首页 / 专利库 / 分销网络和设备 / 相量测量单元 / 一种气体超声波流量计的防错波检测装置

一种气体声波流量计的防错波检测装置

阅读:451发布:2024-02-29

专利汇可以提供一种气体声波流量计的防错波检测装置专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种气体 超 声波 流量计的防错波检测装置,包括相互连接的接收换能器和可控增益放大 电路 ;第一 阈值 检测电路,与可控增益放大电路相连接;第二阈值检测电路,与可控增益放大电路相连接;第一计时电路,与第一阈值检测电路相连接;第二计时电路,与第二阈值检测电路相连接; 模数转换 电路,与可控增益放大电路相连接;检测运算单元,分别与第一计时电路、第二计时电路和模数转换电路相连接,用于根据预设的运算规则,最终获得 超声波 信号 的渡越时间值。本发明可以有效消除通过阈值检测法对超声波信号的渡越时间进行测量时存在的错波干扰,有效地提高了计算渡越时间的测量 精度 和 稳定性 ,进而提高了超声波流量计的测量精度和稳定性。,下面是一种气体声波流量计的防错波检测装置专利的具体信息内容。

1.一种气体声波流量计的防错波检测装置,其特征在于,包括接收换能器、可控增益放大电路、第一阈值检测电路、第一计时电路、第二阈值检测电路、第二计时电路、模数转换电路和检测运算单元,其中:
接收换能器,用于接收超声波信号,然后发送给可控增益放大电路;
可控增益放大电路,与接收换能器相连接,用于对所述接收换能器发来的超声波信号进行放大处理后,再同时分别发送给第一阈值检测电路、第二阈值检测电路和模数转换电路;
第一阈值检测电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为第一方波信号,然后再发送给第一计时电路;
第二阈值检测电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为第二方波信号,然后再发送给第二计时电路;
第二阈值检测电路的阈值电压比第一阈值检测电路的阈值电压,低预设电压值;
第一计时电路,与第一阈值检测电路相连接,用于将第一阈值检测电路发来的方波信号,转换为对应的第一时间值,然后发送给检测运算单元;
第二计时电路,与第二阈值检测电路相连接,用于将第二阈值检测电路发来的方波信号,转换为对应的第二时间值,然后发送给检测运算单元;
模数转换电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为对应的数字信号,然后发送给检测运算单元;
检测运算单元,分别与第一计时电路、第二计时电路和模数转换电路,用于接收第一计时电路发来的第一时间值和第二计时电路发来的第二时间值,以及接收模数转换电路发来的数字信号,然后根据预设的运算规则,最终获得超声波信号的渡越时间值。
2.如权利要求1所述的防错波检测装置,其特征在于,第二阈值检测电路的阈值电压比第一阈值检测电路的阈值电压低20mV。
3.如权利要求1所述的防错波检测装置,其特征在于,对于所述检测运算单元,所述预设的运算规则,具体包括:
首先,检测运算单元通过模数转换电路,读取超声波信号在全部周期波形内的每个峰值;
然后,计算超声波信号在全部周期波形内的每个错波的最大峰值,并将全部错波的最大峰值中的最大值,作为错波临界最大峰值,以及计算获取超声波信号在全部周期波形内、位于阈值电压检测范围内的正常波最大峰值;
接着,根据正常波最大峰值,计算获得错波补偿时间值;
最后,将错波补偿时间值和阈值检测时间进行求和,获得超声波信号的渡越时间值;
其中,当错波临界最大峰值与正常波最大峰值之间的差值,小于预设值时,将第二计时电路发来的第二时间值作为阈值检测时间;而当大于或者等于预设值时,将第一计时电路发来的第一时间值作为阈值检测时间。
4.如权利要求1至3中任一项所述的防错波检测装置,其特征在于,在检测运算单元通过模数转换电路读取超声波信号在全部周期波形内的每个峰值之前,执行静态调校操作,所述静态调校操作具体为:设置可控增益放大电路的增益值。
5.如权利要求1至4中任一项所述的防错波检测装置,其特征在于,所述检测运算单元为可编程控制器PLC、中央处理器CPU、数字信号处理器DSP或者单片机MCU。

