首页 / 专利库 / 太阳能 / 异质结太阳能电池 / 激光转印IBC太阳能电池

激光转印IBC太阳能电池

阅读:407发布:2020-05-11

专利汇可以提供激光转印IBC太阳能电池专利检索,专利查询,专利分析的服务。并且一种激光加工系统可用于生产高性能叉指型背触(IBC)式 太阳能 电池 。所述激光加工系统可用于烧蚀、转印材料和/或对触头进行激光掺杂或激光发射。 激光烧蚀 可用于在 钝化 层或发射极层中移除和 图案化 开口。激光转印则可用于将 掺杂剂 和/或触头材料转印至所述图案化开口,从而形成叉指型图案。所述激光加工系统还可以用于在所述转印的掺杂剂或触头材料的顶部上电 镀 导电材料。,下面是激光转印IBC太阳能电池专利的具体信息内容。

1.一种用于形成太阳能电池的叉指型背触头的方法,所述方法包括:
在转印衬底上沉积至少一种掺杂剂材料;
将所述转印衬底定位在距太阳能衬底的后表面预定距离处,其中,所述太阳能衬底在所述后表面上提供至少一个钝化层;
激发激光器,其中,所述激光器产生线形激光束或高斯激光束,并且所述激光器破坏所述钝化层并且将所述至少一种掺杂剂材料中的第一掺杂剂转印至所述太阳能衬底以形成第一指状图案并同时在所述钝化层与所述第一掺杂剂之间留下空隙;
将在所述转印衬底的另一区域中具有第二掺杂剂的所述转印衬底定位在距所述太阳能衬底的所述后表面预定距离处;以及
激发所述激光器,其中所述激光器产生线形激光束或高斯激光束,并且所述激光器将所述第二掺杂剂转印至所述后表面以形成第二指状图案。
2.如权利要求1所述的方法,其特征在于,所述线形激光束具有小于20微米的宽度,或者所述高斯激光束具有小于20微米的直径。
3.如权利要求1所述的方法,其特征在于,所述激光器激发步骤在所述第一指状图案和第二指状图案中分别产生局部n+和p+点触头。
4.如权利要求1所述的方法,进一步包括:在所述太阳能衬底上的所述第一指状图案和第二指状图案的顶部上电导电金属。
5.如权利要求1所述的方法,其特征在于,所述转印衬底进一步包括导电金属层,并且所述方法进一步包括:
激发所述激光器以便将所述导电金属从所述转印衬底转印至所述太阳能衬底,其中,所述导电金属沉积在所述第一指状图案或第二指状图案中的所述第一掺杂剂或第二掺杂剂的顶部上。
6.如权利要求1所述的方法,其特征在于,所述太阳能衬底提供发射极,所述发射极由所述至少一个钝化层覆涂,并且所述激光器激发步骤对所述至少一个钝化层和所述发射极进行烧蚀。
7.如权利要求6所述的方法,其特征在于,所述发射极是扩散发射极、隧道化物发射极、或非晶异质结发射极。
8.如权利要求1所述的方法,其特征在于,所述线形激光束或高斯激光束被时间整形。
9.如权利要求8所述的方法,其特征在于,所述激光器是扫描激光器系统,并且在所述扫描激光器系统沿着所述太阳能衬底经过时以预定次数使所述线形激光束或高斯激光束脉动以形成所述指状图案。
10.如权利要求1所述的方法,其特征在于,为所述激光器提供衍射光学器件或分束光学器件以用于控制所述线形激光束或高斯激光束的形状或者用于创建多个所述线形激光束或高斯激光束。
11.如权利要求1所述的方法,其特征在于,导电金属的线触头被沉积在所述指状图案中的所述至少一种掺杂剂的顶部上,并且所述线触头被间隔开等于100微米至300微米或者在其之间的距离。
12.一种用于将材料转印至用于背触式太阳能电池的太阳能衬底的激光转印系统,所述系统包括:
转印衬底,所述转印衬底涂覆有将分别以第一指状图案和第二指状图案转印至太阳能衬底的至少第一掺杂剂和第二掺杂剂,其中,所述太阳能衬底在后表面上提供至少一个钝化层;
间隔物,所述间隔物在激光处理期间将所述转印衬底与所述太阳能衬底间隔开预定距离;
扫描激光器,所述扫描激光器能产生线形激光束或高斯激光束,其中,所述扫描激光器被布置成用于在被激发时破坏所述钝化层并且将所述第一掺杂剂转印至所述太阳能衬底以便形成所述第一指状图案,且在所述第一掺杂剂与所述钝化层之间具有空隙;以及所述扫描激光器被布置成用于在被激发时将所述第二掺杂剂转印到所述太阳能衬底以便形成所述第二指状图案。
13.如权利要求12所述的系统,其特征在于,所述扫描激光器包括第一脉冲,所述第一脉冲在10ns内具有高能量密度的第一脉冲部分、以及在500ns内使能量密度缓慢下降的第二部分。
14.如权利要求13所述的系统,其特征在于,所述扫描激光器包括在所述第一脉冲使所述能量密度在500ns内缓慢下降之后、在相同位置施加的第二脉冲,以用于退火
