首页 / 专利库 / 电路 / 单晶碳化硅 / 一种掺杂少量钒的高质量半绝缘碳化硅单晶及衬底

一种掺杂少量的高质量半绝缘单晶及衬底

阅读:603发布:2020-05-13

专利汇可以提供一种掺杂少量的高质量半绝缘单晶及衬底专利检索,专利查询,专利分析的服务。并且本 申请 公开了一种掺杂少量 钒 的高 质量 半绝缘 碳 化 硅 单晶及衬底,属于 半导体 材料领域。该半绝缘碳化硅单晶包含浅能级杂质、低浓度深能级 掺杂剂 和极少量本征点 缺陷 ;所述深能级掺杂剂与所述本征点缺陷共同补偿浅能级杂质,所述深能级掺杂剂的浓度小于掺杂半绝缘碳化硅单晶中深能级掺杂剂的浓度;所述本征点缺陷的浓度为室温下碳化硅单晶中的本征点缺陷原生浓度,所述本征点缺陷浓度不影响碳化硅单晶电学性能的 稳定性 。该半绝缘碳化硅单晶具有高度稳定的 电阻 率 ,并且具有高的电阻率均匀性。由该碳化硅单晶制备的碳化硅单晶衬底具有高的电阻率均匀性、低应 力 ,使得碳化硅单晶衬底具有优异的面型质量,从而保证了后续 外延 质量的稳定性和一致性。,下面是一种掺杂少量的高质量半绝缘单晶及衬底专利的具体信息内容。

1.一种掺杂少量的高质量半绝缘单晶,其特征在于,包含浅能级杂质、低浓度深能级掺杂剂和极少量的本征点缺陷
所述深能级掺杂剂与所述本征点缺陷共同补偿浅能级杂质,所述深能级掺杂剂的浓度小于掺杂半绝缘碳化硅单晶中深能级掺杂剂的浓度;
所述本征点缺陷的浓度为室温下碳化硅单晶中的本征点缺陷原生浓度,所述本征点缺陷的浓度室温下不高于1×1014cm-3,所述本征点缺陷浓度不影响碳化硅单晶电学性能的稳定性,所述本征点缺陷的原生浓度为生长碳化硅单晶过程中自热形成的本征点缺陷的浓度,不包括在碳化硅单晶后续处理时引入的本征点缺陷浓度;
所述深能级掺杂剂的浓度低于1×1017cm-3;
所述的碳化硅单晶的电阻率大于1×1011Ω·cm,所述碳化硅单晶经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值不大于31%。
2.根据权利要求1所述的半绝缘碳化硅单晶,其特征在于,所述浅能级杂质的浓度之和低于1×1017cm-3。
3.根据权利要求2所述的半绝缘碳化硅单晶,其特征在于,所述浅能级杂质的浓度之和不低于1×1015cm-3,所述深能级掺杂剂的浓度不低于1×1015cm-3,所述本征点缺陷的浓度室温下不高于1×1014cm-3。
4.根据权利要求1所述的半绝缘碳化硅单晶,其特征在于,所述浅能级杂质包括元素周期表中的IIIA和VA主族元素中的一种或多种。
5.根据权利要求1所述的半绝缘碳化硅单晶,其特征在于,所述的碳化硅单晶的晶型为
4H-SiC、6H-SiC或3C-SiC。
6.根据权利要求1所述的半绝缘碳化硅单晶,其特征在于,其由包括下述步骤的方法制备得到:
1)热场装置除杂:对石墨保温结构和石墨坩埚进行高温提纯;
2)混料:将深能级掺杂剂元素掺杂于碳化硅粉料中,碳化硅粉料中的深能级掺杂剂的浓度为1×1016cm-3~1×1017cm-3;
3)长晶:将步骤2)制得的掺杂深能级掺杂剂元素的碳化硅粉放置在经步骤1)处理的石墨坩埚后,开始长晶,长晶结束后的深能级掺杂中心元素的浓度为5×1015cm-3~1×1017cm-3;
4)退火:将经过步骤3)处理的碳化硅单晶进行退火处理。
7.一种半绝缘碳化硅单晶衬底,其特征在于,由权利要求1-6中任一项所述的半绝缘碳化硅单晶制备得到。
