首页 / 专利库 / 微电子学 / 晶格匹配 / 应变补偿型量子级联探测器

应变补偿型量子级联探测器

阅读:583发布:2020-05-08

专利汇可以提供应变补偿型量子级联探测器专利检索,专利查询,专利分析的服务。并且本公开提供一种应变补偿型量子级联探测器,包括:衬底;下 接触 层, 外延 生长 于衬底之上;周期性应变补偿量子级联功能层,外延于下接触层之上,包括多个级联周期;上接触层,外延于周期性的应变补偿量子级联功能层之上;下接触 电极 ,位于 刻蚀 上接触层和周期性应变补偿量子级联功能层结构而露出的下接触层表面;以及上接触电极,位于上接触层的表面;其中,每个所述级联周期由下至上包括:吸收区和弛豫区;所述吸收区为与衬底 晶格匹配 的材料;所述弛豫区包括多层交替的应变补偿的势垒层和势阱层组成多 量子阱 结构,均为与衬底晶格不匹配的材料。,下面是应变补偿型量子级联探测器专利的具体信息内容。

1.一种应变补偿型量子级联探测器,包括:
衬底;
接触层,外延生长于衬底之上;
周期性应变补偿量子级联功能层,外延于下接触层之上,包括多个级联周期;
上接触层,外延于周期性的应变补偿量子级联功能层之上;
下接触电极,位于刻蚀上接触层和周期性应变补偿量子级联功能层结构而露出的下接触层表面;以及
上接触电极,位于上接触层的表面;
其中,每个所述级联周期由下至上包括:吸收区、弛豫区;
所述吸收区为与衬底晶格匹配的材料;
所述弛豫区包括多层交替的应变补偿的势垒层和势阱层组成多量子阱结构,均为与衬底晶格不匹配的材料。
2.根据权利要求1所述的应变补偿型量子级联探测器,所述衬底为磷化铟,弛豫区势垒层为铟砷,其中Al组分变化范围:0.48-1;弛豫区势阱层为铟镓砷,其中Ga组分变化范围:
0.47-0。
3.根据权利要求1所述的应变补偿型量子级联探测器,所述衬底为磷化铟,弛豫区势垒层为铟镓磷,其中Ga组分变化范围:0-1;弛豫区势阱层为铟砷磷,As组分变化范围:0-1。
4.根据权利要求1所述的应变补偿型量子级联探测器,所述衬底为磷化铟,弛豫区势垒层为铟镓磷,其中Ga组分变化范围:0-1;弛豫区势阱层为铟镓砷,Ga组分变化范围:0.47-0。
5.根据权利要求1所述的应变补偿型量子级联探测器,所述衬底为砷化镓,弛豫区势垒层为镓砷磷,其中As组分变化范围0-1;弛豫区势阱层为镓砷锑,As组分变化范围:0-1。
6.根据权利要求1所述的应变补偿型量子级联探测器,所述衬底为砷化镓,弛豫区势垒层为镓砷磷,其中As组分变化范围0-1;弛豫区势阱层为铟镓砷,In组分变化范围:0-1。
7.根据权利要求1至6任一项所述的应变补偿型量子级联探测器,弛豫区相邻势垒层和势阱层的材料应变类型相反,应变大小相近。
8.根据权利要求1所述的应变补偿型量子级联探测器,所述衬底的制备材料包括:磷化铟或砷化镓。
9.根据权利要求1所述的应变补偿型量子级联探测器,所述下接触层2和上接触层4,为施主杂质Si重掺杂的铟镓砷外延层。
10.根据权利要求1所述的应变补偿型量子级联探测器,所述上接触电极6和下接触电极5的制备材料包括:合金、锗金合金或镍金合金中至少一种。