15.如权利要求12所述的系统,其特征在于,所述线形激光束具有小于20微米的宽度,或者所述高斯激光束具有小于20微米的直径。
16.如权利要求12所述的系统,其特征在于,所述扫描激光器在所述第一指状图案和第二指状图案中分别产生局部n+和p+点触头。
17.如权利要求12所述的系统,其特征在于,所述转印衬底进一步包括导电金属层,所述扫描激光器将所述导电金属从所述转印衬底转印至所述太阳能衬底,并且所述导电金属沉积在所述第一指状图案或第二指状图案中的所述第一掺杂剂或第二掺杂剂的顶部上。
18.如权利要求12所述的系统,其特征在于,所述扫描激光器对至少一个钝化层的局部区域以及所述太阳能电池的发射极进行烧蚀。
19.如权利要求12所述的系统,其特征在于,所述线形激光束或高斯激光束被时间整形。
20.如权利要求18所述的系统,其特征在于,在所述扫描激光器系统沿着所述太阳能衬底经过时以预定次数使所述线形激光束或高斯激光束脉动以形成所述指状图案。
21.如权利要求12所述的系统,其特征在于,所述扫描激光器系统产生所述线形激光束,并且所述激光器系统能够每秒加工1个太阳能衬底。
22.如权利要求12所述的系统,进一步包括:
用于所述扫描激光器系统的衍射光学器件,其中,所述衍射光学器件允许控制所述线形激光束或高斯激光束的形状或者提供多个所述线形激光束或高斯激光束,或者用于所述扫描激光器系统的分束光学器件,其中,所述分束光学器件用于创建多个所述线形激光束或多个高斯激光束。

说明书全文

激光转印IBC太阳能电池

[0001] 相关申请
[0002] 本申请要求于2014年7月15日提交的美国临时专利申请号62/024,784的权益,所述申请通过引用结合在此。发明领域
[0003] 本发明涉及叉指型背触(IBC)式太阳能电池。更具体地,涉及用于制备IBC的系统和方法。
[0004] 发明背景
[0005] 所期望的被称为叉指型背触(IBC)式电池的太阳能电池几何结构包括半导体晶片以及具有p型和n型掺杂的区域的交替线(叉指型条)。这种电池几何结构具有通过将两个触头都放在晶片的一侧上来消除阴影损失的优点。进一步地,触头易于与后面上的这两个触头互连。在于1999年2月16日发布的题为“Proximity Laser Doping Technique for Electronic Materials(用于电子材料的接近激光掺杂技术)”的美国专利号5,871,826中讨论了由Mei等人在施乐帕罗奥多研究中心(PARC)开发的激光转印工艺。本专利描述了一种通过激光烧蚀工艺更改材料的电特性的方法,所述方法可在低温下实现高掺杂平和浅结。本发明利用激光器与沉积在透明板(典型地玻璃或石英)上的非透明薄源膜之间的快速交互,所述透明板与衬底被放置地极为接近(典型地大约几微米)。描述了一种工艺,其中,具有典型地大约50ns的脉冲时长的激光器(诸如YAG激光器)可用于通过使用从16到400次激光能量密度范围从150到450mJ/cm的发射来形成深度大约为0.1μm的半导体结。这种接近激光烧蚀技术可用于在低温下通过大面积衬底来沉积薄膜,并且也可以使用掩模来阻挡不期望沉积的区域中的激光能量。
[0006] 最近,斯图加特大学的罗德尔(Roder)等人(第35届IEEE光伏专家会议议论文集(Proc.of the 35th IEEE Photovoltaic Specialists Conference),第3597-3599页,(2010))使用相似的工艺,他们将所述工艺称为“激光转印触头(Laser Transferred Contacts,LTC)”或“激光诱发前向转印(LIFT)”以便通过氮化防反射涂层对一薄层Ni进行激光转印从而形成到激光掺杂的选择性发射极区域的触头。然后利用3μm的Ni对激光转印Ni触头进行电,并且然后利用Cu继续进行电镀以便增加指状物的导电性。利用这种技术,使用30μm宽的指状触头来制备17.4%的高效硅太阳能电池。