8.根据权利要求7所述的半绝缘碳化硅单晶衬底,其特征在于,所述碳化硅单晶衬底经外延工艺退火处理前后的电阻率均值变化值不大于31%。
9.根据权利要求8所述的半绝缘碳化硅单晶衬底,其特征在于,所述碳化硅单晶衬底经
900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值不大于31%。
10.一种外延晶片和/或晶体管,其特征在于,包括权利要求7-9中任一项所述的半绝缘碳化硅单晶衬底。

说明书全文

一种掺杂少量的高质量半绝缘单晶及衬底

技术领域

[0001] 本申请涉及一种掺杂少量钒的高质量半绝缘碳化硅单晶及衬底,属于半导体材料领域。

背景技术

[0002] 半绝缘碳化硅(SiC)单晶衬底由于具有禁带宽度大、电阻率及热导率高、击穿场强大等优异的物理性能而成为制备GaN基高频微波器件的优选半导体材料。随着5G技术的不断发展,市场端对半绝缘碳化硅单晶衬底的需求数量不断扩大,更重要的,批量商业化的应用对碳化硅半绝缘单晶衬底的质量要求也提出了更高的要求。
[0003] 目前已经产业化的半绝缘碳化硅单晶制备是在物理气相法(PVT)的基础上,通过引入高浓度的钒杂质作为深能级补偿中心实现半绝缘特性,由此制备的碳化硅单晶称为掺杂半绝缘碳化硅单晶;或者通过在晶体制备过程中不断降低晶体中的浅能级杂质浓度并引入一定数量的本征点缺陷实现其半绝缘特性,由此制备的碳化硅单晶称为高纯半绝缘碳化硅单晶。
[0004] 掺杂半绝缘碳化硅单晶在制备过程中由于有高浓度钒引入,容易在晶体中形成钒的沉淀物并诱生微管缺陷,降低晶体质量;此外,研究表明高浓度的钒在器件中作为电子俘获中心,会引起背栅效应,降低甚至破坏器件性能。因此,随着衬底制备技术和器件制备技术的发展,高纯半绝缘碳化硅单晶衬底逐渐成为主流。高纯半绝缘碳化硅单晶中较低的浅能级杂质能够降低晶体中的有效载流子浓度,同时通过引入的特定数量的本征点缺陷将费米能级钉扎在禁带中心,从而实现晶体的半绝缘特性。然而,本征点缺陷在晶体中具有较高的迁移速率,在一定温度下(如GaN外延层制备的温度条件下)会发生迁移扩散并湮灭,这会引起衬底电阻率的不稳定性,同样对器件性能的稳定性造成影响。
[0005] 掺杂半绝缘碳化硅单晶中钒浓度[V]通常为1×1017~1×1018cm-3,相应的氮浓度[N]高于1017cm-3量级,其制备过程中的高浓度钒掺杂具有较高的技术壁垒,且制备晶体中易形成含大量缺陷和不可控的浅能级杂质浓度,造成晶体质量不可控。高纯半绝缘碳化硅单晶中[N]为1015cm-3量级,相应的点缺陷浓度为1×1015cm-3量级及以上,其制备过程中的氮等浅能级杂质浓度去除需要较高的技术成本和资金成本。发明内容
[0006] 为了解决上述问题,本申请提供了一种高质量轻掺杂的半绝缘碳化硅单晶和衬底,该半绝缘碳化硅单晶的电阻率更稳定,不存在因为高浓度掺杂而引起的沉淀物缺陷和电子俘获问题;由该碳化硅单晶制备的碳化硅单晶衬底具有高的电阻率均匀性、低应,使得碳化硅单晶衬底具有优异的面型质量,从而保证了后续外延质量的稳定性和一致性,该碳化硅单晶衬底有助于器件性能的提升。
[0007] 一方面,本申请提供了一种杂掺杂少量钒的高质量半绝缘碳化硅单晶,其特征在于,包含浅能级杂质、低浓度深能级掺杂剂和极少量的本征点缺陷;所述深能级掺杂剂与所述本征点缺陷共同补偿浅能级杂质,所述深能级掺杂剂的浓度小于掺杂半绝缘碳化硅单晶中深能级掺杂剂的浓度;所述本征点缺陷的浓度为室温下碳化硅单晶中的本征点缺陷原生浓度,所述本征点缺陷浓度不影响碳化硅单晶电学性能的稳定性。
