首页 / 专利库 / 电子零件及设备 / 放大器 / 晶体管放大器 / 显示面板驱动器和显示装置

显示面板驱动器和显示装置

阅读:646发布:2024-02-07

专利汇可以提供显示面板驱动器和显示装置专利检索,专利查询,专利分析的服务。并且提供了一种 显示面板 驱动器 和显示装置。该显示面板驱动器具有通过使用具有输出特性的良好对称性的 放大器 输出而改进的驱动特性。根据本 发明 的显示面板驱动器包括第一输入差分级 电路 、第一输出级电路、第二输出级电路、以及第一 开关 电路。第一输入差分级电路根据正 电压 和负电压中的一个输出两个第一输入级输出 信号 。第一开关电路选择第一和第二输出级电路中的一个,并且将所选择的电路连接至第一输入差分级电路。被连接至第一输入差分级电路的输出级电路基于来自于第一输入差分级电路的两个第一输入级 输出信号 来输出单端信号。,下面是显示面板驱动器和显示装置专利的具体信息内容。

1.一种显示面板驱动器,包括:
第一输入差分级电路,所述第一输入差分级电路用于根据正极性电压和负极性电压中的一个从两个第一输入级输出端输出两个第一输入级输出信号
第一输出级电路;
第二输出级电路;以及
第一开关电路,所述第一开关电路用于选择所述第一和第二输出级电路中的一个并且用于将所选择的输出级电路的两个输出级输入端连接至所述第一输入差分级电路的所述两个第一输入级输出端,
其中所述两个第一输入级输出信号是具有不同电平的共模信号,其中所选择的输出级电路基于所述两个第一输入级输出信号来从输出端输出单端输出信号,以驱动电容性负载,以及
其中所述正极性电压和负极性电压中的所述一个被输入到所述第一输入差分级电路的非反相输入端,来自所选择的输出级电路的所述输出端的单端输出信号被输入到所述第一输入差分级电路的反相输入端。
2.根据权利要求1所述的显示面板驱动器,其中所述第一开关电路与被输入到所述第一输入差分级电路的电压的极性的反转同步地将被连接至所述第一输入差分级电路的输出级电路从所述第一和第二输出级电路中的一个切换到另一个输出级电路。
3.根据权利要求1所述的显示面板驱动器,进一步包括第二输入差分级电路,所述第二输入差分级电路用于根据所述正极性电压和所述负极性电压中的另一个来从两个第二输入级输出端输出两个第二输入级输出信号,
其中所述两个第二输入级输出信号是具有不同电平的共模信号,
其中所述第一开关电路将所述第一和第二输入差分级电路中的一对所述第一和第二输入级输出端连接至所述第一输出级电路的两个第一输出级输入端,并且将所述第一和第二输入差分级电路的另一对所述第一和第二输入级输出端连接至所述第二输出级电路的两个第二输出级输入端,
其中被连接至所述第二输入差分级电路的所述输出级电路基于所述两个第二输入级输出信号来输出单端信号以驱动电容性负载,以及
其中所述正极性电压和负极性电压中的另一个被输入到所述第二输入差分级电路的非反相输入端,并且来自连接到所述第二输入差分级电路的所述输出级电路的输出端的所述单端输出信号被输入到所述第二输入差分级电路的反相输入端。
4.根据权利要求3所述的显示面板驱动器,进一步包括第二开关电路,所述第二开关电路用于将所述第一和第二输入差分级电路中的一个的所述反相输入端连接至所述第一输出级电路的输出端子并且用于将所述第一和第二输入差分级电路中的另一个的反相输入端连接至所述第二输出级电路的输出端子,其中
经由所述第一开关电路连接至所述第一输入差分级电路的所述输出级电路和所述第一输入差分级电路形成电压跟随器连接形式的放大器,以及
经由所述第一开关电路连接至所述第二输入差分级电路的所述输出级电路和所述第二输入差分级电路形成电压跟随器连接形式的放大器。
5.根据权利要求3所述的显示面板驱动器,其中
将第一电压范围内的电源电压提供给所述第一和第二输入差分级电路,将不同于所述第一电压范围的第二电压范围内的电源电压提供给所述第一输出级电路,以及
将不同于所述第一电压范围的第三电压范围内的电源电压提供给所述第二输出级电路,
其中,所述第二和第三电压范围中的每一个小于所述第一电压范围,
其中,将第一电压和第二电压作为电源电压提供给所述第一和第二输入差分级电路,将所述第一电压和高于所述第二电压的第三电压作为电源电压提供给所述第一输出级电路,以及
将所述第二电压和低于所述第一电压的第四电压作为电源电压提供给所述第二输出级电路。
6.根据权利要求5所述的显示面板驱动器,其中所述第三电压和所述第四电压相等。
7.根据权利要求6所述的显示面板驱动器,所述第三和第四电压中的每一个是所述第一和第二电压的中间电压。
8.根据权利要求3所述的显示面板驱动器,其中所述第一和第二输入差分级电路执行轨对轨操作。
9.根据权利要求1所述的显示面板驱动器,其中
所述第一输入差分级电路包括:第一有源负载,所述第一有源负载包括折叠共源共栅连接的多个第一导电类型晶体管,其具有所述两个第一输入级输出端中的一个;和第二有源负载,所述第二有源负载包括折叠共源共栅连接的多个第二导电类型晶体管,其具有所述两个第一输入级输出端中的另一个,以及
来自所述第一和第二有源负载的所述两个第一输入级输出端的所述第一输入级输出信号经由所述第一开关电路被提供给所述第一和第二输出级电路中的所选择的一个的所述两个输出级输入端。
10.根据权利要求9所述的显示面板驱动器,其中
所述第一和第二输出级电路中的每一个包括第一导电类型栅极接地晶体管和第二导电类型栅极接地晶体管,
所述第一导电类型栅极接地晶体管的源极经由所述第一开关电路被连接至构成所述第一有源负载的所述第一导电类型晶体管的漏极,以及
所述第二导电类型栅极接地晶体管的源极经由所述第一开关电路被连接至构成所述第二有源负载的所述第二导电类型晶体管的漏极。
11.根据权利要求10所述的显示面板驱动器,其中所述第一输入差分级电路进一步包括被连接至所述第一有源负载的第二导电类型差分对晶体管,和被连接至所述第二有源负载的第一导电类型差分对晶体管。
12.一种显示装置,包括:
根据权利要求1所述的显示面板驱动器;
数字模拟转换器,所述数字模拟转换器用于根据显示信号将从灰阶电压生成电路输出的基准电压输出至所述显示面板驱动器;以及
显示面板,所述显示面板包括像素电容,根据来自于所述数字模拟转换器的输出通过来自于所述显示面板驱动器的单端信号来驱动所述像素电容。