[0007] 斯图加特大学的科学家(霍夫曼(Hoffmann)等人,第38届IEEE光伏专家会议议论文集(Proc.of the 38th IEEE Photovoltaic Specialists Conference),第1059-1062页(2012))也说明了自掺杂激光转印触头工艺,其中,通过氮化硅防反射涂层对Sb触头进行激光转印以便提供自对准的n型选择性发射极并且同时形成到太阳能电池的前侧的触头。锑掺杂触头被用作晶种层以用于后续的镍和电镀,并且能够在110Ω/sq的发射极上产生细线正面金属喷镀,所述细线正面金属喷镀的指状物宽度为20μm并且接触电阻率尽可能低至30μΩ-cm。结合将光束整形为线形聚焦以便在对Si进行再结晶过程中最小化缺陷产生,使用脉冲时长为30ns的绿色(532nm)Nd:YAG激光器以及脉冲时长为6ns的绿色Nd:YVO4激光器。获得宽度为约7μm的触头线,并且Ni/Cu电镀用于增加指状物的导电性。展示了具有高达
17.5%的效率的太阳能电池。
[0008] 目前,具有最高效率的Si太阳能电池是基于将叉指型全背触式结构与硅异质结触头相结合的那些太阳能电池。松下最近报告了利用这种设备结构获得了创纪录的25.6%的转换效率(苏克(Masuko)等人,第40界IEEE光伏专家会议(40IEEE Photovoltaic Specialists Conference),2014年6月8日-13日,科罗拉多丹佛)。在同一会议上,夏普报告利用相似的设备结构获得了25.1%的效率(纳卡穆拉(Nakamura)等人,第40界IEEE光伏专th家会议(40  IEEE Photovoltaic Specialists Conference),2014年6月8日-13日,科罗拉多丹佛),并且日能利用使用常规扩散工艺制作的叉指型背触(IBC)式硅太阳能电池获得了
25.0%的效率(史密斯(Smith)等人,第40界IEEE光伏专家会议(40th IEEE Photovoltaic Specialists Conference),2014年6月8日-13日,科罗拉多丹佛)。虽然未以任何细节讨论对这些高效率IBC太阳能电池的加工,但是制造成本有可能相对较高,因为在每种情况下的加工看起来有点复杂,需要各种掩模和真空加工步骤。
[0009] 激光加工也已经被用于制备相对高效的硅太阳能电池。贝尼克(Benick)等人(第40界IEEE光伏专家会议(40th IEEE Photovoltaic Specialists Conference),2014年6月8日-13日,科罗拉多丹佛)通过对局部后触头进行激光掺杂而在PERL(钝化发射极和后局部扩散的)太阳能电池结构中获得高达23.2%的转换效率。在这种工艺中,利用由作为掺杂源的磷掺杂的非晶化硅(a-SiCx:P)组成的后表面钝化层。通过扩散形成前表面发射极,并且使用光刻并且对晶种层Ti/Pd/Ag进行蒸发并且然后利用Ag进行电镀来形成前侧触头。
[0010] 达林格尔(Dahlinger)等人(Energy Procedia 38,250-253(2013))使用激光掺杂来制备效率为22.0%的叉指型背触式硅太阳能电池。使用具有线形光束(<10μm宽)和约50ns的脉冲时长的、频率双倍(532nm)的Nd:YAG激光器。在晶片的后侧上溅射薄硼前体层,并且然后形成激光掺杂的p+发射极图案。在湿式化学清洁之后,使用POCl3炉扩散在晶片的两侧上均形成掺杂低浓度磷的区域。另一种激光掺杂工艺(将在POCl3扩散工艺中生长的硼磷硅玻璃用作掺杂源)用于在晶片的后侧上创建n+图案。热化用于在扩散区域中的进行驱动并且用于对表面进行钝化,并且离子增强型化学气相沉积(PECVD)氮化硅用于在前侧形成抗反射涂层并且还在晶片的后侧形成红外反射涂层。
[0011] 霍夫曼(Hofmann)等人(光伏材料的进展:研究与应用;16 509-518(2008))制备了通过非晶硅和PECVD氧化硅的后表面钝化栈对Al进行激光发射而使用的硅太阳能电池的21.7%,以便形成局部p+触头。在升高的温度下使用磷扩散形成前表面发射极,并且使用还用作前钝化层的热氧化抗反射涂层。通过蒸发TiPdAg指状图案来形成前触头。
[0012] 虽然清楚激光加工可用于制造相对高效的硅太阳能电池,但是迄今为止所使用的加工有点复杂,并且在所有情况下将真空加工与某个高温加工一起使用。高温加工可产生硅晶片缺陷,这可能会限制太阳能电池的性能,并且真空加工需要相对昂贵的真空设备,这可能会限制产出并增加制造成本。

发明内容

[0013] 在一个实施例中,使用利用窄线形激光束的激光转印工艺,通过借助于电介质钝化对p+和n+指状图案晶种层两者进行激光转印而在钝化太阳能衬底中形成叉指型背触头。可以利用导电金属对晶种层进行电镀。
