 직접형 밴드갭, 그리고 우수한 물리적, 화학적 안정성 및 포화도가 높은 전자이동률 등의 특성을 가지고 있으므로 레이저 장치 및 발광 다이오드 등 광전자 소자의 가장 바람직한 재료로 사용된다.

    그러나, 현재의 GaN계 반도체 재료는 GaN기판이 부족하여, 일반적으로, GaN기반(base) LED의 에피텍셜막은 주로 사파이어 기판, SIC, Si등 기판에서 성장하고 있다. 현재까지 GaN재료 시스템의 에피텍셜 성장 기술은 기본적으로 부정합에 따른 헤테로에피텍시 기술이다. 가장 많이 응용되고, 특허에 의해 가장 많이 보호받고 있는 것은 주로 사파이어 기판의 헤테로에피텍시 기술이다. 그러나 그 주요 문제점은 1. GaN과 사파이어 사이에 결정격자 부정합 및 열적 부정합이 커서10 9 cm -2 의 부정합 전위를 초래하고 결정의 품질에 크게 영향주며, LED발광효율 및 사용수명이 낮아진다. 2. 사파이어는 절연체로서, 상온에서의 저항률이10 11 Ωcm보다 크기 때문에 수직구조의 소자를 제조할 수 없고, 일반적으로, 에피텍셜층 표면에만 N형 및 P형 전극을 제조할 수 있기 때문에 유효 발광면적이 작고, 동시에, 소자 제조 과정에서의 포토리소그래피 및 식각공정이 증가되어 재료의 이용율이 낮아진다. 3. 사파이어의 열전도성이 좋지 않아 100℃에서 열전도율이 약 0.25W/cmK로서, 이는 GaN계 소자의 성능에 대해 영향이 매우 크다. 특히 대면적 고출력 소자에서 방열문제가 심각하다. 4. GaN기반(base) 레이저(LD)를 제조 시, 사파이어의 경도가 매우 높고, 사파이어 결정격자와 GaN결정격자 사이에 30도의 협각이 존재하기 때문에 InGaN LD 에픽텍셜층의 벽개면을 얻기 힘들고, 벽개방법을 통해 InGaN-LD의 표면을 얻을 수 없다.

    SiC기판에 대해, 결정체 상수와 GaN결정격자 상수가 가장 근접하고, 결정격자 부정합이 비교적 작지만, 마찬가지로 헤테로에픽텍시이고, 부정합 전위 및 열적 부정합 전위가 존재하며, SiC기판의 제조비용이 높아 GaN기반 LDE소자에 응용하기 어렵다. Si기판도 최근 연구하기 시작한 GaN기반 에픽텍셜 기판이지만, Si기판과 GaN의 결정격자 부정합도가 사파이어에 비해 더 크고, Si기판이 입방 결정 배향이고, GaN이 육각형 결정 배향이므로, 그 위에 GaN재료를 에피텍시하는 것이 더 어려워지고, 현재 Si기판에 성장한 GaN층이 개열하는 등 문제에 면하고 있으며, 성장 두께가 4μm를 초과하기 어렵다.

    따라서, 결정체 에픽텍셜에 대해, 에피텍셜 성장의 이론이나 반도체 에피텍시 기술의 발전 역사로부터 이미 증명된 바, 호모에피텍시는 가장 바람직한 선택이다. 최근, 사람들은 GaN 단결정 기판 제조기술을 개발하기 시작하였으며, GaN 단결정 기판을 제조함으로써 GaN에피텍셜이 호모에피텍셜할 수 있게 되여GaN결정체를 에피텍시한 결정체의 품질을 양호하게 높일 수 있다. 또, GaN결정체가 양호한 열전도 전기 전도특성을 가지기 때문에 GaN기판 에피텍셜을 사용한 LED에피텍셜 웨이퍼가 수직구조 LED소자로 직접 제조될 수 있도록 함으로써 대전류에서의 소자의 성능을 높일 수 있다. 그러나, GaN단결정 기판은 가격이 비싸서 LED소자에서의 응용을 직접 제약하고 있다. 현재, 2인치의 GaN단결정 기판 한장의 가격은 2000달러에 달하지만, 지금 시장에서 판매되고 있는 2인치의 고출력 LED에피텍셜 웨이퍼의 가격은 100달러 미만이다. 이와 같이 거대한 비용은 GaN단결정 기판이 LED시장에서의 응용을 완전히 제약하고 있다.