说明书全文

显示面板驱动器和显示装置

技术领域

[0001] 本发明涉及显示面板驱动器和包括该显示面板驱动器的显示装置。

背景技术

[0002] 现今,薄平板显示面板的尺寸正在增加。尤其地,在电视的领域中,甚至出现了超过100英寸的液晶面板。这种趋势被认为在将来会继续发展。另一方面,随着液晶面板的尺寸的增加,TFT_LCD(薄膜晶体管液晶显示)的数据线上的负载增加。因此,由驱动TFT_LCD的LCD驱动器的放大器消耗的电能趋向于增加。
[0003] 从减少使用的LCD驱动器的数目的观点,来自于一个芯片的输出的数目增加。因此,一个芯片的功率消耗增加,并从而整个LCD驱动器的功率消耗增加。功率消耗的增加引起芯片的温度变得异常高的问题。
[0004] 为此,要求减少LCD驱动器中的功率消耗的技术。尤其地,在LCD驱动器中使用了大量的放大器(运算放大器)。因此,如果放大器中的功率消耗被减少,那么整个LCD驱动器中的功率消耗能够被很大地减少。
[0005] 例如,日本专利申请公开NO.2002-175052描述了意在减少功率消耗的运算放大器。参考图1至图3,描述了根据传统技术的运算放大器。图1是示出根据传统技术的运算放大器电路的构造的视图。
[0006] 如图1中所示,根据传统技术的运算放大器电路包括被提供有正电源电压(VDD)和负电源电压(VSS)的差分输入级电路140、240;驱动级电路130、230;开关电路30、40、50、60;PMOS晶体管MP180、MP280;以及NMOS晶体管MN180、MN280。
[0007] 驱动级电路130经由PMOS晶体管MP180和NMOS晶体管MN180的漏极被连接至输出端子110。类似地,驱动级电路230经由PMOS晶体管MP280和NMOS晶体管MN280的漏极被连接至输出端子210。正电源电压VDD被提供给PMOS晶体管MP180的源极并且正电源电压的一半(VDD/2)被提供给NMOS晶体管MN180的源极。另外,正电源电压的一半(VDD/2)被提供给PMOS晶体管MP280的源极并且负电源电压VSS被提供给NMOS晶体管MN280的源极。
[0008] 开关电路30包括开关SW301至SW304并且控制输出端子110、210与奇数编号的端子310和偶数编号的端子320的连接。开关电路40包括开关SW401至SW404并且控制端子410、420与分别被包括在差分输入级电路140、240中的输入端子120、220的连接。在这里,正电压INP被从正DAC(数字模拟转换器)输入至端子410,并且负电压INN被从负DAC输入至端子420。开关电路50包括开关SW501至SW504并且控制差分输入级电路140、240与驱动级电路130、230的连接。开关电路60包括开关SW601至SW604并且控制输出端子110、210与分别被包括在差分输入级电路140、240中的输入端子121、221的连接。
[0009] 通过使用开关电路30至60,根据传统技术的运算放大器电路能够改变用于驱动奇数编号的端子310和偶数编号的端子320的放大器电路的构造。具体地,通过在模式1和模式2之间进行切换来改变构造。这里,在模式1中,开关SW301、SW303、SW401、SW403、SW501、SW503、SW601、SW603被导通,同时开关SW302、SW304、SW402、SW404、SW502、SW504、SW602、SW604被关断。在模式2中,奇数编号的开关被关断同时偶数编号的开关被导通。在模式1中,来自于正DAC的正电压INP被输入至由差分输入级电路140和驱动级电路130形成的放大器电路,并且来自于输出端子110的输出被输出至奇数编号的端子310作为奇数编号的输出Vodd。这时,来自于负DAC的负电压INN被输入至包括差分输入级电路240和驱动级电路230的放大器电路,并且来自于输出端子210的输出被输出至偶数编号的端子320作为偶数编号的输出Veven。另一方面,在模式2中,来自于正DAC的正电压INP被输入至由差分输入级电路240和驱动级电路130形成的放大器电路,并且来自于输出端子110的输出被输出至偶数编号的端子320作为偶数编号的输出Veven。这时,来自于负DAC的负电压INN被输入至包括差分输入级电路140和驱动级电路230的放大器电路,并且来自于输出端子210的输出被输出至奇数编号的端子310作为奇数编号的输出Vodd。
[0010] 根据传统技术的运算放大器电路如上所述地进行操作以驱动被连接至奇数编号的端子310和偶数编号的端子320的电容性负载。这时,差分输入级电路140、240和驱动级电路130、230在从正电源电压VDD到负电源电压VSS的电压范围内进行操作,并且PMOS晶体管MP180、MP280和NMOS晶体管MN180、MN280(输出晶体管)分别在从正电源电压VDD至VDD/2的电压范围和从VDD/2至VSS的电压范围内进行操作。利用此构造,输出级的功率消耗大约能够被减半。
[0011] 图2是示出根据传统技术的差分输入级电路140的构造的视图。如图2中所示,差分输入级电路140包括:PMOS晶体管MP103至MP106,其源极被提供有正电源电压VDD;NMOS晶体管MN103、MN104,其源极被提供有负电源电压VSS;NMOS晶体管MN101、MN102,其源极经由恒流源I101被连接至负电源(VSS);以及PMOS晶体管MP101、MP102,其源极经由恒流源I102被连接至正电源(VDD)。
[0012] PMOS晶体管MP101、MP102形成差分对并且NMOS晶体管MN103、MN104形成其有源负载。另外,NMOS晶体管MN101、MN102形成差分对。一对PMOS晶体管MP104、MP105和一对NMOS晶体管MN104、MN105分别形成电流镜电路,并且其输出分别被连接至NMOS晶体管MN103、MN104的漏极。此外,输入端子120被连接至NMOS晶体管MN101和PMOS晶体管MP101的栅极,并且输入端子121被连接至NMOS晶体管MN102和PMOS晶体管MP102的栅极。而且,NMOS晶体管MN104和PMOS晶体管MP106的漏极经由端子123被连接至开关SW501、SW502。
[0013] 利用上述构造,差分输入信号被输入至输入端子120、121,并且被转换成单端输入信号。然后,从端子123输出获得的输入信号。差分输入级电路240具有类似的构造和类似的操作。具体地,输入端子120、121、端子123、差分输入级电路140的开关SW501、SW502分别对应于输入端子220、221、端子223、差分输入级电路240的开关SW503、SW504。
[0014] 图3是示出根据传统技术的驱动级电路130的构造的视图。如图3中所示,驱动级电路130包括:PMOS晶体管MP107至MP109,其源极被提供有正电源电压VDD;NMOS晶体管MN105和PMOS晶体管MP110,其源极被提供有负电源电压VSS;以及恒流源103、104,其被提供有负电源电压VSS。NMOS晶体管MN105的栅极经由端子131被连接至开关SW501、SW502,并且NMOS晶体管MN105的漏极被连接至PMOS晶体管MP107的漏极。PMOS晶体管MP107和PMOS晶体管MP108、MP109中的每一个一起形成电流镜电路。PMOS晶体管的漏极经由PMOS晶体管MP110被连接至恒流源103。PMOS晶体管MP110的栅极被连接至PMOS晶体管MP180的栅极。PMOS晶体管MP109的漏极被连接至NMOS晶体管MP180的栅极和恒流源104。
[0015] 利用上述构造,驱动级电路130通过N沟道MOS晶体管MN105从端子131接收输入电压,并且提供输出以驱动PMOS晶体管MP180和NMOS晶体管MN180。即,根据来自于端子131的输入信号的复合(COMPOSITE)输出信号被输出至端子110。驱动级电路230也具有类似的构造和类似的操作。具体地,PMOS晶体管MP180、NMOS晶体管MN180、端子131、驱动级电路130的开关SW501、SW503分别对应于PMOS晶体管MP280、NMOS晶体管MN280、端子231、以及驱动级电路230的开关SW502、SW504。
[0016] 在差分输入级电路140(240)中,在其中NMOS晶体管MN101、MN102的差分对进行操作的电流路径与其中PMOS晶体管MP101、MP102的差分对进行操作的电流路径之间的晶体管的数目不同。因此,失去了驱动级电路130、230的输出特性的对称性。这里,对于输出特性的对称性,当输出脉冲的上升时间和下降时间之间的差较小时对称性被认为较好,而当输出脉冲的上升时间和下降时间之间的差较大时对称性被认为较差。例如,如图4中所示,被输出至奇数编号的端子310(偶数编号的端子320)的正输出信号OUTP中的脉冲的上升时间Tr1和下降时间Tf1示出不同的值。当通过具有此种不对称的脉冲形状的输出信号驱动电容性负载时,电容性负载的充电和放电特性被劣化。可能存在此种运算放大器电路不满足LCD驱动器的规格的情况。
[0017] 另外,当PMOS晶体管MP101、MP102的差分对进行操作时增加了构成电流镜电路的晶体管之间的相对精度。因此,偏移电压变大。当电路被用作LCD驱动器时,这可能劣化电路的偏差(DEVIATION)的特性。
[0018] 此外,驱动级电路130中的PMOS晶体管MP109的漏源电压与驱动级电路230中的PMOS晶体管MP209的漏源电压之间的差大约是VDD/2。由于此电压差和五极管区域中的输出阻抗,PMOS晶体管MP109、MP209的漏电流取相互不同的值。换言之,驱动级电路130、230示出彼此不同的输出特性。