说明书全文

应变补偿型量子级联探测器

技术领域

[0001] 本公开涉及红外探测技术领域,尤其涉及一种应变补偿型量子级联探测器。

背景技术

[0002] 半导体红外探测器在军用,民用各方面有着广泛的用途和强烈的需求。当前,商用的红外探测器以碲镉汞(HgCdTe)探测器和光导型量子阱探测器(QWIP)为主。但是HgCdTe探测器缺乏大面积均匀衬底,材料制备均匀性难控,其大规模面阵应用受到限制;而QWIP是光导型探测器,虽然材料生长体系已经成熟,但是其工作在偏压条件下,无法避免强的暗电流,应用在焦平面成像时,为了避免焦平面器件读出电路饱和,其积分时间不能太长,其大面阵器件的应用受到限制。量子级联探测器(QCD)作为一种光伏型探测器,具有功耗低,暗电流小的优点,在焦平面器件的应用中能够具有更长的积分时间,提高器件的成像精度,而且在材料生长方面也已经具备成熟的外延生长技术,但是目前在长波波段尚未实现室温工作,长波QCD探测率、响应度均有待提高。
[0003] 公开内容
[0004] (一)要解决的技术问题
[0005] 基于上述问题,本公开提供了一种应变补偿型量子级联探测器,以缓解现有技术中量子级联探测器探测率较低、响应度较低等技术问题。
[0006] (二)技术方案
[0007] 本公开提供一种应变补偿型量子级联探测器,包括:衬底;下接触层,外延生长于衬底之上;周期性应变补偿量子级联功能层,外延于下接触层之上,包括多个级联周期;上接触层,外延于周期性的应变补偿量子级联功能层之上;下接触电极,位于刻蚀上接触层和周期性应变补偿量子级联功能层结构而露出的下接触层表面;以及上接触电极,位于上接触层的表面;其中,每个所述级联周期由下至上包括:吸收区、弛豫区;所述吸收区为与衬底晶格匹配的材料;所述弛豫区包括多层交替的应变补偿的势垒层和势阱层组成多量子阱结构,均为与衬底晶格不匹配的材料。
[0008] 在本公开实施例中,所述衬底为磷化铟,弛豫区势垒层为铟砷,其中Al组分变化范围:0.48-1;弛豫区势阱层为铟镓砷,其中Ga组分变化范围:0.47-0。
[0009] 在本公开实施例中,所述衬底为磷化铟,弛豫区势垒层为铟镓磷,其中Ga组分变化范围:0-1;弛豫区势阱层为铟砷磷,As组分变化范围:0-1。
[0010] 在本公开实施例中,所述衬底为磷化铟,弛豫区势垒层为铟镓磷,其中Ga组分变化范围:0-1;弛豫区势阱层为铟镓砷,Ga组分变化范围:0.47-0。
[0011] 在本公开实施例中,所述衬底为砷化镓,弛豫区势垒层为镓砷磷,其中As组分变化范围0-1;弛豫区势阱层为镓砷锑,As组分变化范围:0-1。
[0012] 在本公开实施例中,所述衬底为砷化镓,弛豫区势垒层为镓砷磷,其中As组分变化范围0-1;弛豫区势阱层为铟镓砷,In组分变化范围:0-1。
[0013] 在本公开实施例中,弛豫区相邻势垒层和势阱层的材料应变类型相反,应变大小相近。
[0014] 在本公开实施例中,所述衬底的制备材料包括:磷化铟或砷化镓。
[0015] 在本公开实施例中,所述下接触层2和上接触层4,为施主杂质Si重掺杂的铟镓砷外延层。
[0016] 在本公开实施例中,所述上接触电极6和下接触电极5的制备材料包括:合金、锗金合金或镍金合金中至少一种。
[0017] (三)有益效果
[0018] 从上述技术方案可以看出,本公开应变补偿型量子级联探测器至少具有以下有益效果其中之一或其中一部分:
[0019] (1)能抑制噪声电流,提高探测率;
[0020] (2)可以阻隔热激发造成的吸收区内载流子泄露,增大基态载流子数目,使得载流子吸收光子产生的光电流更大;而且改变弛豫区的势垒高度,并不影响吸收区的平整突变的高质量界面,势垒高度的改变对于光电流的传递通道并不影响,提高QCD的响应度;
[0021] (3)利于解决焦平面器件读出电路饱和问题。量子级联探测器工作在零偏压下,其本身具有极低的暗电流,引进应变补偿结构进一步抑制其热噪声电流,能更一步加长探测器的积分时间提高成像精度,在大的焦平面阵列器件应用中极具前景。附图说明
[0022] 图1是本公开实施例的应变补偿型量子级联探测器的结构示意图;
[0023] 图2是图1中周期性应变补偿量子级联功能层的一个级联周期的结构示意图;
[0024] 图3是图1中周期性应变补偿量子级联功能层的一个级联周期的具体结构示意图;
[0025] 图4是本公开实施例的应变补偿型量子级联探测器的部分能带结构以及载流子输运示意图。
[0026] 【附图中本公开实施例主要元件符号说明】
[0027] 1-衬底;2-下接触层;3-周期性应变补偿量子级联功能层;
[0028] 4-上接触层;5-下接触电极;6-上接触电极;
[0029] E0-基态能级;Emini-微带能带;
[0030] E1-第一抽运能级;E2-第二抽运能级;
[0031] B1        第一势垒层     W1       第一势阱层
[0032] B2        第二势垒层     W2       第二势阱层
[0033] B3        第三势垒层     W3       第三势阱层
[0034] B4        第四势垒层     W4       第四势阱层
[0035] B5        第五势垒层     W5       第五势阱层
[0036] B6        第六势垒层     W6       第六势阱层
[0037] B7        第七势垒层     W7       第七势阱层
[0038] B8        第八势垒层     W8       第八势阱层