[0014] 在另一实施例中,在经良好钝化的太阳能衬底上使用激光转印工艺以便通过电介质钝化发射p+和n+点触头。另一种激光转印工艺则用于使用窄线形激光束在电介质钝化的顶部以及通过适当的点触头来沉积适当金属的叉指型图案。
[0015] 在又另一实施例中,通过使用线形激光束对隧道氧化物发射极进行激光烧蚀并且对基极触头指状图案进行激光转印在经良好钝化的太阳能衬底上形成指状图案,其中,后表面的大部分包含隧道氧化物发射极。
[0016] 在其他实施例中,激光转印系统可以利用窄线形激光束或者小高斯激光束,其中的任何一项可被时间整形以便对掺杂剂、金属或其他材料进行烧蚀、转印;或者对局部的p+或n+触头进行激光掺杂或激光发射。
[0017] 上文非常概略地给出了本公开的各个特征,以便可以更好地理解随后的详细描述。下文将描述本公开的附加特征和优点。附图说明
[0018] 为了更完整地理解本公开及其优点,现在结合描述本公开的具体实施例的附图参考以下描述,其中:
[0019] 图1是线(例如,Al和Sb)的说明性实施例,通过分别作为叉指型p+和n+指状图案的钝化层对所述线进行激光转印;
[0020] 图2是使用晶种层形成的叉指型图案的说明性实施例;
[0021] 图3是使用高斯激光束制作的以便通过钝化层分别对n+和p+材料(例如,Sb和Al)的小光点进行激光转印的n+和p+点触头的说明性实施例;
[0022] 图4是说明性实施例,示出了在钝化层的顶部上以及在n+和p+点触头的顶部上所激光转印的叉指型晶种层(例如,Ni);
[0023] 图5是具有隧道氧化物发射极的设备结构的说明性实施例,其中,激光束用于对衬底的线区域进行烧蚀并且然后对中心区域中的基本掺杂剂进行激光转印;以及
[0024] 图6是激光转印系统的示意图的说明性实施例,所述激光转印系统使用扫描线形激光束。

具体实施方式

[0025] 现在参考附图,其中,所描绘的元件不一定是按比例示出的,并且其中,贯穿若干视图,相同或相似的元件由相同的参考号来表示。
[0026] 总体上参考附图,将理解的是,图示是出于描述本公开的具体实施例的目的,并且并不旨在限制于此。虽然在此使用的大多数术语将是本领域普通技术人员可识别的,但应当理解的是,当未被明确限定时,术语应当被解释为采用本领域普通技术人员目前可接受的意义。
[0027] 应当理解的是,前述概括描述和以下详细描述都仅是示例性和解释性的,并且不限制所要求保护的本发明。在这种应用中,除非另外特别声明,否则使用单数包括复数,单词“一个(a)”或“一种(an)”意指“至少一个”,并且使用“或”意指“和/或”。而且,使用术语“包括(including)”以及其他形式(诸如“包括(includes)”和“包括(included)”)是非限制性的。同样,除非另外特别声明,否则术语诸如“元件”或“部件”涵盖包括一个单元的元件或部件以及包括多于一个单元的元件或部件两者。
[0028] 在此讨论了用于使用激光转印工艺来生产在低温下以低制造成本制备的高性能叉指型背触(IBC)式太阳能电池的系统和方法。激光转印工艺可以利用经空间和/或时间整形的激光束。在一些实施例中,在此讨论的系统或方法可以具有以下元素:(1)通过激光转印工艺来供应掺杂剂;(2)由激光转印工艺供应一种或多种掺杂剂以避免对用于执行掺杂剂扩散的晶片进行加热;和/或(3)在加工背触(IBC)式电池时进行沉积。使用线束是制作IBC电池的一种特别有吸引的方式(因为IBC的电极是细线),并且因此,可利用减少的激光脉冲曝光次数对叉指型指状进行图案化。作为非限制性示例,可使用适当的光学器件将来自高功率激光器的高斯光束变换成长的较窄线形光束。如果线束的长度为1cm并且宽度为8微米,则15个脉冲可用于对单个指状的导电材料进行激光转印,所述单个指状物在叉指型图案中的长度为15cm。如果使用直径为100微米的高斯光束并且所述高斯光束重叠率为10%,则将需要1875个脉冲来创建15cm长的指状物。因此,脉冲的急剧减少(>99%)从以上示例中是显而易见的。在一些实施例中,以上(1)-(3)的组合可以与线和/或时间整形一起使用。
[0029] 术语“太阳能衬底”在此可以用于描述已经被部分加工并且将在完成所有加工步骤时变成功能性太阳能电池的硅晶片。应当理解的是,太阳能衬底在以下有时可以被称为太阳能电池,尽管在形成功能性太阳能电池之前其处于中间状态。