发明内容

[0019] 为了解决前述问题,本发明采用了将在下面描述的装置。为了使权利要求和优选实施例的描述之间的对应关系清楚,构成所述装置的技术内容的描述包括在优选实施例中使用的附图标记和符号。然而,附图标记和符号不应用于限制性地解释权利要求中描述的本发明的技术范围。
[0020] 根据本发明的显示面板驱动器(运算放大器电路(100))包括第一输入差分级电路(14)、第一输出级电路(13)、第二输出级电路(23)、以及第一开关电路(5)。第一输入差分级电路(14)根据正电压(INP)和负电压(INN)中的一个输出两个第一输入级输出信号(Vsi11、Vsi12)。第一开关电路(5)选择第一和第二输出级电路(13、23)中的一个,并且将所选择的输出级电路连接至第一输入差分级电路(14)。被选择性地连接至第一输入差分级电路(14)的输出级电路基于来自于第一输入差分级电路(14)的两个第一输入级输出信号(Vsi11、Vsi12)来输出单端信号,并且驱动显示面板(902)中的电容性负载(70)。第一开关电路(5)通过使用两个第一输入级输出信号的输入和输出端子作为界限(BOUNDARY)来切换第一输入差分级电路(14)与输出级电路(13、23)的连接。因此,使来自于输出级电路(13、23)的单端信号的上升时间和下降时间相等以形成具有良好对称性的脉冲。
[0021] 本发明具有带有对称脉冲形状的放大器输出,从而关于电容性负载的充电和放电特性变得令人满意。因此,优选的是,根据本发明的运算放大器电路(100)被安装在用于驱动显示面板上的电容性负载(像素电容)的驱动器上。
[0022] 本发明通过使用具有输出特性的良好对称性的放大器输出,能够改进显示面板驱动器的驱动特性。

附图说明

[0023] 图1是示出根据传统技术的运算放大器电路的构造的电路图;
[0024] 图2是示出根据传统技术的差分输入级电路的构造的电路图;
[0025] 图3是示出根据传统技术的驱动级电路的构造的电路图;
[0026] 图4是示出根据传统技术的运算放大器电路的输出特性的一个示例的视图;
[0027] 图5是示出根据本发明的实施例的运算放大器电路的构造的电路图;
[0028] 图6是示出根据本发明的实施例的输入差分级电路、输出级电路、以及开关电路的构造的电路图;
[0029] 图7A和图7B是分别示出根据本发明的运算放大器电路中的信号路径(模式1和模式2)的视图;
[0030] 图8是示出根据本发明的运算放大器电路的输出特性的一个示例的视图;以及[0031] 图9是示出根据本发明的显示装置的构造的视图。