[0008] 本申请中所述的本征点缺陷的原生浓度为生长碳化硅单晶过程中自热形成的本征点缺陷的浓度,不包括在碳化硅单晶后续处理时引入的本征点缺陷浓度。
[0009] 本申请中所述掺杂半绝缘碳化硅单晶中深能级掺杂剂的浓度通常为5×1017~1×1018cm-3。
[0010] 可选地,所述碳化硅单晶是通过降低碳化硅晶体中的浅能级杂质同时引入少量的深能级掺杂剂替代碳化硅单晶中的本征点缺陷,实现其半绝缘特性。
[0011] 可选地,所述浅能级杂质的浓度之和低于1×1017cm-3,所述深能级掺杂剂的浓度低于1×1017cm-3,所述本征点缺陷室温下的浓度不高于1×1015cm-3。进一步地,所述浅能级17 -3 17 -3
杂质的浓度之和小于1×10 cm ,所述深能级掺杂剂的浓度小于1×10 cm ,所述本征点缺陷室温下的浓度大于1×1015cm-3。
[0012] 可选地,所述本征点缺陷室温下的浓度不高于1×1014cm-3。进一步地,所述本征点缺陷室温下的浓度大于1×1014cm-3。
[0013] 可选地,所述浅能级杂质的浓度之和不低于1×1015cm-3,所述深能级掺杂剂的浓度不低于1×1015cm-3,所述本征点缺陷室温下的浓度不高于1×1014cm-3。进一步地,所述浅能级杂质的浓度之和大于1×1015cm-3,所述深能级掺杂剂的浓度大于1×1015cm-3,所述本征点缺陷室温下的浓度小于1×1014cm-3。
[0014] 可选地,所述浅能级杂质的浓度之和高于1×1015cm-3,所述深能级掺杂剂的浓度为5×1015~1×1017cm-3,所述本征点缺陷室温下的浓度不高于1×1014cm-3。进一步地,所述浅能级杂质的浓度之和大于1×1015cm-3,所述深能级掺杂剂的浓度为5×1015~1×1017cm-3,所述本征点缺陷室温下的浓度小于1×1014cm-3。
[0015] 优选地,所述浅能级杂质的浓度之和不低于5×1015cm-3。进一步地,所述浅能级杂质的浓度之和大于5×1015cm-3。
[0016] 更优选地,所述浅能级杂质的浓度之和不低于1×1016cm-3。进一步地,所述浅能级杂质的浓度之和大于1×1016cm-3。
[0017] 优选地,所述深能级掺杂剂的浓度为1×1016cm-3~5×1016cm-3。
[0018] 优选地,所述本征点缺陷缺陷浓度不高于室温下的本征浓度。
[0019] 优选地,所述本征点缺陷缺陷浓度不高于1×1012cm-3。进一步地,所述本征点缺陷缺陷浓度小于1×1012cm-3。
[0020] 可选地,所述碳化硅单晶在外延退火工艺处理前后的电阻率均值变化值小于55%。
[0021] 可选地,所述碳化硅单晶可制备成单晶衬底,外延工艺退火包括:在900-1200℃温度保持0.5-10h。
[0022] 可选地,所述碳化硅单晶经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值小于55%。
[0023] 优选地,所述碳化硅单晶经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值小于50%;进一步地,所述碳化硅单晶经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值小于30%。