说明书全文

一种气体声波流量计的防错波检测装置

技术领域

[0001] 本发明涉及流量检测技术领域,特别是涉及一种气体超声波流量计的防错波检测装置。

背景技术

[0002] 目前,气体超声波流量计具有量程比大、测量精度高、无压损等诸多优点,特别是在大口径天然气流量测量方面,具备独特的优势。气体超声波流量计的测量原理分为传播速度差法和多普勒法等。传播时间差法又可以分为时差法、相差法和频差法,其中,时差法效果好,在气体超声波流量计中应用最为广泛。基于时差法测量原理的气体超声波流量计在测量气体流量时,首先依据逆压电效应,激励一个超声波换能器发射超声波信号;另一个超声波换能器接收到超声波信号,依据压电效应,转换为回波电信号;根据回波信号中某个稳定的特征点(如波形信号某周期的过零点、峰值点或特定的某一相位点),确定超声波信号的顺流、逆流传播时间,进而计算气体流量。
[0003] 在超声波流量计进行流量测量过程中,影响测量精度的最主要因素是:超声波在管道中传播的顺流、逆流渡越时间的测量精度。目前,常用的渡越时间测量方法主要有两种:阈值检测法和互相关法。其中,互相关法运算数据量庞大,难以做到低功耗与实时性兼得,目前常用的方法仍是阈值检测法。
[0004] 阈值检测法的检测原理是由固定的阈值电压与接收信号相比较,将超声波接收信号转换为方波信号,从而通过对方波信号进行时间测量而得到超声波的渡越时间。但是,超声波信号在气体介质中传播能量衰减严重,回波信号存在幅值微弱、信噪比低和易受干扰等问题,随着流量增大,这些问题非常严重。当信号由于干扰造成信号衰减或增大时,很可能造成对应接收信号比较波形超出阈值电压的检测范围,即表现为错波现象,如图1所示。
[0005] 因此,目前迫切需要开发出一种技术,其可以有效消除通过阈值检测法对超声波信号的渡越时间进行测量时存在的错波干扰,有效地提高了计算渡越时间的测量精度和稳定性,进而提高了超声波流量计的测量精度和稳定性。

发明内容

[0006] 有鉴于此,本发明的目的是提供一种气体超声波流量计的防错波检测装置,其可以有效消除通过阈值检测法对超声波信号的渡越时间进行测量时存在的错波干扰,有效地提高了计算渡越时间的测量精度和稳定性,进而提高了超声波流量计的测量精度和稳定性,有利于广泛地推广应用,具有重大的生产实践意义。
[0007] 为此,本发明提供了一种气体超声波流量计的防错波检测装置,包括接收换能器、可控增益放大电路、第一阈值检测电路、第一计时电路、第二阈值检测电路、第二计时电路、模数转换电路和检测运算单元,其中:
[0008] 接收换能器,用于接收超声波信号,然后发送给可控增益放大电路;
[0009] 可控增益放大电路,与接收换能器相连接,用于对所述接收换能器发来的超声波信号进行放大处理后,再同时分别发送给第一阈值检测电路、第二阈值检测电路和模数转换电路;
[0010] 第一阈值检测电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为第一方波信号,然后再发送给第一计时电路;
[0011] 第二阈值检测电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为第二方波信号,然后再发送给第二计时电路;
[0012] 第二阈值检测电路的阈值电压比第一阈值检测电路的阈值电压,低预设电压值;
[0013] 第一计时电路,与第一阈值检测电路相连接,用于将第一阈值检测电路发来的方波信号,转换为对应的第一时间值,然后发送给检测运算单元;
[0014] 第二计时电路,与第二阈值检测电路相连接,用于将第二阈值检测电路发来的方波信号,转换为对应的第二时间值,然后发送给检测运算单元;
[0015] 模数转换电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为对应的数字信号,然后发送给检测运算单元;
[0016] 检测运算单元,分别与第一计时电路、第二计时电路和模数转换电路相连接,用于接收第一计时电路发来的第一时间值和第二计时电路发来的第二时间值,以及接收模数转换电路发来的数字信号,然后根据预设的运算规则,最终获得超声波信号的渡越时间值。
[0017] 其中,第二阈值检测电路的阈值电压比第一阈值检测电路的阈值电压低20mV。
[0018] 其中,对于所述检测运算单元,所述预设的运算规则,具体包括:
[0019] 首先,检测运算单元通过模数转换电路,读取超声波信号在全部周期波形内的每个峰值;
[0020] 然后,计算超声波信号在全部周期波形内的每个错波的最大峰值,并将全部错波的最大峰值中的最大值,作为错波临界最大峰值,以及计算获取超声波信号在全部周期波形内、位于阈值电压检测范围内的正常波最大峰值;
[0021] 接着,根据正常波最大峰值,计算获得错波补偿时间值;
[0022] 最后,将错波补偿时间值和阈值检测时间进行求和,获得超声波信号的渡越时间值;
[0023] 其中,当错波临界最大峰值与正常波最大峰值之间的差值,小于预设值时,将第二计时电路发来的第二时间值作为阈值检测时间;而当大于或者等于预设值时,将第一计时电路发来的第一时间值作为阈值检测时间。
[0024] 其中,在检测运算单元通过模数转换电路读取超声波信号在全部周期波形内的每个峰值之前,执行静态调校操作,所述静态调校操作具体为:设置可控增益放大电路的增益值。
[0025] 其中,所述检测运算单元为可编程控制器PLC、中央处理器CPU、数字信号处理器DSP或者单片机MCU。
[0026] 由以上本发明提供的技术方案可见,与现有技术相比较,本发明提供了一种气体超声波流量计的防错波检测装置,其可以有效消除通过阈值检测法对超声波信号的渡越时间进行测量时存在的错波干扰,有效地提高了计算渡越时间的测量精度和稳定性,进而提高了超声波流量计的测量精度和稳定性,有利于广泛地推广应用,具有重大的生产实践意义。附图说明
[0027] 图1为现有的超声波接收信号存在的阈值错波现象的示意图;
[0028] 图2为本发明提供的一种气体超声波流量计的防错波检测装置的硬件原理框图
[0029] 图3为本发明提供的一种气体超声波流量计的防错波检测装置进行静态调校的运行流程图
[0030] 图4为本发明提供的一种气体超声波流量计的防错波检测装置进行防错波计算的运行流程图。