具体实施方式

[0032] 参考附图在下面描述了本发明的优选实施例。在附图中,相同的或者相似的附图标记表示相同的、相似的、或者等价的组件。
[0033] 图5是示出根据本发明的运算放大器电路100的实施例中的电源的构造的电路图。如图5中所示,根据本发明的运算放大器电路100优选地用于下述LCD驱动器,该LCD驱动器通过放大从正D/A(数字模拟)转换器(在下文中被称为正DAC)输出的正电压的输入信号INP和从负D/A转换器(在下文中被称为负DAC)输出的负电压的输入信号INN来驱动LCD面板中的电容性负载。
[0034] 根据本发明的运算放大器电路100包括输入差分级电路14、24;输出级电路13、23;以及开关电路3至6。在下面的描述中,输入差分级电路14、24被称为差分级14、24。
此外,输出级电路13、23可以分别被称为正专用输出级13和负专用输出级23。
[0035] 开关电路4包括开关SW41至SW44并且控制端子41、42与输入差分级电路14、24中的输入端子12、22的连接。这里,正电压INP被从正DAC输入至端子41并且负电压INN被从负DAC输入至端子42。
[0036] 差分级14将两个共模输入级输出信号Vsi11、Vsi12输出至开关电路5,该两个共模输入级输出信号Vsi11、Vsi12的电平移位到被根据经由开关电路4输入的输入信号Vin1(正电压INP或者负电压INN)的大小。这里,差分级14经由输入级输出端子51、52被连接至开关电路5。输入级输出信号Vsi11被输出至输入级输出端子51并且输入级输出信号Vsi12被输出至输入级输出端子52。差分级24将两个共模输入级输出信号Vsi21、Vsi22输出至开关电路5,该两个共模输入级输出信号Vsi21、Vsi22的电平被移位到根据经由开关电路4输入的输入信号Vin2(正电压INP或者负电压INN)的大小。这里,差分级24经由输入级输出端子53、54被连接至开关电路5。输入级输出信号Vsi11被输出至输入级输出端子53并且输入级输出信号Vsi12被输出至输入级输出端子54。差分级14、24在负电源电压VSS(例如,GND电势)与正电源电压VDD之间的电压范围(第一电源电压范围)内进行操作。
[0037] 开关电路5包括开关SW51至SW58。开关SW51、SW53控制差分级14的输入级输出端子51、52与正专用输出级13的输出级输入端子61、62的连接。开关SW52、SW54控制差分级14的输入级输出端子51、52与负专用输出级23的输出级输入端子63、64的连接。开关SW55、SW57控制差分级24的输入级输出端子53、54与负专用输出级23的输出级输入端子63、64的连接。开关SW56、SW58控制差分级24的输入级输出端子53、54与正专用输出级13的输出级输入端子61、62的连接。
[0038] 正专用输出级13经由两个输出级输入端子61、62被连接至开关电路5。正专用输出级13根据两个输入级输出信号将单端信号输出至端子11,该两个输入级输出信号被从经由开关电路5连接至正专用输出级13的输入差分级电路输入至输出级输入端子61、62。负专用输出级23经由两个输出级输入端子63、64被连接至开关电路5。负专用输出级23根据两个输入级输出信号将单端信号输出至端子21,该两个输入级输出信号被从经由开关电路5连接至负专用输出级23的输入差分级电路输入至输出级输入端子63、64。
[0039] 另外,正专用输出级13在电源电压VML和正电源电压VDD之间的电压范围(第二电压范围)内进行操作。负专用输出级23在负电源电压VSS和电源电压VMH之间的电压范围(第三电压范围)内进行操作。电源电压VML是高于负电源电压VSS(GND)的电压。电源电压VMH是低于正电源电压VDD的电压。此外,优选的是,电源电压VML等于或者小于负电源电压VSS和正电源电压VDD的中间电压(VDD-VSS)的一半。当负电源电压VSS被设置为接地电势GND时,优选的是,电源电压VML是等于或者小于正电源电压VDD的一半(VDD/2)的电压。而且,优选的是,电源电压VMH等于或者大于负电源电压VSS和正电源电压VDD的中间电压(VDD-VSS)的一半。当负电源电压VSS被设置为接地电势GND时,优选的是,电源电压VMH是等于或者大于正电源电压VDD的一半(VDD/2)的电压。此外,优选的是,电源电压VML和电源电压VMH是接近于平均电势(VDD/2)的电压。
[0040] 开关电路6包括开关SW61至SW64并且控制输入差分级电路14、24的输入端子与输出端子11、21的连接,当用作放大器电路时,输入端子用作反相输入端子。
[0041] 开关电路3包括开关SW31至SW34并且控制输出端子11、21与奇数编号的和偶数编号的端子31、32的连接。奇数编号的端子31和偶数编号的端子32中的每一个被连接至LCD面板中的漏极线。通过经由开关电路3输出的奇数编号的输出Vodd驱动经由漏极线连接至奇数编号的端子的未示出的电容性负载(像素电容)。通过经由开关电路3输出的偶数编号的输出Veven驱动经由漏极线连接至偶数编号的端子32的未示出的电容性负载(像素电容)。开关电路3切换分别被输出至奇数编号的端子31和偶数编号的端子32的奇数编号的输出Vodd和偶数编号的输出Veven的极性。因此,防止了LCD面板烧屏。
[0042] 差分级14、24和输出级13、23与开关3至6一起形成放大器电路。根据本发明的运算放大器电路100改变开关电路3至6中的连接的组合,从而能够改变驱动奇数编号的端子31和偶数编号的端子32的放大器电路的构造。具体地,模式被从模式1切换到模式2,其中在模式1中开关SW31、SW33、SW41、SW43、SW51、SW53、SW57、SW55、SW61、SW63被导通并且开关SW32、SW34、SW42、SW44、SW52、SW54、SW56、SW58、SW62、SW64被关断,在模式2中奇数编号的开关被关断并且偶数编号的开关被导通。优选的是,与到运算放大器电路100的输入电压(输出电压)的极性的反转同步地切换模式1和2。
[0043] 在模式1的情况下,电压跟随器连接形式的第一正专用放大器电路由差分级14和正专用输出级13构造。电压跟随器连接形式的第一负专用放大器电路由差分级24和负专用输出级23构造。这时,来自于正DAC的正电压INP被输入至第一正专用放大器电路的非反相输入端子(输入端子12),并且来自于输出端子11的输出被输出至奇数编号的端子31作为奇数编号的输出Vodd。另外,来自于负DAC的负电压INN被输入至第一正专用放大器电路的非反相输入端子(输入端子22),并且来自于输出端子21的输出被输出至偶数编号的端子32作为偶数编号的输出Veven。