[0024] 可选地,所述浅能级杂质包括元素周期表中的IIIA和VA主族元素中的一种或多种。
[0025] 可选地,所述浅能级杂质包括氮、中的一种或多种。
[0026] 优选地,所述浅能级杂质包括氮、硼和铝。
[0027] 可选地,所述深能级掺杂剂选自元素周期表中的ⅤB族元素中的至少一种。
[0028] 优选地,所述深能级掺杂剂为钒。
[0029] 可选地,所述的碳化硅晶体的晶型为4H-SiC、6H-SiC或3C-SiC。进一步地,所述的碳化硅单晶的晶型为4H-SiC。
[0030] 可选地,所述的碳化硅晶体的电阻率大于1×1011Ω·cm,进一步地,所述碳化硅晶体的电阻率大于3×1011Ω·cm,更进一步地,所述碳化硅晶体的电阻率大于6×1011Ω·cm。可选地,所述的半绝缘碳化硅单晶由包括下述步骤的方法制备得到:
[0031] 1)热场装置除杂:对石墨保温结构和石墨坩埚进行高温提纯;
[0032] 2)混料:将深能级掺杂剂元素掺杂于碳化硅粉料中,碳化硅粉料中的深能级掺杂剂的浓度为1×1016cm-3~1×1017cm-3;
[0033] 3)长晶:将步骤2)制得的掺杂深能级掺杂剂元素的碳化硅粉放置在经步骤1)处理的石墨坩埚后,开始长晶步骤,长晶步骤结束后的深能级掺杂中心元素的浓度为5×1015cm-3~1×1017cm-3;
[0034] 4)退火:将经过步骤3)处理的碳化硅单晶进行退火处理。
[0035] 优选地,所述长晶步骤包括高温预处理阶段和长晶阶段。
[0036] 所述的深能级掺杂剂元素选自元素周期表中的ⅤB族元素中的至少一种。
[0037] 优选地,所述深能级掺杂剂为钒。
[0038] 可选地,所述热场装置包括石墨保温结构和石墨坩埚。
[0039] 优选地,所述步骤1)的热场装置除杂包括:将碳化硅粉料放置在石墨坩埚后,在温度1800-2500℃、压力5-50mbar下保持20-100h。进一步地,所述步骤1)的热场装置除杂步骤包括:将碳化硅粉料放置在石墨坩埚后,在温度2200-2400℃、压力20-30mbar下保持50-100h。
[0040] 可选地,所述步骤2)的混料中的深能级掺杂剂元素的浓度为1×1016cm-3~1×1017cm-3。进一步地,所述步骤2)的混料中的深能级掺杂剂元素的浓度为2×1016cm-3~5×
1016cm-3。
[0041] 可选地,所述步骤3)中的长晶步骤包括:高温预处理阶段和长晶阶段;
[0042] 所述高温预处理阶段的条件为:在温度1200℃-2000℃和压力800-1000mbar下保持时间5-50h;
[0043] 所述长晶阶段的条件为:以10-50℃/min的速率提高至2200℃以上的温度,同时将压力降至5-50mbar。该长晶阶段方法使得石墨坩埚内的碳化硅粉料充分升华
[0044] 进一步地,所述步骤3)中的长晶步骤包括:高温预处理阶段和长晶阶段;
[0045] 所述高温预处理阶段的条件为:在温度1800℃-2000℃和压力800-900mbar下保持时间30-50h;
[0046] 所述长晶阶段的条件为:以10-30℃/min的速率提高至2200℃以上的温度,同时将压力降至5-50mbar。
[0047] 可选地,所述步骤4)的退火处理条件为:将步骤3)的碳化硅单晶初品置于退火炉中并在1800-2200℃温度下保持10-50h。进一步地,所述步骤4)的退火处理条件为:将步骤3)的碳化硅单晶初品置于退火炉中并在2000-2200℃温度下保持30-50h。