具体实施方式

[0031] 为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。
[0032] 参见图2至图4,本发明提供了一种气体超声波流量计的防错波检测装置,包括:接收换能器、可控增益放大电路、第一阈值检测电路、第一计时电路、第二阈值检测电路、第二计时电路、模数(AD)转换电路和检测运算单元(如CPU),其中:
[0033] 接收换能器,用于接收超声波信号,然后发送给可控增益放大电路;
[0034] 可控增益放大电路,与接收换能器相连接,用于对所述接收换能器发来的超声波信号进行放大处理后,再同时分别发送给第一阈值检测电路、第二阈值检测电路和模数(AD)转换电路;
[0035] 第一阈值检测电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为第一方波信号,然后再发送给第一计时电路;
[0036] 第二阈值检测电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为第二方波信号,然后再发送给第二计时电路;
[0037] 第二阈值检测电路的阈值电压比第一阈值检测电路的阈值电压,低预设电压值(例如20mV);
[0038] 需要说明的是,对于本发明,预设电压值设置为20mV,是为了防止由于电气噪声或模数(AD)转换电路的精度导致误判。此电压值不能太高,不能超出此周期波形临界状态峰值与上一周期波形临界状态峰值的差值,常见的超声波信号波形的峰值差约为50~200mV左右,故采用20mV的电压值。
[0039] 第一计时电路,与第一阈值检测电路相连接,用于将第一阈值检测电路发来的方波信号,转换为对应的第一时间值,然后发送给检测运算单元;
[0040] 第二计时电路,与第二阈值检测电路相连接,用于将第二阈值检测电路发来的方波信号,转换为对应的第二时间值,然后发送给检测运算单元;
[0041] 模数(AD)转换电路,与可控增益放大电路相连接,用于将所述可控增益放大电路发来的经过放大处理的超声波信号,转换为对应的数字信号(即数字量信号),然后发送给检测运算单元;
[0042] 检测运算单元,分别与第一计时电路、第二计时电路和模数(AD)转换电路相连接,用于接收第一计时电路发来的第一时间值和第二计时电路发来的第二时间值,以及接收模数(AD)转换电路发来的数字信号,然后根据预设的运算规则,最终获得超声波信号的渡越时间值。
[0043] 在本发明中,具体实现上,检测运算单元可以为可编程控制器PLC、中央处理器CPU、数字信号处理器DSP或者单片机MCU。为仪器的低功耗设计考虑,例如,可以采用德州仪器TI公司生产的MSP430系列单片机。
[0044] 在本发明中,需要说明的是,具体实现上,所述接收换能器可以为气体介质超声波换能器,常见的型号包括美国AIRMAR公司生产的AT系列换能器,以及福州大禹公司生产的DYA系列超声波换能器等。
[0045] 具体实现上,可控增益放大电路是指可以由CPU控制放大增益的电路,通常由专用的程控放大器芯片或数字电位器与通用运算放大器芯片组成,其目的是通过CPU的控制,来实现信号幅值的智能调节,保证经过可控增益电路调节后的信号幅值在一定范围之内,常见的程控放大器芯片例如可以为:亚德诺半导体技术ADI公司生产的LTC6602、LTC6603等程控放大器芯片,常见的数字电位器例如可以为:亚德诺半导体技术ADI公司的AD5245、AD5121等型号的数字电位器。
[0046] 具体实现上,第一阈值检测电路和第二阈值检测电路均采用比较器芯片实现,采用一个固定的电压值与检测到的超声波信号进行比较,输出为方波脉冲信号,用于检测纺锤型超声波接收信号的到达时间。
[0047] 具体实现上,第一计时电路、第二计时电路分别对应第一阈值检测电路和第二阈值电路的波形进行计时,通常采用专用高精度的时间数字转换器芯片,常见芯片有德国acam公司生产的TDC_GP21、TDC_GP22等芯片。