    본 발명의 목적은 GaN에피텍시에 필요한 호모에피텍시 요구를 만족하면서 결정체 품질을 높일 뿐만 아니라 수직구조의 LED를 직접 제조할 수 있고, 생산비용을 줄여 실제 응용에 적용할 수 있는 GaN에피텍셜 웨이퍼 성장용 신형 복합기판을 제공하는데 있다.

    본 발명의 GaN 성장용 복합기판은 열전도 전기전도층과 상기 열전도 전기전도층 위에 위치하는 GaN단결정층을 포함한다.

    도 1에 도시한 바와 같이, 본 발명의 복합기판은 열전도 전기전도층(1)을 포함하며, 그리고 상기 열전도 전기전도층 위에 본딩(bonding)한 GaN단결정(2)을 포함한다.

    상기 열전도 전기전도층의 두께는 10μm-3000μm, 바람직하게는 50μm~400μm이다. 상기 열전도 전기전도층의 재료는 (1)용점이 1000℃보다 높거나 또는 1000℃에서 고체상태를 유지할 수 있고, (2)비교적 높은 열전도 특성 및 전기전도 특성을 가져야 한다.

    이상의 요구에 따라, 상기 열전도 전기전도층의 재료는 금속 W, 금속Ni, 금속Mo, 금속Pd, 금속Au 및 금속Cr 등, 또는 상기 금속 중의 임의의 2종이거나 2종 이상의 합금, 또는 상기 일종이거나 일종 이상 금속과 Cu의 합금, 예를 들어, WCu합금, MoCu합금 및 NiCu합금 등과 같은 원소 금속(elemental metal) 또는 합금 또는 준합금에서 선택될 수 있다. 금속 이외에, 상기 열전도 전기전도층의 재료는 Si결정체, SiC결정체 또는 AlSi결정체 등일 수도 있다.

    열전도 전기전도층 위에 GaN층의 두께는 0.1μm-100μm이고, 바람직하게는 1μm-50μm이다. GaN층은 단결정 형태로 존재한다.

    상기 열전도 전기전도층과 GaN단결정층 사이는 강성 또는 유연성본딩 방식으로 연결될 수 있다. 이 본딩이 강성의 반 데르 발스 힘(van der Waals force)의 본딩일 경우, 열전도 전기전도재료의 열팽창 계수가 GaN과 서로 근접해야 한다. 여기서 서로 근접이란 열팽창 계수의 차이가 10% 이내이고, 열전도 전기전도재료와 GaN결정체 사이에 매질이 없는 것을 말한다. 유연성 매질을 통해 열전도 전기전도층과 GaN층을 본딩할 수도 있다. 유연성 매질 본딩일 경우, 상기 매질은 용점이 1000℃ 이상이어야 하고, 소정의 연신성을 가지며 응력을 완화시킬 수 있어야 하며 두께가 0.5μm-5μm의 AuAu본딩이나, 또는 금속W, Pd 또는 Ni등 고온 금속본딩이 바람직하다. 상기 두께를 갖는 금속 매질 본딩층이 GaN과 열전도 전기전도층 사이가 열팽창 계수가 다름에 따른 열적 부정합 응력을 완화시킬 수 있기 때문에 유연성 본딩방식을 사용하면, 열전도 전기전도층의 열팽창 계수가 GaN과 같거나 서로 근접할 필요가 없다.

    더욱이, 본 발명의 복합기판 내에 반사층이 더 구비되며, 상기 반사층은 GaN단결정층의 내부, 저부 또는 저면에 위치하고, 상기 GaN단결정층의 저면은 GaN단결정층과 열전도 전기전도층이 연결된 일면을 가리킨다. 상기 반사층은 열전도 전기전도층과 GaN층 사이의 본딩층이 GaN층에 근접한 일단(본딩층과 GaN층 사이)에 위치할 수 있고(도 2에 도시), GaN층 내부 또는 저부에 위치할 수도 있다(도 3에 도시). 상기 반사층이 본딩층이 GaN층에 근접한 일단에 위치할 경우, 상기 반사층은 Pd, Cr등 금속 반사층일 수 있다. 상기 반사층이 GaN층 내부 또는 GaN층 저부에 위치할 경우, 상기 반사층은 광학격자 또는 광자 결정격자 구조를 갖는 주기성 또는 준주기성 구조일 수 있다(도 4에 도시).