[0048] 作为一种实施方式,所述的半绝缘碳化硅单晶由包括下述步骤的方法制备:
[0049] (1)对碳化硅单晶长晶使用的石墨保温毡和石墨坩埚进行高温提纯。石墨坩埚内放置碳化硅粉料,粉料粒度控制在50-500μm,数量控制在坩埚容积的50%-80%。将石墨坩埚置于石墨保温并封装于碳化硅长晶炉后,在温度1800-2500℃、压力5-50mbar下高温处理20-100h。该步骤使坩埚内的粉料升华并形成高温气体,高温气体在逸散的过程中能够浸润到石墨坩埚和石墨保温毡中并驱逐其吸附的氮等杂质元素,从而获得高纯度的石墨材料。
[0050] (2)将钒元素均匀的掺杂于碳化硅粉料中。钒元素在碳化硅粉料合成过程中的掺杂可以通过与碳化硅粉料混合的方式进行,也可以内置于石墨容器中后埋于混合后的碳化硅粉料中。为了控制后续引入到碳化硅单晶中的钒掺杂浓度,碳化硅粉料中的钒掺杂浓度应相应的进行控制,每1kg反应源粉中应放置0.01-1g钒元素,其反应后在碳化硅粉料中的浓度应在1×1016cm-3~1×1017cm-3量级,以实现后续长晶过程中的少量钒的含量范围目的。具体的,碳化硅粉料经过与钒混合均匀后,或在石墨容器中放置钒掺杂浓度后的碳化硅粉料反应过程可参考已公开的专利文件。
[0051] (3)通过反应获得含有一定掺杂钒浓度的碳化硅粉料后,将少量钒掺杂碳化硅粉料置于石墨坩埚中并封装入长晶炉膛,开始晶体生长。晶体生长过程包括1200℃-2000℃、800-1000mbar、5-50h的高温预处理以去除炉膛内吸附的氮等杂质。本申请引入少量的钒元素,因此相比于高纯半绝缘碳化硅单晶,本步骤的提纯过程可以较大的简化,只需将过量的氮元素去除即可,相比高纯半绝缘碳化硅单晶的制备过程可以降低技术成本和籽晶成本。
完成炉膛内的提纯预处理后,将温度以10-30℃/min的速率提高至2200℃以上的温度,同时将压力降至5-50mbar,以使石墨坩埚内的少量钒掺杂碳化硅粉料充分升华。升华后的气相及释放出的钒元素随着温度梯度传输至籽晶处并结晶。根据重掺杂半绝缘碳化硅单晶生长过程可知,钒元素会在晶体生长过程中占据晶体生长界面一部分晶格位置,从而实现钒元素的掺杂。由于少量钒掺杂碳化硅粉料中含有的钒元素已被限制在1×1016cm-3~1×
1017cm-3的含量,经过气相传输过程后,由于传输过程的损耗及钒元素与碳化硅粉料的再结合,最终掺杂进入到晶体中的钒元素浓度应在5×1015cm-3~1×1017cm-3之间。这些进入到碳化硅单晶的钒元素既能作为施主存在,也能作为受主存在,从而补偿掉碳化硅单晶中的浅能级杂质。
[0052] (4)碳化硅单晶生长结束后,将碳化硅单晶取出石墨坩埚。由于在碳化硅单晶生长过程中生长界面处于较高的温度,生长界面处部分原子脱离晶格位置形成一定浓度的本征点缺陷。将碳化硅单晶放置于退火炉中,在1800-2000℃温度下进行10-50h的退火处理,可去除本征点缺陷。退火过程中,存在于碳化硅单晶中的本征点缺陷经过迁移而湮灭,本征点缺陷的浓度下降至不影响晶体电学性能的平。
[0053] 本申请制备的碳化硅单晶的电阻率由残余的浅能级杂质和少量的钒元素决定。由于浅能级杂质和少量的钒元素都占据晶格位置,其具有很高的热稳定性,这也就意味着本申请的碳化硅单晶可以获得具有高度稳定的电阻率。
[0054] 本申请中的“不高于”、“不低于”、“高于”和“低于”包含端点值。
[0055] 根据本申请的另一方面,提供了一种半绝缘碳化硅单晶衬底,其特征在于,由任一项上述的半绝缘碳化硅单晶制备得到。
