首页 / 专利库 / 电子零件及设备 / 激子扩散 / Stimulated emission of radiation in periodically deflected electron beam

Stimulated emission of radiation in periodically deflected electron beam

阅读:617发布:2023-06-13

专利汇可以提供Stimulated emission of radiation in periodically deflected electron beam专利检索,专利查询,专利分析的服务。并且A tunable generator or amplifier of coherent radiation in the infrared, optical, ultraviolet and X-ray regions with the capability for operation at power levels in excess of a megawatt with high efficiency. A relativistic electron beam is periodically deflected by a transverse magnetic field defined by a linear array of magnets, adjacent magnets having opposing polarities. Each time the electron is deflected it emits a burst of radiation. The combination of the individual bursts yields a beam of radiation of comparatively small angular divergence and small spread in frequency. Due to the difference in the electrons'' recoil during emission and absorption, the frequency at which absorption occurs for radiation in the electron beam is slightly higher than that for emission and gain is available due to the stimulated emission of radiation for operation at frequencies on the low frequency side of the spontaneously emitted radiation spectrum.,下面是Stimulated emission of radiation in periodically deflected electron beam专利的具体信息内容。

1. A continuously tunable apparatus for the high efficiency generation and amplification of coherent radiation comprising means for generating and directing a relativistic electron beam along an axis and means for periodically deflecting the electrons in said beam transversely of said axis to establish a condition where the transition rate for emission at a given frequency exceeds the rate for absorption whereby a net gain is available for radiation at said given frequency passing through or originating in said beam.
2. A laser according to claim 1 wherein the deflecting means comprises a plurality of linearly arranged successive magnets generating a magnetic field of alternating polarity to periodically deflect the electrons in said beam about a straight line path defined by said axis.
3. A laser according to claim 2 including mirror means defining a radiation cavity aligned with the path.
4. A laser according to claim 1 including means for injecting a beam of radiation into the electron beam for amplification of the radiation beam.
5. A laser according to claim 1 wherein said means for deflecting includes means for generating and amplifying polarized radiation.
6. A laser comprising a source of relativistic electrons, and radiation generating means separating the absorption and emission spectra of the electrons and inducing the electrons to emit directionalized radiation of a relatively narrow frequency range whereby a resulting radiation beam is coherent.
7. An apparatus for generating and amplifying coherent radiation comprising means for generating and directing a relativistic electron beam along an axis, means for focusing the beam, a periodic magnet array positioned adjacent said axis to periodically deflect the electron beam transversely of said axis and establish a condition where the transition rate for stimulated emission exceeds the rate for absorption, whereby a net gain is available at the emission frequency and substantially all the energy removed from the beam as it passes through the array is transformed into coherent radiation.
8. Apparatus according to claim 7 including means for recirculating the electron beam through the magnet array comprising means for injecting and extracting relativistic electrons along said axis and means for accelerating the electron beam after extraction to make up the electron beam energy radiated during its previous passage through the array.
9. AppaRatus for generating coherent radiation in the X-ray range comprising means for generating and directing a relativistic electron beam along an axis, a multiplicity of magnets arranged in a linear array along said axis for generating a transverse magnetic field of alternating polarity for deflecting the electrons in said beam transversely of said axis to establish a condition where the transition rate for emission exceeds the rate for absorption whereby a net gain is available, and means for adjusting said apparatus to provide a wavelength for the coherent radiation of no more than about 1,000 Angstroms.
10. Apparatus according to claim 9 wherein the means for adjusting provides a wavelength of the coherent radiation of no more than about 100 Angstroms.
11. Apparatus according to claim 9 wherein the wavelength of the radiation is given approximately by lambda f lambda q/2 gamma 2 . ( 1 + 1/3 ( lambda q/4c) 2 (eoB/mc) 2) wherein lambda q is the magnet spacing, gamma is a function of the electron beam energy, eo is the electron charge in stat-coulombs, c is the speed of light in centimeters per second, B is the magnetic field amplitude in gauss and m the electron rest mass in grams, and said adjusting means comprises means for varying at least one of the electron beam energy, the magnet spacing, or the amplitude of the magnetic field to vary the wavelength of emitted radiation.
12. A high efficiency laser for continuous operation at X-ray wavelengths comprising a linear array of equally spaced magnets of alternating polarity for providing an alternating magnetic field transverse of a given path, means for introducing a relativistic high energy electron beam into the magnetic field of the magnets along said path for generating and amplifying collimated and narrow-band X-ray radiation from the periodically deflected electrons in said beam which provide a net gain due to the difference in the frequency dependence of the transition rates for stimulated emission and absorption and means for adjusting the laser for operation at variable power levels.
13. A laser according to claim 12 including means for injecting the electron beam along said path into the magnetic field and means for withdrawing the electron beam from the magnetic field.
14. A laser according to claim 13 including mirrors aligned to be substantially perpendicular to said path of the electron beam and positioned exteriorly of the injection and extraction means.
15. Apparatus according to claim 12 including tubular, non-magnetic means disposed about the electron beam in the magnetic fields, the tubular means defining a waveguide supporting a transverse electromagnetic wave for coupling the radiation beam with the electron beam when the diameter of the radiation beam exceeds the diameter of the electron beam to thereby optimize gain.
16. A laser according to claim 12 including means for polarizing emitted radiation.
17. A laser according to claim 12 wherein the magnets comprise superconducting electro-magnets.
18. A laser according to claim 12 wherein the spacing of the magnets in a downstream direction of the electron beam decreases as a function of the loss of electron beam energy in the downstream direction to maintain the frequency of the emitted radiation constant.