    상기 광학격자 구조는 미크론급 주기성 구조이고, 상기 광자 결정격자 구조는 나노급 주기성 구조이며, 이러한 주기성 구조는 주기성 원뿔형 돌기 또는 홈, 원형 계단형 돌기 또는 홈, 원주형 돌기 또는 홈, 삼각뿔형 돌기 또는 홈, 또는 기타 임의의 형상의 주기성 돌기 또는 홈일 수 있다. 도 5에 도시한 바와 같이, (a)는 삼각뿔형 홈 주기성 구조를 나타내고, (b)는 원주형 홈 주기성 구조를 나타낸다. 이러한 미크론급 또는 나노급 주기성 구조의 구조 주기는 10nm-50㎛일 수 있고, 바람직하게는 200nm-10㎛이다. 도 5에서, w 및 d는 각각 홈의 최대 넓이와 깊이를 나타내고, A는 구조주기를 나타내며, A>w이다.

    일반적으로, 반사층으로서의 미크론급 또는 나노급 주기성 구조는 내고온성(용점이 1000℃ 이상)이면서 굴절률이 GaN과 다른 재료로 제조된다. 예를 들어, SiO 2 SiN 등 결정체 방식으로 성장 또는 코팅막 방식으로 성장하는 재료로 주기성 구조를 형성하여 GaN단결정층 내에 삽입한다. 이러한 재료와 GaN굴절률이 서로 다르기 때문에 효과적으로 전반사 인터페이스를 형성하고, 주기성 구조가 인터페이스의 평균 굴절률을 효과적으로 높인다.

    일부의 경우, GaN층 저부의 주기성 구조가 GaN과 다른 구조로 형성되지 않고 GaN층 저면에 형성된 주기성 패턴이기 때문에, 이러한 주기성 패턴도 반사층의 작용을 할 수 있다.

    상기 반사층은 본 발명의 상기 복합기판에 에피텍시 방법으로 성장한 GaN기반 소자에 대해 매우 중요한 작용을 한다. 통상, 기판 위에 에피텍시한 발광소자에서 활성층은 360도로 발광한다. 상기 반사층이 없으면 발광재료에서 열전도 전기전도층 방향으로 발사된 광의 40%가 기판에 흡수되어 발사할 수 없게 되므로 반사층이 구비된 복합기판을 사용함으로써 광추출 효율을 적어도 30% 이상으로 높일 수 있다.

    본 발명의 상기 복합기판은 GaN 에피텍셜 웨이퍼 성장에 직접 사용될 수 있고, 또 수직구조의 LED소자를 제조할 수 있다. 종래의 기술에 비해 매우 명확한 장점이 있다.

    우선, 종래기술의 사파이어 기판성장과 비교한다. 현재 사파이어 기판은 GaN에피텍셜 웨이퍼 성장에 가장 자주 쓰이는 기판이다. 사파이어 기판이 열전도성 및 전기전도성이 없기 때문에 사파이어 기판에 성장한 GaN은 수직구조 LED소자를 제조하기 어렵고, 대부분 평면구조LED로 제조되어 방열에 불리하며 고출력 소자를 제조할 수 없다. 그 외에, 사파이어 기판은 GaN과 헤테로 기판이기 때문에 GaN성장 품질이 제한을 받아 고품질의 GaN에피텍셜 웨이퍼를 제조할 수 없다.

    본 발명의 복합기판은 사파이어 기판에 비해 우세가 현저하다. 우선, 복합기판에 한층의 GaN층이 있기 때문에, 복합기판에 GaN에피텍셜 웨이퍼를 성장시키는 것은 호모에피텍셜 성장에 속하며, GaN에피텍셜 웨이퍼를 성장시키는 결정체 품질을 현저하게 높일 수 있으므로 내양자 효율이 높아진다. 다음, 복합기판에서 열전도 전기전도층을 사용함으로써 복합기판을 이용하여 성장한 GaN에피텍셜 웨이퍼를 종래의 공정에 의해 직접 수직 구조 LED소자로 제조할 수 있으며, 기판이 열전도성 및 전기전도성이 없는 제약을 받지 않아 소자의 효율을 더 높일 수 있다.

    그 다음, 종래 기술에 대한 Si기판 성장과 SiC기판 성장을 비교한다. 이 두 기판은 자체 열전도 전기전도성에 의해 그 위에 성장한 GaN 에피텍셜 웨이퍼를 모두 직접 수직구조 LED로 제조할 수 있지만, 양자는 모두 헤테로 에피텍시이며, 성장한 GaN결정체 품질의 향상에 불리하다. 특히, Si기판의 경우 그 위에 성장한 GaN에피텍셜에 복수 층의 AlGaN을 삽입하여 응력을 조절해야 하고, 그 위에 성장한 GaN 두께가 3-4㎛를 초과하기 어렵다. SiC기판은 GaN 결정격자 상수와 비교적 근접하지만, SiC결정체 자체가 제조하기 매우 어렵고, 제조 비용이 높아 GaN계 고출력 LED소자에 광범위하게 응용하기가 어렵다. 본 발명의 상기 복합기판은 상기 두 기판에 대해 복합기판이 호모에피텍셜 성장에 속하고, GaN에피텍셜 웨이퍼의 결정체 품질을 아주 양호하게 높일 수 있어 광범위하게 응용할 수 있는 면에서 장점을 가진다.