[0056] 可选地,所述碳化硅单晶衬底经外延工艺退火处理前后的电阻率均值变化值小于55%。
[0057] 可选地,所述碳化硅单晶衬底经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值小于55%。
[0058] 进一步地,所述碳化硅单晶衬底经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值小于50%。进一步地,所述碳化硅单晶衬底经900-1200℃温度保持0.5-10h处理前后的电阻率均值变化值小于30%。
[0059] 根据本申请的又一方面,提供了一种外延晶片和/或晶体管,其特征在于,包括上述的半绝缘碳化硅单晶衬底。
[0060] 本申请的有益效果包括但不限于:
[0061] 1)本申请的碳化硅单晶为少量钒掺杂的半绝缘单晶,本申请通过降低碳化硅晶体中的浅能级杂质同时引入少量的钒掺杂替代碳化硅单晶中的本征点缺陷,实现碳化硅单晶的半绝缘特性。
[0062] 2)本申请的碳化硅单晶的电阻率由残余的浅能级杂质和少量的钒元素决定,由于这些杂质都占据晶格位置,其具有很高的热稳定性,这也就意味着晶体可以获得具有高度稳定的电阻率,并且具有高的电阻率均匀性。
[0063] 3)本申请的碳化硅单晶的制备结合现有的掺杂半绝缘碳化硅单晶和高纯半绝缘碳化硅单晶制备技术,通过控制碳化硅晶体中的浅能级杂质浓度和深能级掺杂剂的浓度,可以实现具有更高电阻率稳定性的半绝缘碳化硅单晶和衬底,同时可以避免因高浓度掺杂而引起的沉淀物缺陷和电子俘获问题,从而提高碳化硅单晶衬底的质量并有助于使用该衬底的器件性能的提升。
[0064] 4)本申请的碳化硅单晶中的浅能级杂质浓度不需要降到高纯半绝缘碳化硅单晶的水平,可以节约成本,并且降低工艺的难度。
[0065] 5)本申请的碳化硅单晶作为衬底,具有良好的电学性能稳定性;同时,对碳化硅单晶衬底进行退火前后的面型测试,弯曲度和翘曲度的绝对值变化远远小于外延工艺所要求的退火前后5μm的控制线,表明碳化硅单晶衬底内部应力极小,能够保证衬底具有优异的面型质量,从而保证了后续外延过程中衬底质量的稳定性和一致性。附图说明
[0066] 图1为退火前的碳化硅单晶衬底1#电阻率面扫描图。
[0067] 图2为退火后的碳化硅单晶衬底1#电阻率面扫描图。

具体实施方式

[0068] 下面结合实施例详述本申请,但本申请并不局限于这些实施例。
[0069] 如无特别说明,本申请的实施例中的涉及的原料等均通过商业途径购买。
[0070] 本申请的实施例中分析方法如下:
[0071] 碳化硅单晶晶型测试采用Horiba公司的HR800型共聚焦拉曼光谱仪。
[0072] 碳化硅单晶衬底的面型测试采用FRT公司的MicroProf@TTV200型全自动面型测试仪。
[0073] 电阻率测试采用Semimap公司的COREMA-WT型非接触式半绝缘电阻率测试仪。
[0074] 元素含量测试采用Cameca公司的IMS 7f-Auto型二次离子质谱仪器。
[0075] 本申请的实施方式中,碳化硅单晶的制备流程包括下述步骤:
[0076] 1)热场装置除杂:对石墨保温毡和石墨坩埚进行高温提纯;
[0077] 2)混料:将钒元素均匀的掺杂于碳化硅粉料中,碳化硅粉中的钒浓度为1×1016cm-3~1×1017cm-3;