[0030] 在一些实施例中,激光束可被空间整形为窄线形激光束或整形为非常小的直径的高斯激光束(例如,<20μm或<10μm)阵列。在一些实施例中,激光转印工艺是低热工艺,其中,大部分晶片仍然处于室温下,并且对激光能量进行调节从而使得具有足够的能量将材料转印至晶片。在一些实施例中,低热工艺可以允许对晶片进行局部加热,所述晶片被限于远低于硅的熔点的温度(或者小于等于1414℃)。如以上讨论的,在斯图加特大学进行的工作指示宽度<10μm的线形激光束展示了很少的激光诱发损害,而常规的环形高斯激光束(例如,直径为约30μm-130μm)展示了微裂纹和位错。在一些实施例中,在此讨论的改进后的激光工艺可以利用小直径(<20μm或<10μm)的高斯激光束,所述小直径的高斯激光束也不太可能展示由于仅对Si的非常小的区域进行融化和再结晶而造成的延伸缺陷(诸如微裂纹和位错)。在一些实施例中,脉冲线形激光束可以能够每秒加工大约150米或更大的指状长度或者每秒大约1硅晶片或更多,所述脉冲线形激光束具有比脉冲高斯激光束更大的近似100X的加工产出。
[0031] 在一些实施例中,可以通过沿着硅晶片衬底扫描所述激光器系统并且使激光器脉动期望次数来对激光束进行时间整形从而形成期望图案,诸如用于叉指型背触头的指状图案。出于对材料进行激光转印、对电介质钝化层进行激光烧蚀和破坏、对Si晶片的所选择的局部区域进行激光熔化、对具有适当掺杂剂原子的融化Si区域进行激光掺杂、通过电介质钝化层对接触金属进行激光发射以及对Si晶片上的局部处理区域进行激光退火的目的,可选择时间脉冲形状。通常,激光转印材料需要相对短的脉冲(几ns到几十ns),而激光退火需要相对长的脉冲(0.1μs到若干μs)。激光掺杂的脉冲时长将取决于所需的掺杂剂深度并且可从几十ns到几百ns发生变化。作为非限制性示例,在局部区域中将激光转印、电介质钝化的破坏、融化、Si的掺杂和退火进行组合的激光工艺可以采用以下时间整形的线形波束(例如,8μm宽和1cm长):脉冲以超过若干ns的能量密度约1J/cm2为开始以便将掺杂剂材料(例如,Al)转印至衬底(例如,Si表面)并且破坏电介质钝化(在后表面上,5nm的ALD A12O3/90nm的PECVD SiOx);能量密度然后在约50ns内降至约0.5J/cm2以便局部融化衬底表面并且在掺杂剂中扩散;并且然后脉冲能量密度在约500ns内从0.5J/cm2降至0.1J/cm2以便对衬底表面的局部区域进行退火。
[0032] 在第一实施例中,经钝化的太阳能电池提供叉指型背触头,所述叉指型背触头是通过以下方式形成的:使用利用窄线形激光束的激光转印工艺通过电介质钝化对p+和n+指状图案晶种层两者进行激光转印,并且然后利用导电金属对晶种层进行电镀。例如,在一些实施例中,线形激光束可以是<20μm或者<10μm。图1是线10、20的说明性实施例,通过作为叉指型的p+和n+指状图案的钝化层30、50对所述线进行激光发射或激光转印。作为非限制性示例,可以在激光束破坏电介质钝化层30、50、融化衬底40(例如,Si)以及将掺杂剂扩散到衬+底中的条件下通过对掺杂剂材料进行激光转印来形成p 指状图案晶种层10。进一步地,可以在激光束破坏电介质钝化层30、50、融化衬底40(例如,Si)以及将掺杂剂扩散到衬底中的条件下通过对掺杂剂材料进行激光转印来形成n+指状图案晶种层20。在n+指状图案晶种层
20的情况下,可选择激光条件以便在更宽的范围上促进对电介质钝化层30、50的破坏从而+ +
最小化从由氧化50产生的反转层60到n指状的当前泄露(注意图1中示出的钝化层50与n晶种层20之间的空隙)。作为非限制性示例,掺杂剂材料可以是任何合适的n型或p型材料,Al、Sb、III族或V族元素等。在激光转印工艺中,在包含或涂覆有包括捐赠者原子的掺杂剂材料的捐赠者衬底40上引入掺杂剂原子。掺杂剂材料可以是纯形式的掺杂剂,诸如III族或V族原子的涂层。可替代地,掺杂剂材料可以是包含掺杂剂的化合物,诸如氧化物、氮化物、或捐赠者的氧属化物。掺杂剂材料还可以由包含掺杂剂的主体材料组成,诸如重掺杂有掺杂剂的非晶硅。主体材料中的掺杂剂的浓度可以大于0.5%,优选地大于2%。可使得激光转印线触头IBC电池中的叉指型的间隔相对较小(例如,100微米至300微米),从而使得设备中的横向电阻(电阴影)较小。