具体实施方式

[0039] 本公开提供了一种应变补偿型量子级联探测器,其能抑制噪声电流,提高探测率。在量子级联周期内引入应变高势垒,使得应变阱中的电子波函数更加局域化,减小了基态波函数与应变阱中电子波函数的交叠,抑制周期内热激活噪声,并且减少了当前周期内电子波函数与下一个周期电子波函数的交叠,抑制了相邻周期间的热噪声电流的产生,有效减少整个器件的热噪声,进一步提高器件的探测率。其同时还能提高QCD的响应度,由于在量子级联功能层中引入应变补偿结构,改变势垒层组分,使得势垒加高,相比于传统的量子级联探测器,可以阻隔热激发造成的吸收区内载流子泄露,增大基态载流子数目,使得载流子吸收光子产生的光电流更大,而且改变弛豫区的势垒高度,并不影响吸收区的平整突变的高质量界面,势垒高度的改变对于光电流的传递通道并不影响,提高QCD的响应度。其还有利于解决焦平面器件读出电路饱和问题,量子级联探测器工作在零偏压下,其本身具有极低的暗电流,引进应变补偿结构进一步抑制其热噪声电流,能更一步加长探测器的积分时间提高成像精度,在大的焦平面阵列器件应用中极具前景。
[0040] 为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
[0041] 在本公开实施例中,以10微米的斜跃迁量子级联探测器为例,提供一种应变补偿型量子级联探测器,结合图1至图4所示,应变补偿型量子级联探测器,包括:
[0042] 衬底1;
[0043] 下接触层2,外延生长于衬底1之上;
[0044] 周期性应变补偿量子级联功能层3,外延于下接触层2之上,包括多个级联周期;
[0045] 上接触层4,外延于周期性的应变补偿量子级联功能层3之上;
[0046] 下接触电极5,位于刻蚀上接触层4和周期性应变补偿量子级联功能层3结构而露出的下接触层2表面;以及
[0047] 上接触电极6,位于上接触层4的表面;
[0048] 其中,每个所述级联周期由下至上包括:吸收区、弛豫区;
[0049] 所述吸收区为与衬底晶格匹配的材料;
[0050] 所述弛豫区包括多层交替的应变补偿的势垒层和势阱层组成多量子阱结构,均为与衬底晶格不匹配的材料。
[0051] 所述衬底的制备材料包括:磷化铟或砷化镓;
[0052] 所述衬底为磷化铟(InP),弛豫区势垒层为铟铝砷(InAlAs),其中Al组分变化范围:0.48-1;弛豫区势阱层为铟镓砷(InGaAs),其中Ga组分变化范围:0.47-0;
[0053] 所述衬底为磷化铟(InP),弛豫区势垒层为铟镓磷(InGaP),其中Ga组分变化范围:0-1;弛豫区势阱层为铟砷磷(InAsP),As组分变化范围:0-1;
[0054] 所述衬底为磷化铟(InP),弛豫区势垒层为铟镓磷(InGaP),其中Ga组分变化范围:0-1;弛豫区势阱层为铟镓砷(InGaAs),Ga组分变化范围:0.47-0;
[0055] 所述衬底为砷化镓(GaAs),弛豫区势垒层为镓砷磷(GaAsP),其中As组分变化范围0-1;弛豫区势阱层为镓砷锑(GaAsSb),As组分变化范围:0-1;
[0056] 所述衬底为砷化镓(GaAs),弛豫区势垒层为镓砷磷(GaAsP),其中As组分变化范围0-1;弛豫区势阱层为铟镓砷(InGaAs),In组分变化范围:0-1;
[0057] 在以上材料组分范围内,相邻材料应变类型相反,应变大小相近,使其应变相互补偿,实现材料的高质量生长,皆属于保护范围之内。
[0058] 所述下接触层2,作为缓冲层,防止衬底缺陷影响功能层的外延生长质量;
[0059] 所述下接触层2是施主杂质Si重掺杂的铟镓砷(InGaAs)外延层,与衬底晶格匹配保证材料生长质量。
[0060] 所述上接触层4,为施主杂质Si重掺杂的铟镓砷(InGaAs)外延层。