19. A tunable, high power, high efficiency laser comprising: means providing a beam of relativistic electrons along a given path, means located along said path for deflecting said relativistic electrons to provide radiation emission from said deflected electrons coupled with the attendant recoil of said electrons upon emission, said means for deflecting being so located and so spaced as to provide a substantially unidirectional beam of coherent radiation directed along said given path, means for supplying power to said beam of relativistic electrons to provide an output power in said beam of coherent radiation of at least one million watts at a frequency determined by the energy of the electrons in said electron beam and the location and spacing of said deflecting means, and means for varying the frequency of the output coherent radiation.
20. A laser according to claim 19 wherein the frequency varying means comprises means for varying the electron beam energy.
21. A laser according to claim 19 wherein the frequency varying means comprises means for adjusting the location and position at which the electrons are deflected.
22. A laser according to claim 21 wherein the recoiling means comprises a linear array of magnets, adjacent magents having opposite polarities, and wherein the frequency adjusting means comprises means for changing the magnetic field in the magnet array.
23. A method for producing a high powered beam or coherent radiation of a frequency between about the infrared, and the X-ray regions comprising the steps of emitting a relativistic electron beam, inducing a shift in the radiation absorption spectrum of electrons in the beam with respect to the radiation emission spectrum of electrons in the beam, to cause the emission of directionalized radiation and to obtain an average radiation gain G per meter equal to:
24. A method according to claim 23 including the steps of selecting an electron energy and selecting a period for the magnetic field which maximizes the difference between the transition rates for stimulated emission and absorption by the electrons to obtain a maximum gain
25. A lasing method for a given frequency domain comprising the steps of generating a relativistic electron beam, directing said beam along an axis, periodically deflecting the electrons in said beam with alternating magnetic fields along said axis to cause the electrons'' emission and absorption spectra to be separated in said given frequency domain to thereby obtain continuous unidirectional gain which is a function of the electron energy and beam power as well as the magnitude and direction of the magnetic fields.
26. A method according to claim 25 including the step of varying at least one of the energy of the electrons in said beam energy, the rate at which the electrons within said beam are deflected, and the magnitude of the magnetic field to thereby change the frequency of the radiation beam and wherein the frequency of the emitted radiation is given approximately by
27. A method according to claim 25 wherein the step of deflecting comprises the step of deflecting the electrons in said beam at a rate so that the wavelength of the radiation is in the X-ray range.
28. A method according to claim 25 wherein the step of deflecting comprises the step of deflecting the electrons in said beam at a rate so that the wavelength falls within the infrared to X-ray range, and wherein the step of generating the electron beam comprises the step of generating an electron beam of sufficient current so that the output radiaton has a power in excess of 1 megawatt.
29. A method according to claim 25 wherein the steps of generating and of deflecting are selected to form a continuous radiation beam.
30. A method according to claim 25 wherein the step of generating the electron beam comprises the step of generating a bunched electron beam.
31. A method according to claim 25 including the step of periodically focusing the electron beam to maintain a substantially constant average electron beam cross section.
32. A method according to claim 25 wherein the radiation has a wavelength range from the infrared to the millimeter region and wherein the step of deflecting the electrons within the beam includes the step of enclosing the electron beam in a waveguide to restrict the cross section of the radiation beam to a predetermined multiple of the electron beam diameter.
33. A method according to claim 25 wherein the step of deflecting comprises the step of deflecting the electrons within the beam in the downstream direction of the electron beam at an increasing rate to compensate for the electrons'' deceleration and thereby form a radiation beam having a substantially constant frequency.
34. A method for securing gain due to the stimulated emission of radiation comprising the steps of moving a multiplicity of electrons at relativistic speed along a path, undulating said electrons along said path to shift the electrons'' radiation emission spectrum downwards in frequency relative to their absorption spectrum, and propagating said radiation along the path to amplify the radiation as a result of the prevalence of stimulated emission over absorption over a narrow range of frequencies below the line center for emission.
35. A method according to claim 34 wherein the step of amplifying comprises the step of recirculating previously emitted radiation into the electron beam.
36. A method according to claim 35 wherein the step of recirculating comprises the step of reflecting the radiation into the electron beam at an upbeam location.
37. A method according to claim 34 wherein the step of amplifying comprises the step of directing an external radiation beam into the electron beam.
38. A method according to claim 34 wherein the step of amplification comprises the step of increasing the photon density in a downstream direction of the electron beam with photons emitted at an upstream point.
39. A method for generating or amplifying radiation comprising the steps of moving high energy electrons along a path, repeatedly inducing the electrons to radiate during their movement over the length of the path, and employing the difference between the radiation frequency emitted by the electrons and the radiation frequency absorbed by the electrons to form a unidirectional beam of radiation for which the rate of stimulated emission by the electrons exceeds the rate of absorption of the electrons.
40. A method according to claim 39 wherein the step of inducing comprises the step of periodically deflecting the electrons during their movement along the path.
41. A method according to claim 39 including the step of stimulating the emission of radiation by increasing the photon density in the electron path.
42. A method according to claim 40 wherein the step of deflecting comprises the step of mOving the electrons through a periodically reversed magnetic field.
43. A method according to claim 40 wherein the step of deflection comprises the step of moving the electrons through a periodically reversed electric field.
44. A method according to claim 42 including the step of varying the frequency of the emitted radiation by adjusting the spacing of the period of the magnetic field.
45. A method according to claim 25 including the step of focusing the electron beam to direct the electrons in the beam along the magnet axis.
说明书全文
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