    마지막으로, GaN단결정 기판에 대해 말하자면, GaN단결정 기판이 호모에피텍시 기판이고, 본 발명의 상기 복합기판과 마찬가지로 호모에피텍시이며, 상기 2가지 기판의 에피텍셜 성장을 응용하여 GaN결정체 품질을 대폭 높일 수 있다. 그러나, GaN단결정 기판의 제조비용이 비싼데 대해, 본 발명의 상기 복합기판은 원재료 비용이 더 저렴한 열전도 전기전도재료와 두께가 GaN단결정 기판의 400분의 1 내지 4분의 1인 GaN층을 사용함으로써 GaN단결정 기판보다 비용이 훨씬 저렴하기 때문에 그 적용범위가 더 넓다.

    상술한 바와 같이, 본 발명의 복합기판은 GaN에피텍시에 필요한 호모에피텍시를 겸비하고, 결정체의 품질을 높일 뿐만 아니라, 수직구조LED를 직접 제조할 수 있고, 또, 박층의 GaN단결정만 사용하기 때문에 비용을 대폭 줄일 수 있고 지금의 GaN재료 기판 중에서 매우 큰 우세를 차지하게 된다.

    도 1은 본 발명의 GaN성장용 복합기판의 기본 구조를 나타내는 도면이다.
    도 2는 반사층이 복합기판에서 본딩층이 GaN에 근접한 일단에 위치하는 복합기판의 구조를 나타내는 도면이다.
    도 3은 반사층이 복합기판에서 GaN층 내에 위치하는 복합기판의 구조를 나타내는 도면이다.
    도 4는 반사층의 광학격자 또는 광자 결정격자 주기성 구조를 나타내는 도면이다.
    도 5는 반사층이 삼각뿔형 홈(a) 또는 원주형 홈(b)형상의 주기성 구조를 나타내는 도면이다.
    도 6은 실시예 1의 제2단계에서 502접착제를 이용하여 Si기판에 접착하고, 레이저로 사파이어 기판을 박리하는 단계를 나타내는 도면이다.
    도 7은 실시예 1의 제3 단계의 고온 결합 및 Si기판 고온 분리 단계를 나타내는 도면이다.
    도 8은 실시예 2에서 GaN층 내에 반사층 구조를 갖는 GaN/WCu복합기판을 제조하는 흐름도로서, (a)는 제2단계에서 4㎛의 GaN/사파이어 기판의 GaN면에 SiO 2 주기 반사층을 제조하는 것을 나타내는 도면이고, (b)는 제3단계에서 반사층을 제조한 후 HVPE기술을 이용하여 총 두께가 10㎛이 될 때까지 GaN를 계속 성장시키는 것을 나타내는 도면이며, (c)는 제4단계에서 가공을 거쳐 Si기판 위에 위치하는 반사층 구조를 갖는 CaN 구조를 나타내는 도면이고, (d)는 마지막으로 얻은 GaN/WCu복합기판의 구조를 나타내는 도면이다.
    도 9는 실시예 4에서 금속 반사층을 갖는 GaN/MoCu복합기판을 제조하는 흐름도로서, 그중 (a)는 제3단계에서 Si기판 위에 접착된 GaN단결정층 위에 Pd금속을 증착하여 얻은 반사층 구조를 나타내는 도면이고, (b)는 NiNi본딩을 통해 얻은 Pd금속 반사층을 갖는 GaN/MoCu복합기판의 구조를 나타내는 도면이다.
    도 10은 실시예 5에서 Si기판 반 데르 발스 본딩 GaN층의 복합기판 제조 흐름도로서, 그중 (a)는 제3단계에서 GaN/사파이어 기판의 GaN면에 SiO 2 원주형 주기 구조를 제조하는 것을 나타내는 도면이고, (b)는 제4단계에서 반사층을 제조한 후, HVPE기술을 이용하여 총 두께가 50㎛가 될 때까지 GaN을 계속 성장시킨 도면이며, (c)는 제5단계에서 반 데르 발스 본딩을 통해 사파이어/GaN/Si구조를 형성하는 것을 나타내는 도면이고, (d)는 제6단계에서 레이저 박리를 통하여GaN/Si복합기판을 얻는 것을 나타내는 도면이다.
    도 11은 실시예 7에서 AlSi기판이 AuAu를 GaN층에 본딩하는 복합기판의 제조 흐름도로서, 그중 (a)는 제3단계에서 GaN/사파이어 기판의 GaN면에 SiO 2 원주형 주기 구조를 제조하는 것을 나타내는 도면이고, (b)는 제4단계에서 반사층을 제조한 후 HVPE기술을 이용하여 총 두께가 10㎛가 될 때까지 GaN을 계속 성장시킨 도면이며, (c)는 제5단계에서 AuAu본딩을 통해 사파이어/GaN/AlSi구조를 형성하는 것을 나타내는 도면이고, (d)는 제6단계에서 레이저 박리를 통해 GaN/AlSi복합기판을 얻는 것을 나타내는 도면이다.
    도 12는 본 발명에서 제조한 GaN단결정층과 금속 기판이 본딩된 복합기판의 사진이다.