[0044] 另一方面,在模式2的情况下,电压跟随器连接形式的第二正专用放大器电路由差分级24和正专用输出级13构造。电压跟随器连接形式的第二负专用放大器电路由差分级14和负专用输出级23构造。这时,来自于正DAC的正电压INP被输入至第二正专用放大器电路的非反相输入端子(输入端子22),并且来自于输出端子11的输出被输出至偶数编号的端子32作为偶数编号的输出Veven。另外,来自于负DAC的负电压INN被输入至第二负专用放大器电路的非反相输入端子(输入端子12)并且来自于输出端子21的输出被输出至奇数编号的端子31作为奇数编号的输出Vodd。
[0045] 根据本发明的正专用输出级13和负专用输出级23在正电源电压VDD至VDD/2以及VDD/2至VSS的电压范围内进行操作。利用这一点,输出级消耗的功率消耗能够被减半。
[0046] 此外,在本发明中,即使电压的极性被改变,用于放大器的输入差分级电路使用同一输入差分级电路。例如,即使当电压的极性被改变时差分级14始终用于输出奇数编号的输出Vodd的放大器。这时,差分级24始终用于输出偶数编号的输出Veven的放大器。偏移电压的大小取决于输入差分级电路而很大地变化。然而,在本发明中,即使当电压的极性被改变时,也始终使用同一输入差分级电路。因此,即使当其极性被改变时,偏移电压基本上示出相同的值。为此,在没有偏移消除电路的情况下明显地消除了通过切换极性导致的被输出至电容性负载的信号的偏移电压。因此,减少了显示面板中的闪烁。
[0047] 此外,在本发明中,是共模信号的两个输入级输出信号被从差分级14输出至输出级13、23。为此,如稍后所述,来自于差分级14、24的输出特性保持对称性。因此,能够防止如传统技术中所示的由于失去对称性而引起的显示面板的特性的劣化。这里,具有对称的输出特性的输入级输出信号是具有其值基本上相同的脉冲上升时间和脉冲下降时间的信号。
[0048] 图6是示出输出级13、23和差分级14、24的内部等价电路的详细构造的电路图。
[0049] 差分级14包括N沟道MOS晶体管MN11、MN12、MN13、MN15、MN16;P沟道MOS晶体管MP11、MP12、MP13、MP15、MP16;恒流源I11、I12、浮动电流源I13、以及开关SW11、SW12。
[0050] N沟道MOS晶体管MN11、MN12的栅极分别被连接至开关电路6和输入端子12,从而构造N接收差分对。恒流源I11被提供有负电源电压VSS并且将偏置电流提供给N接收差分对晶体管(N沟道MOS晶体管MN11、MN12)。P沟道MOS晶体管MP11、MP12的栅极分别被连接至开关电路6和输入端子12,从而构造P接收差分对。恒流源I12被提供有正电源电压VDD并且将偏置电流提供给P接收差分对晶体管(P沟道MOS晶体管MP11、MP12)。N沟道MOS晶体管MN11和PMOS晶体管的栅极经由开关电路6被连接至输出端子11或者21。
[0051] P沟道MOS晶体管MP15、MP16的源极被共同地连接至电源端子15(正电源电压VDD)并且其漏极分别被连接至N接收差分对晶体管(N沟道MOS晶体管MN11、MN12)的漏极。PMOS晶体管MP15的漏极经由开关SW11和PMOS晶体管MP13被连接至浮动电流源I13。此外,P沟道MOS晶体管MP15、MP16的栅极被共同地连接至浮动电流源I13和PMOS晶体管MP13的漏极。利用此构造,P沟道MOS晶体管MP15、MP16用作折叠共源共栅连接的有源负载。注意的是,偏置电压BP2被提供给PMOS晶体管MP13的栅极。
[0052] N沟道MOS晶体管MN15、MN16的源极被共同地连接至电源端子16(负电源电压VSS)并且其漏极分别被连接至P接收差分对晶体管(P沟道MOS晶体管MP11、MP12)的漏极。NMOS晶体管MN15的漏极经由开关SW12和NMOS晶体管MN13被连接至浮动电流源I13。此外,N沟道MOS晶体管MN15、MN16的栅极被共同地连接至浮动电流源I13和NMOS晶体管MN13的漏极。利用此构造,N沟道MOS晶体管MN15、MN16用作折叠共源共栅连接的有源负载。注意的是,偏置电压BN2被提供给NMOS晶体管MN13的栅极。
[0053] 开关SW11、SW12始终被导通。开关SW11、SW12可以被省略。然而,由于能够通过开关SW11、SW12保持差分级14的差分平衡,优选的是,开关SW11、SW12被插入。
[0054] NMOS晶体管MN12和PMOS晶体管MP16的漏极被连接至输入级输出端子51,然后经由开关SW51、SW52被连接至输出级13(PMOS晶体管MP14的源极)和输出级23(PMOS晶体管MP24的源极)。PMOS晶体管MP12和NMOS晶体管MN16的漏极被连接至输入级输出端子52,然后经由开关SW53、SW54被连接至输出级13(NMOS晶体管MN14的源极)和输出级23(NMOS晶体管MN24的源极)。利用上述构造,NMOS晶体管MN12和PMOS晶体管PM16的漏极(输入级输出端子51)以及PMOS晶体管MP12和NMOS晶体管MN16的漏极(输入级输出端子52)根据被输入至输入端子12的输入信号Vin1输出两个输入级输出信号Vsi11、Vsi12。
[0055] 差分级24具有类似的构造。然而,N沟道MOS晶体管MN11至MN16;P沟道MOS晶体管MP11至MP16;恒流源I11、I12;浮动电流源I13;开关SW11、SW12、SW51至SW54;偏置电压BP12、BN12;输入级输出端子51、52;输入级输出信号Vsi11、Vsi12分别对应于N沟道MOS晶体管MN21至MN26;P沟道MOS晶体管MP21至MP26;恒流源I21、I22;浮动电流源I23;开关SW21、SW22以及SW55至SW58;偏置电压BP22、BN22;输入级输出端子53、54;输入级输出信号Vsi21、Vsi22。
[0056] 如上所述,根据本发明的差分级14(24)具有输入信号Vin1(Vin2)被输入到的两个差分对和有源负载,该有源负载处于与差分对中的每一个的折叠共源共栅连接中。所述两个差分对由具有不同于有源负载的导电类型的导电类型的晶体管构造。因此,从差分级14(24)被输入至输出级13或者23的两个输入级输出信号Vi11、Vi12(Vi21、Vi22)变成具有不同输入电平的共模信号。