[0048] 具体实现上,模数(AD)转换电路通常为:CPU内部的AD转换模或连接外部的AD转换芯片,如MSP430系列单片机MSP430F249的内部具有8路AD转换模块,对应芯片管脚P6.0~P6.7,此外,AD转换芯片常见有亚德诺半导体技术ADI公司生产的AD4006、AD4010等AD转换芯片。
[0049] 在本发明中,对于所述检测运算单元,所述预设的运算规则,具体包括:
[0050] 首先,检测运算单元通过模数(AD)转换电路,根据模数(AD)转换电路发来的数字信号,读取超声波信号在全部周期波形内的每个峰值;
[0051] 需要说明的是,超声波信号在全部周期波形内的每个峰值,指的是每个周期波形的最大幅值,通过检测每个周期的峰值,可以识别第一阈值检测电路和第二阈值检测电路输出的方波脉冲信号中第一个波形(即首波)对应的超声波接收信号的位置
[0052] 然后,计算超声波信号在全部周期波形内的每个错波(即出现错波现象的每个波形)的最大峰值,并将全部错波的最大峰值中的最大值,作为错波临界最大峰值,以及计算获取超声波信号在全部周期波形内、位于阈值电压检测范围内的正常波最大峰值(即后面提及的V);
[0053] 需要说明的是,对于检测运算单元,其是根据采集到的所有周期波形的峰值,通过按各周期峰值比例,来调节计算得到第一阈值检测电路和第二阈值检测电路所输出的各周期波形中,对应方波临界条件时的全波型最大峰值。即设定某一周期的峰值出现临界错波现象,设置该周期峰值为阈值比较电压值为第一阈值比较电压,然后按每周期峰值比例,来计算出现临界错波时的各周期峰值,并通过排序得到整个波形的正常波最大峰值(即后面提及的V)。通过计算得到所有周期出现错波临界时的波形最大峰值后,当真实检测信号的最大峰值(通过模数转换电路获得)高于某周期计算得到的最大峰值且低于下一周期的最大峰值时,即判断第一阈值检测电路和第二阈值检测电路的输出首波在下一周期,从而确定了第一阈值检测电路和第二阈值检测电路输出的首波与真实检测波形的相对位置关系。
[0054] 接着,根据正常波最大峰值,计算获得错波补偿时间值;
[0055] 最后,将错波补偿时间值和阈值检测时间进行求和,获得超声波信号的渡越时间值;
[0056] 需要说明的是,对于本发明,确定了第一阈值检测电路和第二阈值检测电路输出的首波(即方波脉冲信号中的第一个波形)与真实检测波形的相对位置关系,即得到输出波形与初始认定的不错波输出波形的相对位置关系,其差值为整周期的整数倍,通过相对位置关系与周期时间相乘,可获得错波补偿时间值,通过错波补偿时间值和阈值检测时间进行求和,从而获得超声波信号的渡越时间值。
[0057] 其中,当错波临界最大峰值与正常波最大峰值之间的差值,小于预设值(例如5mV)时,将第二计时电路发来的第二时间值作为阈值检测时间;而当大于或者等于预设值时,将第一计时电路发来的第一时间值作为阈值检测时间。
[0058] 对于本发明,需要说明的是,由阈值比较的原理可以得知,阈值比较电压值在错波时处于不同于不错波时的两信号峰值之间,错波现象即获得的阈值比较输出与不错波信号的阈值比较输出,将直接相差周期时间的整数倍,通过峰值计算,可以获得错波的阈值比较输出与不错波信号的阈值比较输出相差的周期个数,从而可计算得到错波补偿时间值,将错波补偿时间值和阈值检测时间进行求和,获得超声波信号的渡越时间值。
[0059] 如前面所述,第二阈值检测电路的阈值电压比第一阈值检测电路的阈值电压,低预设电压值(即20mV),同时考虑噪声及采集精度造成的误差,故将错波临界最大峰值与正常波最大峰值之间的差值的预设值设定为5mV,差值低于预设值则选用第二计时电路发来的第二时间值,否则选用第一计时电路发来的第一时间值,以保证不会在临界错波值时,不会由于噪声和采集精度影响造成误判。