    이하, 도면과 실시예를 통해 본 발명에 대해 설명한다. 그러나, 본 발명은 이에 한정되는 것이 아니며, 당업자라면 본 발명의 기본사상에 근거해 본 발명의 기본사상을 벗어나지 않는 범위 내에서 각종 수정 또는 개선을 할 수 있으며, 그들 모두 다 본 발명의 범위에 속한다고 해야 할 것이다.

    실시예 1: WCu금속기판이 AuAu본딩을 통해 GaN층에 본딩된 무반사층 금속 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 먼저 당업자에게 있어서 공지의MOCVD기술을 이용하여 두께가 4㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시키고, 그 다음 당업자에게 있어서 공지의 HVPE기술을 이용하여 GaN단결정의 총 두께가 10㎛이 될때까지 GaN을 성장시킨다.

    제2단계, 상기 성장한 GaN단결정의 GaN면을 502속경 접착제를 이용하여 2인치이고 두께가 400㎛인 단결정 Si기판에 접착하고, Si기판을 전이 지지기판으로 사용한다. 그 다음, 당업자에게 있어서 공지의 레이저 박리 기술을 통해 사파이어 기판을 박리하면 Si기판에 접착된 GaN단결정만 남는다(도 6참조).

    제3단계, Si기판 상의 GaN단결정의 GaN면과 WCu합금 기판 표면에 1㎛의 Au를 동시에 증착한 다음, 온도 300℃, 압력 5톤에서 15분 동안 본딩한다. 본딩이 끝나면 502속경 접착제가 고온에서 탄화되기 때문에 Si기판과 GaN/WCu복합기판의 연결이 자동으로 분리된다.

    마지막으로, 표면을 세척하면 GaN/WCu복합기판을 얻을 수 있다. 상기 기판은 두께가 150㎛인 WCu합금 금속기판을 포함하며, W와 Cu의 질량비는 15%:85%이다. WCu합금 금속기판은 AuAu본딩을 통해 두께가 10㎛인 GaN단결정과 본딩되고, 본딩층 Au두께는 2㎛이다.

    실시예 2: WCu금속기판이 AuAu본딩을 통해 GaN층에 본딩된 금속 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 당업자에게 있어서 공지의MOCVD기술을 이용하여 두께가 4㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시킨다.

    제2단계, PECVD기술을 이용하여 상기 성장한 GaN 단결정 표면에 두께가 1㎛인 SiO 2 박막을 한층 성장시키고, 당업자에게 있어서 공지의 포토리소그래피 및 건식식각 기술을 이용하여 SiO 2 박층을 주기 3㎛, 바닥직경 2.5㎛, 높이 1㎛의 원뿔형 주기 구조를 제조한다(도 8a 참조). 원뿔패턴 간극으로 GaN표면을 노출시킨다. 이 주기성 구조를 반사층으로 사용할 수 있다.

    제3단계, 반사층 구조가 제조된 상기 GaN단결정 표면에 계속하여 당업자에게 있어서 공지의 HVPE기술을 이용하여 GaN단결정 총 두께가 10㎛가 될 때까지 GaN을 성장시킨다(도 8(b) 참조).

    제4단계, 상기 성장한 GaN단결정의 GaN면을 502속경 접착제를 이용하여 2인치이고 두께가 400㎛인 단결정 Si기판에 접착하고, Si기판을 전이 지지기판으로 사용한다. 그 다음, 당업자에게 있어서 공지의 레이저 박리 기술을 통해 사파이어 기판을 박리하면, Si기판에 접착된 GaN단결정만 남는다(도 8(c) 참조).