[0061] 所述下接触电极5,与下接触层2形成欧姆接触,其制备材料包括:钛金合金、锗金合金或镍金合金;在本公开实施例中下接触电极5制备材料为钛金合金。
[0062] 所述上接触电极6,与上接触层4形成欧姆接触,其制备材料包括:钛金合金、锗金合金或镍金合金;在本公开实施例中上接触电极6制备材料为钛金合金。
[0063] 在本公开实施例中,为实现红外探测,将衬底1和下接触层2通过磨平和抛光等工艺之后形成具有一定度的斜切面,实现背面斜入射,红外光垂直斜切面入射;也可以在上接触层4上制作衍射光栅实现正入射。本实施例中以10微米斜跃迁量子级联探测器为例介绍应变补偿型量子级联探测器,但应变补偿型量子级联探测器不局限于斜跃迁模式,也可为垂直跃迁模式。
[0064] 在本公开实施例中,如图3示,在外延每个周期的周期性应变补偿量子级联功能层结构时,从下到上包括:
[0065] 采用分子束外延工艺,外延生长出第一势垒层B1,材料为与衬底磷化铟晶格匹配的铟铝砷(InAlAs),生长厚度为4.5nm;
[0066] 采用分子束外延工艺,在第一势垒层B1上外延生长出第一势阱层W1,材料为与衬底磷化铟晶格匹配的施主重掺杂铟镓砷(InGaAs),生长厚度为6.7nm;
[0067] 采用分子束外延工艺,在第一势阱层W1上外延生长出第二势垒层B2,材料为与衬底磷化铟晶格匹配的铟铝砷(InAlAs),生长厚度为2.1nm;
[0068] 采用分子束外延工艺,在第二势垒层B2上外延生长出第二势阱层W2,材料为与衬底磷化铟晶格匹配的铟镓砷(InGaAs),生长厚度为3.1nm;
[0069] 采用分子束外延工艺,在第二势阱层W2上外延生长出第三势垒层B3,材料为与衬底磷化铟晶格匹配的铟铝砷(InAlAs),生长厚度为4.9nm;
[0070] 采用分子束外延工艺,在第三势垒层B3上外延生长出第三势阱层W3,材料为与衬底磷化铟晶格匹配的铟镓砷(InGaAs),生长厚度为3.3nm;
[0071] 采用分子束外延工艺,在第三势阱层W3上外延生长出第四势垒层B4,材料为与衬底磷化铟晶格匹配的铟铝砷(InAlAs),生长厚度为4.6nm;
[0072] 采用分子束外延工艺,在第四势垒层B4上外延生长出第四势阱层W4,材料为与衬底磷化铟晶格匹配的铟镓砷(InGaAs),生长厚度为3.3nm;
[0073] 采用分子束外延工艺,在第四势阱层W4上外延生长出第五势垒层B5,材料为与衬底磷化铟晶格匹配的铟铝砷(InAlAs),生长厚度为4.4nm;
[0074] 采用分子束外延工艺,在第五势垒层B5上外延生长出第五势阱层W5,材料为与衬底磷化铟晶格匹配的铟镓砷(InGaAs),生长厚度为3.8nm;
[0075] 采用分子束外延工艺,在第五势阱层W5上外延生长出第六势垒层B6,该势垒层是具有一定应变的铟铝砷(InAlAs),实施例中为张应变,应变大小0.8%,生长厚度为2.5nm;
[0076] 采用分子束外延工艺,在第六势垒层B6上外延生长出第六势阱层W6,该势阱层是有一定应变的铟镓砷(InGaAs),具有与B5层应补偿的压应变,应变大小0.8%,生长厚度为4.7nm。
[0077] 采用分子束外延工艺,类似于之前生长应变补偿势垒势阱层B6和W6,依次外延出应变补偿势垒层和势阱层B7、W7、B8和W8,生长厚度依次为:2.8nm,5.7nm,3nm,6.8nm,一个周期生长结束。
[0078] 在本实施例中,所述周期性应变补偿量子级联功能层3中每个应变补偿量子级联周期包括5组晶格匹配型势垒层和势阱层,以及3组应变补偿型势垒层和势阱层,其中势垒层材料均为铟铝砷(InAlAs),势阱层材料均为铟镓砷(InGaAs),但是晶格匹配的势垒势阱层与应变补偿势垒势阱层材料组分不同;晶格匹配的势阱势垒层晶格常数与衬底晶格常数相同,应变补偿势垒势阱层相对于衬底有应变,而且为了保证材料的高质量外延,应变补偿的相邻势垒与势阱层晶格应变种类不同,实施例中,势垒层受张应变,势阱层受压应变,二者应变大小相近,应力相互补偿,实现材料的高质量生长。结合图2和图4所示,周期性应变补偿量子级联功能层3中每个周期按照功能分为吸收区和弛豫区。电子在吸收区吸收光子从基态能级E0被激发到微带能带Emini,并迅速弛豫到微带能带底部,弛豫区中俩个相邻弛豫阱的能级相差一个纵光学声子能量,微带能带底部电子在纵光学声子的协助下迅速弛豫到下一周期基态,形成定向电流,完成红外探测。