[0078] 3)长晶:将步骤2)制得的掺杂钒的碳化硅粉放置在经步骤1)处理的石墨坩埚后,开始长晶,所述长晶步骤包括高温预处理阶段和长晶阶段,长晶结束后的钒的浓度为5×15 -3 17 -3
10 cm ~1×10 cm ;
[0079] 4)退火:将经过步骤3)处理的碳化硅单晶进行退火处理,即制得所述的半绝缘碳化硅单晶。
[0080] 实施例1半绝缘碳化硅单晶的制备—热场装置除杂
[0081] 热场装置包括石墨坩埚和石墨保温毡,将制备碳化硅单晶使用的石墨保温毡和石墨坩埚进行高温提纯。高温提纯步骤包括:将石墨坩埚内放置碳化硅粉料,粉料粒度控制在50-500μm,数量控制在坩埚容积的50%-80%。将石墨坩埚置于石墨保温毡并封装于碳化硅长晶炉后,在一定温度、压力下保持一段时间,进行热场装置除杂。热场1#、热场2#、热场3#、热场4#和热场5#的具体处理温度、压力和时间如表1所示,表1中的热场装置包括石墨坩埚和石墨保温毡。
[0082] 表1
[0083]   温度/℃ 压力/mbar 时间/h热场1# 2300 30 50
热场2# 1800 5 100
热场3# 1900 10 80
热场4# 2400 40 30
热场5# 2500 50 20
[0084] 热场1#、热场2#、热场3#、热场4#和热场5#的处理过程中的石墨坩埚内的碳化硅粉料升华并形成高温气体,高温气体在逸散的过程中能够浸润到石墨坩埚和石墨保温毡中并驱逐其吸附的氮等杂质元素,从而获得高纯度的石墨材料,从而除去制备的热场1#、热场2#、热场3#、热场4#和热场5#中的杂质,从而控制制备半绝缘碳化硅单晶的过程中引入杂质。
[0085] 实施例2半绝缘碳化硅单晶初品的制备—混料、长晶
[0086] 将碳化硅粉料与钒元素进行掺杂,制得少量钒掺杂碳化硅粉料,每1kg反应碳化硅粉料中应放置0.01-1g钒元素,反应后钒在碳化硅粉料中的浓度应在1×1016cm-3~1×1017cm-3量级,以实现后续长晶过程中的钒元素的含量范围。
[0087] 将少量钒掺杂碳化硅粉分别放置于实施例1处理后的热场1#、热场2#、热场3#、热场4#和热场5#的石墨坩埚中,并封装入长晶炉膛,进行长晶步骤。以热场1#为例说明长晶步骤,长晶步骤的具体长晶条件如表2所示。
[0088] 本实施例中的长晶步骤包括高温预处理阶段和长晶阶段,高温预处理阶段将炉膛内吸附的氮等杂质去除干净,由于本实施例的目的是通过引入少量的钒元素,因此相比于高纯半绝缘碳化硅单晶,本步骤的提纯过程可以较大的简化,只需将过量的氮元素去除即可,相比高纯半绝缘碳化硅单晶的制备过程可以降低技术成本和籽晶成本。
[0089] 完成炉膛内的提纯预处理后,本申请的长晶阶段的参数控制使得石墨坩埚内的少量钒掺杂碳化硅粉料充分升华,升华后的气相及释放出的钒元素随着温度梯度传输至籽晶处并结晶。根据重掺杂半绝缘碳化硅单晶生长过程可知,钒元素会在晶体生长过程中占据晶体生长界面一部分晶格位置,从而实现钒的掺杂。由于少量钒掺杂碳化硅粉料中含有的钒元素已被限制在1×1016cm-3~1×1017cm-3的含量,经过气相传输过程后,由于传输过程的损耗、钒与碳化硅粉料的再结合,最终掺杂进入到碳化硅单晶中的钒元素浓度在5×1015cm-3 17 -3~1×10 cm 之间。这些进入到碳化硅单晶的钒元素既能作为施主存在,也能作为受主存在,从而补偿掉碳化硅单晶中的浅能级杂质。
[0090] 实施例3半绝缘碳化硅单晶的制备—退火