    제5단계, Si기판 상의 GaN단결정의 GaN면과 WCu합금 기판 표면에 1㎛의 Au를 동시에 증착한 다음, 온도 300℃, 압력 5톤에서 15분동안 본딩한다. 본딩이 끝나면 502속경 접착제가 고온에서 탄화되기 때문에 Si기판과 GaN/WCu복합기판의 연결이 자동으로 분리된다(도 7 참조).

    마지막으로, 표면을 세척하면 도 8(d)에 나타내는 복합기판을 얻을 수 있다. 상기 기판은 두께가 150㎛인 WCu합금 금속기판(1)을 포함하며, W와 Cu의 질량비는 15%:85%이다. AuAu본딩을 통해 두께가 10㎛인 GaN단결정층(2)과 본딩되고, 본딩층(3)의 두께는 2㎛이다. GaN층(2)이 본딩층에 근접하는 4㎛ 부분에 한층의 반사층 패턴구조(4`)를 포함한다. 상기 패턴은 주기가 3㎛이고, 높이가 1㎛이며, 바닥직경이 2.5㎛인 원뿔형 SiO 2 패턴층 구조이다.

    실시예 3: MoCu금속기판이 AuAu본딩을 통해 GaN층에 본딩되는 금속 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 당업자에게 있어서 공지의MOCVD기술을 이용하여 두께가 4㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시킨다.

    제2단계, PECVD기술을 이용하여 상기 성장한 GaN 단결정 표면에 두께가 1㎛인 SiO 2 박막을 한층 성장시키고, 당업자에게 있어서 공지의 포토리소그래피 및 건식식각 기술을 이용하여 SiO 2 박층을 주기 3㎛, 바닥직경 2.5㎛, 높이 1㎛의 원뿔형 주기 구조로 제조한다(도 8a 참조). 원뿔패턴 간극으로 GaN표면을 노출시킨다. 이 주기성 구조를 반사층으로 사용할 수 있다.

    제3단계, 반사층 구조가 제조된 상기 GaN단결정 표면에 계속하여 당업자에게 있어서 공지의 HVPE기술을 이용하여 GaN단결정 총 두께가 10㎛가 될 때까지 GaN을 성장시킨다(도 8(b) 참조).

    제4단계, 상기 성장한 GaN단결정의 GaN면을 502속경 접착제를 이용하여 2인치이고 두께가 400㎛인 단결정 Si기판에 접착하고, Si기판을 전이 지지기판으로 사용한다. 그 다음, 당업자에게 있어서 공지의 레이저 박리 기술을 통해 사파이어 기판을 박리하면, Si기판에 접착된 GaN단결정만 남는다(도 8(c) 참조).

    제5단계, Si기판 상의 GaN단결정의 GaN면과 MoCu합금 기판 표면에 1㎛의 Au를 동시에 증착한 다음, 온도 300℃, 압력 5톤에서 15분동안 본딩한다. 본딩이 끝나면 502속경 접착제가 고온에서 탄화되기 때문에 Si기판과 GaN/MoCu복합기판의 연결이 자동으로 분리된다.

    마지막으로, 표면을 세척하면 GaN/MoCu 복합기판을 얻을 수 있다. 상기 기판은 두께가 150㎛인 MoCu합금 금속기판을 한층 포함하며, Mo와 Cu의 질량비는 20%:80%이다. MoCu 합금 금속기판은 AuAu본딩을 통해 두께가 10㎛인 GaN단결정층과 본딩되며, 상기 본딩층Au의 두께는 2㎛이다. GaN층이 본딩층에 근접하는 4㎛ 부분에 한층의 반사층 패턴구조를 포함한다. 상기 패턴은 주기가 3㎛이고, 높이가 1㎛이며, 바닥직경이 2.5㎛인 원뿔형 SiO 2 패턴층 구조이다.

    실시예 4: MoCu금속기판이 NiNi본딩을 통해 GaN층에 본딩된 금속 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 당업자에게 있어서 공지의 MOCVD기술을 이용하여 두께가 4㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시킨다.

    제2단계, 상기 성장한 GaN단결정의 GaN면을 502속경 접착제를 이용하여 2인치이고 두께가 400㎛인 단결정 Si기판에 접착하고, Si기판을 전이 지지기판으로 사용한다. 그 다음, 당업자에게 있어서 공지의 레이저 박리 기술을 통해 사파이어 기판을 박리하면, Si기판에 접착된 GaN단결정만 남는다.