[0057] 在差分级14(24)中,当输入信号Vin1(Vin2)的电压范围是VSS至VDS(sat)+VGS时,只有P沟道差分对(PMOS晶体管MP11、MP12(MP21、MP22))进行操作。相反地,当电压范围是VDS(sat)+VGS至VDD-(VDS(sat)+VGS)时,P沟道差分对(PMOS晶体管MP11、MP12(MP21、MP22))和N沟道差分对(NMOS晶体管MN11、MN12(MN21、MN22))进行操作。当电压范围是VDD-(VDS(sat)+VGS)至VDD时,仅N沟道差分对(NMOS晶体管MN11、MN12(MN21、MN22))进行操作。这里,VDS(sat)是被包括在恒流源I11、I12(I21、I22)中的晶体管的三极管区域和五极管区域之间的切换界限中的源漏电压,并且VGS是形成差分对(NMOS晶体管MN11、MN12(MN21、MN22)和PMOS晶体管MP11、MP12(MP21、MP22)的晶体管的栅源电压。因此,差分级14、24在全部输入电压VSS至VDD的电压范围内执行轨对轨操作。
[0058] 正专用输出级13包括N沟道MOS晶体管MN14、MN17、MN18;P沟道MOS晶体管MP14、MP17、MP18;以及相位补偿电容C11、C12。
[0059] P沟道MOS晶体管MP17和N沟道MOS晶体管MN17的漏极和源极被相互连接。P沟道MOS晶体管MP17和N沟道MOS晶体管MN17用作其栅极分别被提供有偏置电压BP11、BP12的浮动电流源。P沟道MOS晶体管MP14的栅极被连接至偏置恒压源(偏置电压BP2)并且其漏极被连接至浮动电流源(P沟道MOS晶体管MP7和N沟道MOS晶体管MN7)的一端。N沟道MOS晶体管MN14的栅极被连接至偏置恒压源(偏置电压BN2)并且其漏极被连接至浮动电流源(P沟道MOS晶体管MP7和N沟道MOS晶体管MN7)的另一端。另外,P沟道MOS晶体管MP14的源极经由相位补偿电容C11被连接至输出端子11并且N沟道MOS晶体管MN14的源极经由相位补偿电容C12被连接至输出端子11。
[0060] 经由输出端子11连接PMOS晶体管MP18的漏极和NMOS晶体管MN18的漏极。PMOS晶体管MP18的栅极被连接至浮动电流源的一端(和P沟道MOS晶体管MP14的漏极)并且其源极被连接至电源端子15(正电源电压VDD)。NMOS晶体管MN18的栅极被连接至浮动电流源的另一端(和N沟道MOS晶体管MN14的漏极),并且其源极被连接至电源电压VML被提供到的电源端子17。
[0061] 负专用输出级23具有类似的构造。然而,N沟道MOS晶体管MN14、MN17、MN18、P沟道MOS晶体管MP14、MP17、MP18、相位补偿电容C11、C12、电源端子15(正电源电压VDD)、电源端子17(电源电压VML)、以及偏置电压BP11、BP12、BN11、BN12分别对应于N沟道MOS晶体管MN24、MN27、MN28、P沟道MOS晶体管MP24、MP27、MP28、相位补偿电容C21、C22、电源端子16(负电源电压VSS)、电源端子18(电源电压VMH);以及偏置电压BP21、BP22、BN21、BN22。
[0062] 开关SW61控制输出端子11与差分级14(NMOS晶体管MN11和PMOS晶体管MP11)的连接。开关SW62控制输出端子11与差分级24(NMOS晶体管MN21和PMOS晶体管MP21)的连接。开关SW63控制输出端子21与差分级24(NMOS晶体管MN21和PMOS晶体管MP21)的连接。开关SW64控制输出端子21与差分级14(NMOS晶体管MN11和PMOS晶体管MP11)的连接。
[0063] 如上所述,输出级13(23)的输入晶体管(PMOS晶体管MP14(MP24)和NMOS晶体管MN14(MN24)))和其输出晶体管(PMOS晶体管MP18(MP28)和NMOS晶体管MN18(MN28)))分别关于输出端子11对称地形成。输出端子13(23)将基于具有不同输入电平的两个共模输入级输出信号Vsi11、Vsi12(Vsi21、Vsi22)的单端信号输出至输出端子11(21)作为输出信号Vout1(Vout2)。这时,由偏置电压BP11、BN11确定输出晶体管(PMOS晶体管MP18和NMOS晶体管MN18)的空载电流。
[0064] 通常,从正DAC输入的输入信号INP的电压范围是VDD/2至VDD并且从负DAC输入的输入信号INN的电压范围是VSS至VDD/2。另一方面,差分级14、24在负电源电压VSS(GND)和正电源电压VDD之间执行轨对轨操作。因此,能够被输入至具有各自差分级14、24作为输入级的放大器的电压的范围是VSS至VDD。因此,能够从正DAC输入至运算放大器电路100的电压的范围满足LCD面板所要求的输入特性。
[0065] 另一方面,输出级13、23被提供有电源电压VML、VMH,该电源电压VML、VMH被设置在正电源电压VDD和负电源电压VSS的中间电压(VDD/2)的附近。因此,与差分级14、24的情况相比较限制了要被提供给输出级13、23的电源电压的范围并且也限制了能够输出的电压的范围。在下面描述了能够从输出级13、23输出的电压的范围。
[0066] 开关电路5、6形成正专用放大器,其中正专用输出级13和差分级14(24)处于电压跟随器连接中。因此,使输出信号(Vout1)和输入信号(Vin1或者Vin2:输入信号INP)的电压相等,即,Vout1=Vin1(Vin2)。然而,当能够被输入至差分级14(24)的电压的范围和能够从正专用输出级13输出的电压的范围满足LCD驱动器所要求的输入输出特性时此等式成立。
[0067] 例如,能够从构成正专用放大器电路的正专用输出级13输出的电压的范围是VML+0.2V至VDD-0.2V。通常,要用于LCD驱动器的正专用放大器所要求的输出特性是VDD/2+0.2V至VDD-0.2V。因此,为了满足LCD驱动器所要求的输出特性,优选的是,电源电压VML大于负电源电压VSS并且等于或者小于正电源电压VDD的一半(VSS<VML≤VDD/2)。在这样的情况下,正专用放大器电路的操作电压的范围对于放大器输入输出正极性来说是足够的,从而满足LCD驱动器所要求的特性。
[0068] 类似地,开关电路5、6形成负专用放大器电路,其中负专用输出级23和差分级14(24)处于电压跟随器连接中。因此,使输出信号(Vout2)和输入信号(Vin1或者Vin2:
输入信号INN)的电压相等,即,Vout2=Vin1(Vin2)。然而,当能够被输入至差分级14(24)的电压的范围和能够从正专用输出级13输出的电压的范围满足LCD驱动器所要求的输入输出特性时此等式成立。
[0069] 例如,能够从构成负专用放大器电路的负专用输出级23输出的电压的范围是VSS+0.2V至VMH-0.2V。通常,要用于LCD驱动器的负专用放大器所要求的输出特性是VSS+0.2V至VDD/2-0.2V。因此,为了满足LCD驱动器所要求的输出特性,优选的是,电源电压VMH等于或者大于正电源电压VDD的一半并且小于正电源电压VDD(VDD/2≤VML<VDD)。在这样的情况下,作为到负极性的输入和输出的放大器充分利用负专用放大器电路的操作电压的范围对于放大器输入输出负极性来说是足够的,从而满足LCD驱动器所要求的特性。
[0070] 即使当要被提供给差分级14、24的电源电压的范围大时,流过差分级14、24的电流的值通常小。在本发明中,为了保持放大器的输入特性,大的电压范围内的电源电压(VSS至VDD)被提供给差分级14、24。然而,由于流过差分级14、24的电流小,所以与输出级13、23的功率消耗相比较差分级14、24的功率消耗是极其的小。即,差分级14、24的功率消耗几乎对运算放大器电路100的整个功率消耗没有影响。
[0071] 另一方面,流过输出级13、23的电流是空载电流和流过输出负载的电流的总和,其中该空载电流是流过差分级14、24的电流的若干倍的电流。因此,流过输出级13、23的电流通常构成放大器电路的整个功率消耗的大约80%。从而,通过只降低输出级13、23的电源电压来减少功率消耗对放大器电路的整个功率消耗具有很大的影响。根据本发明的输出级13、23的电源电压的范围小于传统的电源电压的范围。从而,能够减少运算放大器电路100的功率消耗。
[0072] 根据本发明的开关电路5被连接在差分级14、24的输入级输出端子51至54与输出级13、23的输出级输出端子61至64之间。优选的是,开关电路5被插入在由差分级14、24和输出级13(23)构造的放大器电路中阻抗相对较低的位置中。在本实施例中,开关电路
5被插入在PMOS晶体管MP16的漏极与PMOS晶体管MP14、MP24的源极之间和NMOS晶体管MN16的漏极与NMOS晶体管MN14、MN24的源极之间。P沟道MOS晶体管MP14(MP24)的源极和N沟道MOS晶体管MN14(MN24)的源极都具有相对较低的阻抗,通过开关电路5切换所述两个源极。原因在于这些晶体管处于折叠共源共栅连接中并且与被接地的栅极一起进行操作。为此,即使当通过开关电路5切换连接时,被输入至输出级输入端子61、62(63、64)电压几乎不变化。这包括防止在当切换开关电路5时的时候异常电流流过电路的副作用的效果。然而,开关电路5的插入位置不限于此实施例中的位置。
[0073] 作为本实施例中的开关,优选地利用其中通过栅极电压控制导通和截止的NMOS晶体管或者PMOS晶体管或者利用这两个晶体管的传输。然而,优选的是,根据开关的电势确定利用哪种类型的开关。例如,当要被施加于开关的电压高于几乎VDD/2时,P沟道MOS晶体管被用作开关。相反地,当要被施加于开关的电压低于几乎VDD/2时,优选的是,N沟道MOS晶体管被用作开关。此外,在开关不得不在从负电源电压VSS(GND)到正电源电压VDD的输入电压的所有范围内进行操作的情况下,优选的是,传输门被用作开关。
[0074] 由于被用于开关5的开关SW51至开关SW58的操作的范围受到限制,所以根据各个电势优选地利用N沟道MOS晶体管或P沟道MOS晶体管。然而,除了开关SW51至SW58之外的诸如开关SW31至SW34、SW41至SW44、以及SW61至SW64的开关中的每一个不得不在从负电源电压VSS(GND)到正电源电压VDD的所有区域中进行操作。因此,使用N沟道MOS晶体管和P沟道MOS晶体管的传输门被优先地用于各个开关。
[0075] 现在参考图7A至图8,描述根据本发明的闪烁抑制效果。图7A和图7B是每个均示出根据本发明的运算放大器电路100中的信号路径的示意图。在运算放大器电路100中,控制开关电路3至6以将两种信号路径从图7A中所示的模式1切换到图7B中所示的模式2。
[0076] 如图7A中所示,描述了模式1的信号路径。通过由差分级14和正专用输出级13构造的放大器电路放大来自于正DAC的正电压(输入信号INP),并从奇数编号的端子31将其输出作为奇数编号的输出Vodd。这时,奇数编号的输出Vodd变成正输出信号OUTP。相反地,通过由差分级24和负专用输出级23构造的放大器电路放大来自于负DAC的负电压(输入信号INN),并从奇数编号的端子32将其输出作为偶数编号的输出Veven。这时,偶数编号的输出Veven变成正输出信号OUTN。
[0077] 如图7B中所示,描述了模式2的信号路径。通过由差分级24和正专用输出级13构造的放大器电路放大来自于正DAC的正电压(输入信号INP),并从偶数编号的端子32将其输出作为偶数编号的输出Veven。这时,偶数编号的输出Veven变成正输出信号OUTP。相反地,通过由差分级14和负专用输出级23构造的放大器电路放大来自于负DAC的负电压(输入信号INN),并从奇数编号的端子31将其输出作为奇数编号的输出Vodd。这时,奇数编号的输出Vodd变成负输出信号OUTN。
[0078] 如上所述,即使当切换关于同一端子的输出信号的极性时,放大器电路的同一输入差分级被用作用于驱动端子的差分级。例如,关注奇数编号的端子31,能够看到的是,在输出正极性和负极性时,同一差分级14被用作信号路径。类似地,关注偶数编号的端子32,能够看到的是,在输出正极性和负极性时,同一差分级24被用作信号路径。
[0079] 图8是示出根据本发明的运算放大器电路100的输出特性的一个示例的视图。这里,偏移电压被定义为目标电压和正输出OUTP的最大值或者负电压OUTN的最小值之间的差。另外,基准电压VCOM和正电压OUTP和负电压OUTN中的每一个之间的差的绝对值的总和被定义为摆幅电压(Swing Voltage)。这里,正电压OUTP和负电压OUTN之间的差的最大值被定义为摆幅电压。