[0091] 将实施例2制备的碳化硅单晶初品继续进行退火处理,制备得到半绝缘碳化硅单晶。以热场1#进行碳化硅单晶长晶步骤制成的碳化硅单晶初品进行退火处理为例,说明制备碳化硅单晶的步骤。将实施例2的热场1#分别经过表2的长晶步骤制得的半绝缘碳化硅单晶初品进行退火处理分别制得碳化硅单晶1#、碳化硅单晶2#、碳化硅单晶3#、碳化硅单晶4#和碳化硅单晶5#,具体退火处理条件如表2所示。
[0092] 碳化硅单晶生长结束后,将碳化硅单晶取出石墨坩埚。由于在晶体生长过程中生长界面处于较高的温度,生长界面处部分原子脱离晶格位置形成一定浓度的本征点缺陷。将碳化硅单晶放置于退火炉中,在1800-2000℃温度下进行10-50h的退火处理,可去除本征点缺陷。退火过程中,存在于碳化硅单晶中的本征点缺陷经过迁移而湮灭,本征点缺陷的浓度下降至室温下其本征浓度以下且不影响晶体电学性能稳定性的水平。至此,本申请制备的碳化硅单晶的电阻率由残余的浅能级杂质和少量的钒元素决定。由于浅能级杂质和少量的钒元素都占据晶格位置,其具有很高的热稳定性,这也就意味着本申请的碳化硅单晶可以获得具有高度稳定的电阻率。
[0093] 表2
[0094]
[0095] 由于在晶体生长过程中生长界面处于较高的温度,生长界面处部分原子脱离晶格位置形成一定浓度的点缺陷。经过本申请的退火处理,存在于晶体中的点缺陷经过迁移而湮灭,从而浓度下降至不影响晶体电学性能的水平。至此,晶体的电阻率由残余的浅能级杂质和少量的钒元素决定。由于这些杂质都占据晶格位置,其具有很高的热稳定性,这也就意味着晶体可以获得具有高度稳定的电阻率。
[0096] 实施例4半绝缘碳化硅单晶的表征
[0097] 测试实施例3制备的碳化硅单晶的电阻率、晶型、杂质含量、本征点缺陷和电阻率,测试结果表明制得的碳化硅单晶具有半绝缘性,且电阻率高,经过外延工艺退火(900-1200℃/0.5-10h)之后的电阻率均值变化值小于55%。以碳化硅单晶1#、碳化硅单晶2#、碳化硅单晶3#、碳化硅单晶4#和碳化硅单晶5#为例说明测试的电阻率、晶型、杂质含量、本征点缺陷和电阻率的结果,如表3所示,其中,浅能级杂质含量包括N、B和Al。
[0098] 表3
[0099]
[0100]
[0101] 实施例5半绝缘碳化硅单晶衬底的性能测试
[0102] 分别将实施例3制备的碳化硅单晶进行切割、研磨抛光制得4-8英寸的半绝缘碳化硅单晶衬底,将制得的半绝缘碳化硅单晶衬底进行退火处理,同时测试碳化硅单晶衬底在退火前后的电阻率和面型,测试结果显示,实施例3制备的碳化硅单晶衬底具有良好的电学性能稳定性,且衬底的内部应力极小。
[0103] 以碳化硅单晶1#制得的4英寸的碳化硅单晶衬底1#为例进行说明。碳化硅单晶衬底1#经过1200℃退火2h后。测试碳化硅单晶衬底1#退火前的电阻率面扫描图如图1所示,碳化硅单晶衬底1#退火后的电阻率面扫描图如图2所示。测试电阻率均值由4.22×1011Ω·cm变为3.17×1011Ω·cm,电阻率衰减<50%;同时,对碳化硅单晶衬底1#进行退火前后的面型测试,碳化硅单晶衬底1#退火前后的WARP值由8.35μm变为8.42μm,BOW值由9.62μm变为9.87μm,弯曲度和翘曲度的绝对值变化远远小于外延工艺所要求的退火前后5μm的控制线,表明碳化硅单晶衬底内部应力极小,能够保证衬底具有优异的面型质量,从而保证了后续外延过程中碳化硅单晶衬底质量的稳定性和一致性。
[0104] 以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