    제3단계, Si기판(6) 상의 GaN단결정층(2)의 GaN면에 200nm의 Pd금속을 증착하여 반사층(4)으로 한다(도 9(a) 참조)

    제4단계, Si기판 상 GaN단결정의 반사층과 MoCu 합금 기판 표면에 2㎛의 Ni를 동시에 증착한 다음, 온도 800℃, 압력 15톤에서 15분 동안 본딩한다. 본딩이 끝나면 502속경 접착제가 고온에서 탄화되기 때문에 Si기판과 GaN/MoCu복합기판의 연결이 자동으로 분리된다.

    마지막으로, 표면을 세척하면 도 9(b)에 나타내는 복합기판을 얻을 수 있다. 상기 기판은 두께가 150㎛인 MoCu합금 금속기판(1)을 포함하며, Mo와 Cu의 질량비는 20%:80%이다. MoCu 합금 금속기판(1)은 NiNi본딩을 통해 두께가 4㎛인 GaN단결정층(2)에 본딩되며, 상기 본딩층(3)의 두께는 4㎛이다. GaN층(2)이 본딩층(3)에 근접하는 부분에 한층의 Pd금속 반사층(4)을 포함한다.

    실시예 5: Si기판이 반 데르 발스 본딩을 통해 GaN층에 본딩된 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 당업자에게 있어서 공지의 MOCVD기술을 이용하여 두께가 4㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시킨다.

    제2단계, 상기 GaN단결정을 계속하여 당업자에게 있어서 공지의 HVPE기술을 이용하여 GaN단결정 총 두께가 46㎛가 될 때까지 GaN을 성장시킨다.

    제3단계, PECVD기술을 이용하여 상기 성장한 GaN 단결정 표면에 두께가 1㎛인 SiO 2 박막을 한층 성장시키고, 당업자에게 있어서 공지의 포토리소그래피 및 건식식각 기술을 이용하여 SiO 2 박층을 주기 3㎛, 바닥직경 2㎛, 높이 1㎛의 원주형 주기 구조로 제조한다(도 10a 참조). 원주패턴 간극으로 GaN표면을 노출시킨다. 이 주기성 구조를 반사층으로 사용할 수 있다.

    제4단계, 반사층 구조가 제조된 상기 GaN단결정을 계속하여 HVPE기술을 이용하여 GaN단결정 총 두께가 50㎛가 될 때까지 GaN을 성장시킨다(도 10(b) 참조).

    제5단계, 상기 제조된 반사층 구조를 갖는 GaN결정체와 두께가 400㎛인 Si편을 온도 900℃, 압력 20톤에서 30분동안 직접 반 데르 발스 본딩을 통해 접착하여 사파이어/GaN/Si 구조의 샘플을 형성한다(도 10(c) 참조).

    제 6단계, 당업자에게 있어서 공지의 레이저 박리기술을 통해 사파이어 기판을 박리하면, GaN/Si본딩의 복합기판 구조만 남는다(도 10(d) 참조).

    마지막으로, 표면을 세척하면 도 10(d)에 나타내는 복합기판을 얻을 수 있다. 상기 기판은 두께가 400㎛인 한층의 Si단결정 기판(6)을 포함하며, 반 데르 발스 본딩을 통해 두께가 50㎛인 GaN단결정층(2)과 본딩된다. GaN층(2)이 본딩층에 근접하는 4㎛ 부분에 한층의 반사층 패턴구조(4`)를 포함한다. 상기 반사층 패턴구조(4`)는 주기가 3㎛이고, 높이가 1㎛이며, 바닥직경이 2㎛인 원주형 SiO 2 패턴층 구조이다.

    실시예 6: SiC기판이 PdPd본딩을 통해 GaN층에 본딩된 금속 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 당업자에게 있어서 공지의 MOCVD기술을 이용하여 두께가 4㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시킨다.

    제2단계, PECVD기술을 이용하여 상기 성장한 GaN 단결정 표면에 두께가 1㎛인 SiO 2 박막을 한층 성장시키고, 당업자에게 있어서 공지의 포토리소그래피 및 건식식각 기술을 이용하여 SiO 2 박층을 주기 3㎛, 바닥직경 2.5㎛, 높이 1㎛의 원뿔형 주기 구조로 제조한다(도 8a 참조). 원뿔패턴 간극으로 GaN표면을 노출시킨다. 이 주기성 구조를 반사층으로 사용할 수 있다.

    제3단계, 반사층 구조가 제조된 상기 GaN단결정을 계속하여 당업자에게 있어서 공지의 HVPE기술을 이용하여 GaN단결정 총 두께가 10㎛가 될 때까지 GaN을 성장시킨다(도 8(b) 참조).