[0033] 在一些实施例中,使用利用窄线形激光束或小直径高斯激光束的激光转印工艺在低温下以低制造成本制备叉指型背触(IBC)式硅太阳能电池。在一些实施例中,通过使用利用窄线形激光束的激光转印工艺通过电介质钝化对p+和n+指状图案晶种层两者进行激光转印、并且然后利用导电金属对晶种层进行电镀来形成用于经良好钝化的太阳能电池的叉指型背触头。在一些实施例中,在经良好钝化的太阳能衬底上使用激光转印工艺以便通过电介质钝化发射p+和n+点触头,并且然后另一激光转印工艺用于使用窄线形激光束在电介质钝化的顶部以及通过适当的点触头来沉积适当金属的叉指型图案。在一些实施例中,良好钝化的太阳能电池的后表面的大部分包含隧道氧化物发射极,所述隧道氧化物发射极与通过对隧道氧化物发射极进行激光烧蚀而形成的指状图案以及使用线形激光束对其进行激光转印的基极触头指状图案的欧姆基极触头的平行线穿插。在各实施例中,利用窄线形激光束或小高斯激光束(其中的任何一项可被时间整形)的激光转印系统可用于对掺杂剂、金属或其他材料进行烧蚀、转印、和/或对局部的p+或n+触头进行激光掺杂或激光发射。
[0034] 在一些实施例中,通过分别作为叉指型的p+和n+指状图案的钝化层30、50对Al和Sb线10、20进行激光转印。在一些实施例中,A12O3钝化层50包括反转层60,所述反转层与激光转印Al发射极线10电触头。在一些实施例中,在局部破坏A12O3层50的条件下沉积激光转印Sb n+线20以便防止分流。进一步地,激光烧蚀还可用于在对Sb线20进行激光转印之前局部移除钝化层50。在一些实施例中,然后可利用金属(诸如Ni、Ti等)对晶种层进行电镀。进一步地,这可以可选地跟随在利用更具导电性的金属(诸如Al、Ag、Cu等)进行电镀之后,以便形成高导电性叉指型图案。
[0035] 图2是利用晶种层(诸如图1中示出的晶种层)形成的叉指型图案210、220的说明性实施例。如示出的,指状图案提供间隔开小空隙的不同材料的交替的、近似平行的水平线,其中,相同材料的水平线的一端由匹配材料的竖直线连接。在一些实施例中,介电钝化层可包括后表面上的ALD Al2O3和PECVD SiOx:H。在激光转印工艺之后,可以适度温度(200℃-450℃)对太阳能电池进行退火以便通过促进硅化物构成并将来自PECVD SiOx:H的原子氢运动包括在Si中以对任何激光诱发缺陷进行钝化来提高触头的电特性。在此示例中,以低激光功率对Ti汇流条晶种层260进行激光转印,从而使得它们位于电介质钝化层的顶部。激光转印Al 210和Sb 220线、以及Ti汇流条260形成用于电镀导电金属(诸如,Ag、Al或Cu)的晶种层。
[0036] 在图3中示出的另一实施例中,在经钝化的太阳能衬底上使用激光转印工艺以便通过电介质钝化330发射n+和p+点触头310、320,并且然后另一激光转印工艺用于使用窄线形激光束在电介质钝化的顶部以及通过适当的点触头来沉积适当金属370的叉指型图案。图3是使用高斯激光束制作的以便通过钝化层330分别对n+和p+材料的小光点进行激光转印的n+和p+点触头310、320的说明性实施例。例如,在一些实施例中,高斯激光束可以是小直径光束,诸如<20μm或<10μm。如果使用小直径光束,则小光点的密度应当足够高以确保总触头电阻小于1Ω-cm。在一些实施例中,所有小光点的总面积应当大于等于太阳能衬底的后表面总面积的大约1%。同一标准也可以应用于线形激光束(即所有线形触头区域的总面积应当大于太阳能衬底的后表面总面积的大约1%。通过使用线形激光束来沉积晶种层以便在钝化上形成叉指型图案,所述晶种层可以电镀有高导电性的金属。图4是说明性实施例,示出了在钝化层的顶部以及在n+和p+点触头410、420的顶部对其进行激光转印的叉指型晶种层470(例如,Ni)。在另一实施例中,可以在n+和p+材料(例如,Al和Sb)位于电介质钝化层的顶部的条件下对其指状图案进行激光转印,并且然后通过电介质钝化层对p+和n+点触头
410、420进行激光发射。又另一实施例用于在对晶片进行钝化之前对n+和p+点触头410、420进行激光转印、然后在电介质钝化层的顶部对Ni IBC图案470进行激光转印、并且然后将Ni激光发射到点触头中。然而,这种方式需要准确的对准以便将Ni激光发射到点触头中。