[0080] 输入差分级确定放大器的偏移电压。因此,在传统的放大器电路中,其中根据正输出和负输出的切换使用不同的输入差分级,对于每个极性生成不同的偏移电压。在此种放大器中,输出端子之间(例如,奇数编号的端子和偶数编号的端子之间)的摆幅电压的差变大,这不满足LCD驱动器的规格。另一方面,在图1至3的现有技术中,同一差分级被用于每个输出端子。因此,即使当切换极性时偏移电压示出相同的值。因此,奇数编号的输出Vodd中的摆幅电压与偶数编号的输出Veven中的摆幅电压之间不存在差异。然而,差分输入级电路140、240的输出特别失去了对称性。即,如图4中所示,驱动电容性负载的输出信号的脉冲是不对称的。因此,存在下述情况,图1中所示的运算放大器电路不满足LCD驱动器的规格(充电和放电特性)。
[0081] 另一方面,如上所述,即使当切换到同一端子的输出信号的极性时,根据本发明的运算放大器电路100使用同一输入差分级作为用于驱动端子的放大器电路的差分级。另外,根据本发明的差分级14具有N沟道型差分对和P沟道型差分对,并且具有不同输入电平的共模输入级输出信号Vsi11、Vsi12被输入至输出级13、23。类似地,根据本发明的差分级24具有N沟道型差分对和P沟道型差分对,并且具有不同输入电平的共模输入级输出信号Vsi21、Vsi22被输入至输出级13、23。此外,开关电路5通过使用输入级输出信号Vsi11、Vsi12、Vsi21、Vsi22的输入端子作为界限切换差分级14、24与输出级13、23的连接。
为此,与图8中所示的正输出OUTP一样,脉冲的上升时间Tr2和下降时间Tf2基本上相等。
然而,上升时间Tr2是脉冲的最大值从10%至90%的上升的时间,并且下降时间Tf2是脉冲的最大值从90%至10%的下降的时间。另外,是目标电压TV与脉冲的最大值之间的差的偏移电压“偏移2”示出比传统的偏移电压更小的值。类似地,负输出OUTN上的脉冲的上升时间和下降时间示出基本上相同的值。此外,是目标电压TV与脉冲的最大值之间的差的偏移电压示出比传统的偏移电压更小的值。
[0082] 如上所述,使正输出OUTP和负输出OUTN中的每一个的上升时间和下降时间相等。因此,根据本发明的运算放大器电路100满足用于驱动LCD面板的LCD驱动器的规格(充电和放电特性)。另外,由于电路的构造使得偏移电压的值小于传统的偏移电压的值。因此,当根据本发明的运算放大器电路100被应用于LCD驱动器时,其振幅差偏差特性变得更好,从而能够获得优秀的图像质量。此外,构成放大器电路的差分级14、24中的电流路径少于根据传统技术的差分输入级电路140、240的电流路径。因此,运算放大器电路100的功率消耗被进一步减小。
[0083] 例如,根据本发明的运算放大器电路100适合于用于被提供在图9中所示的显示装置90中的LCD驱动器901的数据线驱动电路部分95。如图9中所示,显示装置90包括驱动器(LCD驱动器901)和由LCD驱动器901驱动的显示面板(LCD面板902)。
[0084] LCD驱动器901包括数据寄存器91,该数据寄存器91用于获取8位数字显示信号R、G、和B;数据存电路92,该数据锁存电路92用于与选通信号ST同步地锁存数字信号R、G、和B;D/A转换器93,该D/A转换器93包括并行的N级数字模拟转换器(正DAC和负DAC);液晶灰阶电压生成电路94,该液晶灰阶电压生成电路94输出具有根据液晶的特性的伽玛变换特性的生成电压;以及数据线驱动电路部分95,该数据线驱动电路部分95具有缓冲来自于D/A转换器93的电压的多个运算放大器电路100。
[0085] LCD面板902包括TFT(薄膜晶体管)60(TFT组96)和多个像素电容70(像素电容组97),TFT被提供在多条正侧和负侧数据线XP和XN与多条扫描线Y的交叉区域。TFT 60中的每一个的栅极经由扫描线Y被连接至未示出的栅极驱动器。另外,TFT 60的源极经由正数据线XP或者负数据线XN被连接至运算放大器电路100,并且其漏极经由像素电容70被连接至COM端子。
[0086] 在图9中,LCD面板902仅具有用于与一条扫描线Y相对应的一行的TFT组96和像素电容组97。然而,LCD面板902通常具有用于与多条扫描线相对应的多行的TFT组96和像素电容组97。
[0087] 液晶灰阶电压生成电路94生成基准电压并且通过由D/A转换器93中的ROM开关等等构成的解码器(未示出)进行选择。D/A转换器93根据来自于锁存电路的8位数字显示信号选择基准电压。在D/A转换之后,D/A转换器93经由输入端子41、42给多个运算放大器电路100提供被转换的信号作为输入信号INP、INN。运算放大器电路100经由输出端子31、32以及TFT 60将输出信号OUTP、OUTN输出至用作像素电容70的液晶元件。这时,通过未示出的栅极驱动器驱动TFT组60的栅极。
[0088] 近年来,LCD驱动器的输出的数目超过1000个沟道。因此,要求电压跟随器连接形式的其数目与沟道的数目相同的运算放大器。因此,作为一个芯片的功率消耗变成1个运算放大器的功率消耗的1000倍。为此,如上所述,根据本发明的运算放大器电路100用于LCD驱动器901,从而能够显著性地减少芯片的总功率消耗。另外,随着功率消耗的增长,芯片的温度几乎可以达到是的限界的150℃。然而,由于其上安装有根据本发明的运算放大器电路100的芯片的电流消耗被减少,所以能够抑制芯片温度的增加。
[0089] 另外,当运算放大器电路100被安装在LCD驱动器95上时,需要适当地设置上述两个电源电压VML、VNH。适合的是,考虑关于显示装置90而设置的γ曲线来设置电源电压VML、VMH。即,通过γ电压确定必须的输入和输出电压并且,然后,基于输入和输出电压确定电源电压VML、VMH的最优电压。结果,能够在没有任何损失的情况下设置电源电压。
[0090] 此外,在双极型(能够进行电流的放电和吸入)电源能够被提供给显示装置90的情况下,电源电压VML、VMH被共同地连接至电源作为一个电源供给。在此方法中,能够在负专用输出级23中重新使用在正专用输出级13中消耗的电流。因此,能够进一步减少系统的功率消耗。
[0091] 此外,在用于LCD驱动器的规格的振幅差偏差方面,能够示出几乎理想的特性。因此,传统上需要的偏移消除电路是没有必要的。结果,液晶显示装置90能够在没有安装偏移消除电路的情况下防止显示面板902中的闪烁出现。
[0092] 如上所述,详细地描述了本发明的实施例。然而,本发明的具体构造不限于上述实施例。本发明包括在不偏离本发明的范围的情况下进行修改的实施例。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