    제4단계, 상기 성장한 GaN단결정의 GaN면을 502속경 접착제를 이용하여 2인치이고 두께가 400㎛인 단결정 Si기판에 접착하고, Si기판을 전이 지지기판으로 사용한다. 그 다음, 당업자에게 있어서 공지의 레이저 박리 기술을 통해 사파이어 기판을 박리하면, Si기판에 접착된 GaN단결정만 남는다(도 8(c) 참조).

    제5단계, Si기판 상의 GaN단결정의 GaN면과 두께가 200㎛인 SiC기판 표면에 1㎛의 Pd를 동시에 증착한 다음, 온도 800℃, 압력 8톤에서 15분 동안 본딩한다. 본딩이 끝나면 502속경 접착제가 고온에서 탄화되기 때문에 Si기판과 GaN/SiC복합기판의 연결이 자동으로 분리된다.

    마지막으로, 표면을 세척하면 도 8(d)에 나타내는 복합기판을 얻을 수 있다. 실시예 2의 WCu합금 금속기판을 두께가 200㎛인 SiC단결정 기판으로 바꾸고, 상기 SiC단결정을 PdPd본딩을 통해 두께가 10㎛인 GaN단결정층에 본딩한다. 상기 본딩층Pd의 두께는 2㎛이다. GaN층이 본딩층에 근접하는 4㎛ 부분에 한층의 반사층 패턴구조를 포함하고, 상기 패턴 구조는 주기가 3㎛이고, 높이가 1㎛이며, 바닥직경이 2.5㎛인 원뿔형 SiO 2 패턴층 구조이다.

    실시예 7: AlSi기판이 AuAu본딩을 통해 GaN층에 본딩된 금속 복합기판

    제1단계, 2인치이고, 두께가 430㎛인 평판 사파이어 기판을 사용하여, 당업자에게 있어서 공지의 MOCVD기술을 이용하여 두께가 6㎛인 GaN단결정 에피텍셜 웨이퍼를 성장시킨다.

    제2단계, PECVD기술을 이용하여 상기 성장한 GaN 단결정 표면에 두께가 1㎛인 SiO 2 박막을 한층 성장시키고, 당업자에게 있어서 공지의 포토리소그래피 및 건식식각 기술을 이용하여 SiO 2 박층을 주기 3㎛, 바닥직경 2㎛, 높이 1㎛의 원주형 주기 구조로 제조한다(도 11a 참조). 원주패턴 간극으로 GaN표면을 노출시킨다. 이 주기성 구조를 반사층으로 사용할 수 있다.

    제3단계, 반사층 구조가 제조된 상기 GaN단결정을 계속하여 당업자에게 있어서 공지의 HVPE기술을 이용하여 GaN단결정 총 두께가 10㎛가 될 때까지 GaN을 성장시킨다(도 11(b) 참조).

    제4단계, 상기 사파이어/GaN단결정의 GaN면과 두께가 200㎛인 AlSi기판 표면에 1㎛의 Au를 동시에 증착한 다음, 온도 300℃, 압력 5톤에서 15분 동안 본딩한다(도 11(c)참조).

    제5단계, 당업자에게 있어서 공지의 레이저 박리기술을 이용하여 사파이어기판을 박리하면, GaN/AlSi본딩의 복합기판 구조만 남는다(도 11(d)참조).

    마지막으로, 표면을 세척하면 도 11(d)에 나타내는 복합기판을 얻을 수 있다. 상기 복합기판은 두께가 200㎛인 AlSi단결정 기판(7)을 포함하며, Al성분은 30%이고, Si성분은 70%이다. 상기 AlSi단결정 기판(7)은 AuAu본딩을 통해 두께가 10㎛인 GaN단결정층(2)에 본딩되며, 상기 본딩층(3)의 두께는 4㎛이다. GaN층(2)이 본딩층에 근접하는 4㎛ 부분에 한층의 반사층 패턴구조(4`)를 포함한다. 상기 반사층 패턴 구조(4`)는 주기가 3㎛이고, 바닥직경이 2㎛이며, 높이가 1㎛인 원주형 SiO 2 패턴층 구조이다.

    1 열전도 전기전도층
    2 GaN층
    3 본딩층
    4 반사층
    4` 반사층 패턴구조
    5 사파이어 기판
    6 Si기판
    7 AlSi단결정 기판

    高效检索全球专利

    专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

    我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

    申请试用

    分析报告

    专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

    申请试用

    QQ群二维码
    意见反馈