[0037] 作为非限制示例,使用高斯激光束来制作n+和p+点触头以便通过钝化层分别对Sb和Al的小光点进行激光转印。通过使用线形激光束来沉积晶种层Ni以便在钝化上形成叉指型图案,然后利用Cu对所述晶种层Ni进行电镀。在此示例中,后表面钝化层是a-Si:H/PECVD SiOx,所述后表面钝化层最小化由于缺乏能带弯曲而造成的分流。在此示例中,在钝化层的顶部以及在n+和p+触头410、420的顶部对叉指型Ni晶种层进行激光转印。一种替代性方式是对Al的指状图案和Sb的叉指型图案进行激光转印,并且然后对点触头410、420进行激光发射。另一种方式是在对晶片进行钝化之前对n+和p+触头410、420进行激光转印、然后对Ni IBC图案进行激光转印、并且然后将Ni激光发射到点触头中。
[0038] 另一实施例是经钝化的太阳能电池,其中,后表面的大部分包含隧道氧化物发射极,所述隧道氧化物发射极与通过对隧道氧化物发射极进行激光烧蚀以及使用线形激光束对基极触头指状图案进行激光转印而形成的指状图案的欧姆基极触头的平行线穿插。虽然这种实施例讨论了隧道氧化物发射极,但是其他实施例可以提供是扩散发射极或非晶硅异质结发射极。图5是说明性实施例中,其中,首先通过原子层沉积将隧道氧化物层510沉积在后表面上,并且然后沉积一层薄的(多个)金属氧化物520(例如,MoOx和ZnO)。线形激光束用于对线区域进行烧蚀530,并且然后在中心区域(例如,Sb)中对线540进行激光转印和掺杂。在一些实施例中,可能的是,在局部破坏掺杂区域之外的隧道氧化物层的条件下对Sb进行激光转印,从而使得无需单独的激光烧蚀步骤,从而将以上指出的激光加工步骤组合成一个步骤。如图5所示,激光烧蚀530的区域大于线540的宽度,从而使得单独的激光烧蚀步骤对于提供线540与(多个)金属氧化物520之间的分隔是不必要的。在此情况下,隧道氧化物层和Sb基极触头两者均可以电镀有导电材料(例如,Ni/Cu)以便增加触头的导电性。
[0039] 例如,隧道氧化物层首先由ALD沉积在后表面上。线形激光束对线区域进行烧蚀,并且然后在中心区域中对Sb的线进行激光转印和掺杂。另一种可能性是在局部破坏隧道氧化物层的条件下对Sb进行激光转印。对所述结构进行退火&将Ni/Cu电镀到Sb和隧道氧化物层。
[0040] 在示出的示例中,隧道氧化物发射极被示出为薄(1.4nm)的涂覆有高工作函数MoOx层(10nm厚)且顶部具有导电ZnO层(约90nm厚)的SiO2层以便增强来自后续电镀的后金属触头的反射。将使用p型a-Si:H或另一高工作函数材料来代替MoOx层。针对p型晶片,将使用低工作函数层。隧道氧化物发射极将覆盖后表面的大部分(例如,95%),其中,n+基线触头覆盖约5%(包括任何被破坏或烧蚀的区域)。因此,n+线可以相对细(例如,8微米宽)以便最小化激光损害,并且间隔约200微米(被破坏的钝化区域可能使有效线宽增加至约10微米)。激光转印线触头IBC太阳能电池的前表面可以用高质量的Al2O3钝化层进行钝化以便诱发累积层(针对p型晶片)或反转层(针对n型晶片)。由于激光转印线触头IBC电池中的叉指的间隔相对较小(例如,100微米至300微米),因此设备中的横向电阻(电阴影)较小。
[0041] 图6是激光转印系统的示意图的说明性实施例,所述激光转印系统使用提供线形光束610的扫描激光器600。在又另一实施例中,提供了一种激光转印系统,其利用窄线形激光束或小高斯激光束(例如,<20μm或<10μm)的阵列,其中的任何一种可以被时间和/或空间整形以便对掺杂剂、材料或其他材料进行烧蚀、转印;或者对局部的p+或n+触头620进行激光掺杂或激光发射。这种系统使用经空间/时间整形的激光束610以便通过太阳能衬底640上的高质量电介质钝化层来转印和激光发射(或激光掺杂)待转印630的材料(例如,p+和n+掺杂剂两者),从而在低温下形成低成本、高性能、叉指型背触式太阳能电池,而无需任何真空加工设备。激光转印系统可以包括具有时间可调脉冲的激光束610,所述时间可调脉冲被优化以便生产高质量的局部发射极和基极触头620。例如,当系统扫描衬底640时,可当激光器在待图案化的面积之上时以期望次数激发激光器以便对材料进行烧蚀、激光转印、或者对感兴趣的区域中的衬底进行激光掺杂。透明转印衬底650(例如,薄玻璃板)被定位和/或固持在由间隔物660与Si晶片640(例如,5微米至50微米)间隔开的固定距离处。转印衬底650可以提供沉积有一层或多层各种材料630(例如,金属(例如,Sb、Al)、掺杂剂材料(例如,包含墨的旋涂磷或硼)、辅助烧蚀的材料等)的区域,从而使得激光可将这些材料转印至晶片640或者烧蚀Si晶片640上的电介质表面。在一些实施例中,转印衬底650可以不涂覆有任何材料或者其可以被移除,因此其对于涉及烧蚀的工艺可能不是必要的。通过设计具有可互换的光学器件的系统,可激光转印和掺杂p+和n+点触头620并且然后切换至低功率激光转印将位于介电钝化的顶部的叉指型图案。可以跨透明转印衬底650和硅晶片640来扫描激光束