[0079] 在本公开实施例中,如图4所示,在本发明提供的应变补偿型量子级联探测器的一个级联周期能带结构内,应变高势垒的引入,对应变阱内的电子限制更加强烈,有效抑制电子波函数向阱外的延伸,使得应变阱中的电子波函数更加局域化,基态电子波函数与应变阱内电子波函数的交叠减小,从而有效抑制从E0到E1和E0到E2的暗电流,减小周期内热噪声电流。另外,应变高势垒使得阱内电子波函数局域化,也减少了其与下个周期电子波函数的交叠,抑制了相邻周期间的热噪声电流,有效的降低了器件的热噪声,实现提高器件探测率的目的。结合具体实施例,处于基态E0的电子吸收相应波段的光子向上跃迁到达Emini,并迅速弛豫到Emini能带底部,在纵光学声子的协助下快速弛豫到下一个周期基态,形成定向电流,实现红外探测,吸收区各个阱垒都是无应变的材料,具有平整突变的高质量界面,电子的激发、输运过程不受影响,器件光电流通道不受影响,器件仍具有高响应度。被热激发到连续带的电子在向后输运的过程中遇到高的势垒层被阻挡,不能形成暗电流,减少了吸收区载流子热激发所产生的泄露,提高了基态电子的数目,从而提高器件响应光电流,达到提高响应度的目的。高的势垒层的引入,降低了探测器的热噪声电流,从而QCD器件的总电流主要为光电流,使得QCD器件在大面阵焦平面应用中具有长的积分时间,提高焦平面器件的成像精度。
[0080] 至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
[0081] 依据以上描述,本领域技术人员应当对本公开应变补偿型量子级联探测器有了清楚的认识。
[0082] 综上所述,本公开提供了一种应变补偿型量子级联探测器,在量子级联周期内引入应变补偿结构,改变势垒层组分,使得势垒加高,提高器件的探测率,提高QCD的响应度,更一步加长探测器的积分时间提高焦平面器件成像精度。
[0083] 还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
[0084] 并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
[0085] 除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
[0086] 再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
[0087] 说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
[0088] 此外,除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
[0089] 本领域那些技术人员可以理解,可以对实施例中的设备中的模进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。并且,在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。
[0090] 类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
[0091] 以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