[0060] 具体实现上,在检测运算单元通过模数(AD)转换电路读取超声波信号在全部周期波形内的每个峰值之前,优选为:执行静态调校操作,即设置可控增益放大电路的增益值。
[0061] 具体实现上,对于本发明,检测运算单元(CPU)通过AD转换电路读取接收到的超声波信号在全部周期波形内的各峰值,再计算全部周期波形内每个错波(即出现错波现象的波形)的最大峰值,并从小到大列为数组,将全部最大峰值中的最大值,作为错波临界最大峰值,各错波的最大峰值的具体计算公式为:
[0062] VM=V阈*VX/VN;
[0063] 在上述公式中,VN(N=1,2,3……X)为超声波信号中各周期波形的峰值,VM(M=1,2,3……X)为各错波(即出现错波现象的每个波形)的最大峰值,V阈为阈值电压值,X为超声波的周期数;
[0064] 其中,VX是第X周期波形的峰值;VN(N=1,2,3……X)为超声波信号中各周期波形的峰值,通过模数转换电路获得;V阈为第一阈值检测电路具有的第一阈值电压值。
[0065] 例如,接收到的超声波信号的上升段共X个周期,各周期峰值为VN(N=1,2,3……X),阈值电压为V阈,计算后得到的各错波的最大峰值为VM(M=1,2,3……X),则VM=V阈*VX/VN,最终得到X个数据的峰值数组VM[X],待计算渡越时间时使用。
[0066] 具体实现上,对于本发明,在流量计测量时,首先读取超声波信号AD转换值,根据最大峰值,来判断阈值检测到的波形位置,并计算错波补偿时间。计算最大峰值与临界峰值差值是否小于5mV,如果小于5mV则读取第二计时电路的时间值,并作为阈值检测时间,否则读取第一计时电路的时间值,并作为阈值检测时间。对于本发明,得到阈值检测时间,将阈值检测时间加上错波补偿时间,即得到渡越时间值。计算公式为:
[0067] T渡越=T检+T补=T检+T*(X/2-K);
[0068] 其中:T渡越为渡越时间值,T检为读取第一计时电路或第二计时电路的时间值,T为超声波的周期,X为超声波的周期数,K为正常波最大峰值V在错波临界最大峰值数值中的位置(VM[K]
[0069] 对于本发明,需要说明的是,正常波最大峰值为检测波形的最大峰值,错波临界最大峰值为前文通过比例计算的各周期错波临界情况下波形最大峰值。
[0070] 其中,正常波为实时检测的信号,错波临界最大峰值为在出厂之前通过模数转换电路采样并计算得到的各周期错波临界情况下波形最大峰值,并从小到大排列成的数组。
[0071] 对于本发明,阈值检测时间指的是通过第一阈值检测电路或第二阈值检测电路分别进入第一计时电路、第二计时电路所得到的时间,即没有经过错波补偿的时间。
[0072] 对于本发明,错波补偿时间指的是通过峰值的计算,得到阈值比较输出脉冲在波形中的相对位置,然后与周期时间相乘得到的时间,用来补偿阈值检测时间,从而得到渡越时间值。
[0073] 对于本发明,在实时检测的信号中,可以通过模数(AD)转换电路来测量得到正常波最大峰值V,通过判断与错波临界最大峰值数组成员的大小关系,哪一个符合VM[K]
[0074] 例如,检测获得的正常波的最大峰值为V,经过计算VM[K]
[0075] 因此,基于以上技术方案可知,本发明提供了一种气体超声波流量计的防错波检测装置,其可以有效消除通过阈值检测法对超声波信号的渡越时间进行测量时存在的错波干扰,有效地提高了计算渡越时间的测量精度和稳定性,进而提高了超声波流量计的测量精度和稳定性。本发明的技术方案,可以应用于液体或气体超声波流量计,尤其适用于气体流量测量。
[0076] 综上所述,与现有技术相比较,本发明提供的一种气体超声波流量计的防错波检测装置,其可以有效消除通过阈值检测法对超声波信号的渡越时间进行测量时存在的错波干扰,有效地提高了计算渡越时间的测量精度和稳定性,进而提高了超声波流量计的测量精度和稳定性,有利于广泛地推广应用,具有重大的生产实践意义。
[0077] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