610以便在晶片的表面上形成所期望的触头图案。
[0042] 除经时间整形的脉冲之外,激光转印系统还可利用多种脉冲。例如,第一脉冲可包括在10ns内的相对高的能量密度(例如,约1j/cm2)的第一分段、以及然后在500ns内的缓慢下降的分段(在所述分段中,能量密度从0.7J/cm2降至0.1J/cm2)。然后则可以在10μs之后施加到相同位置的第二脉冲(100kHz的重复速率),其中,能量密度在10μs内斜升到约0.3J/2 2
cm ,并且然后在500ns内缓慢降至0.05J/cm以便进一步对处理区域进行退火。针对大多数应用,激光束的波长可以在IR(例如,1064nm)中,但是在绿色(532nm)中操作的激光束也可被使用并且将更有效地仅加热曝光的Si表面的前几μm。IR光束将初始地加热Si晶片至几百μm的深度,但是随着激光快速地对Si进行局部加热,IR中的吸收系数快速地增加并且加热在靠近表面区域处变得局部化。
[0043] 在一些实施例中,激光转印系统的转印衬底650可取决于应用而涂覆有多个层。例如,激光转印衬底650可以首先涂覆有薄的易于蒸发的材料630(例如,a-Si:H)以便充当沉积在a-Si:H上的耐火材料(例如,Mo)或透明材料(例如,SiO2)的释放层。另一非限制性示例+涉及在一层Sb之后首先将一层Ni沉积在激光转印衬底上,从而使得激光将转印用于n掺杂的Sb以及用于低电阻硅化镍触头的Ni。
[0044] 例如,激光转印系统可以使用窄线形激光束和/或小高斯激光束以便通过高质量电介质钝化层来转印和激光发射(或激光掺杂)p+和n+掺杂剂从而在低温下形成低成本、高性能、叉指型背触式太阳能电池,而无需任何真空加工设备。激光转印系统包括具有时间可调脉冲的激光束。透明转印衬底(例如,薄玻璃板)固持在与Si晶片的固定距离处(例如,5微米至50微米)并且可在包含材料(诸如Sb、Al)或无涂层的区域之间被移动,从而使得激光可转印材料(例如,Sb或Al)或者烧蚀Si晶片上的电介质表面。通过设计具有可互换的光学器件的系统,可激光转印和掺杂p+和n+点触头并且然后切换至低功率激光转印将位于介电钝化的顶部的叉指型图案。可以跨透明转印衬底和硅晶片来扫描激光束以便在晶片的表面上形成所期望的触头图案。可通过利用导电金属(诸如Al、Ag或Cu)对晶种层进行电镀来增加转印的触头图案的导电性。激光转印衬底可以首先涂覆有薄的易于蒸发的材料(例如,a-Si:H)以便充当沉积在a-Si:H上的耐火材料(例如,Mo)或透明材料(例如,SiO2)的释放层。
[0045] 对激光转印加工具有若干种优点。首先,窄线形或非常小的直径的环形激光束产生比常规高斯激光束更少的激光诱发损害。进一步地,与以脉冲的或高斯激光束获得的加工产出相比,利用线形激光束的加工产出可增加至大约100X。可通过使用与大功率激光相结合以便控制线形激光束或高斯激光束的形状和/或创建多个并行的线形光束或多个小直径高斯光束的衍射光学器件或分束光学器件,可进一步增加加工产出。激光转印线触头可紧密地间隔开(例如,100微米至300微米)从而使得IBC太阳能电池中的横向电阻最小化。由于激光加工系统具有更小的工厂排放并且使用比常规扩散炉少得多的能量,因此可降低加工成本。可消除危险化学品,诸如POCl3和BBr3。由于激光转印工艺在最小晶片加工的室温下发生,因此加工产量将增加。激光技术的不间断发展应当继续增加激光加工系统的功率并且降低成本。
[0046] 在此描述的实施例被包括以便展示本公开的具体方面。本领域技术人员应认识到,在此描述的实施例仅表示本公开的示例性实施例。根据本公开,本领域技术人员应认识到,在所描述的具体实施例中可作出许多变化,并且在不脱离本公开的精神和范围的情况下仍然能得到一个相同或类似的效果。通过前文描述,本领域技术人员可容易地确定本公开的必要特征,并且在不脱离本公开的精神和范围的情况下可做出各种变化和修改以使本公开适应各种用途和条件。以上所描述的实施例仅旨在是说明性的并且不应当被视为限制本公开的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