首页 / 专利库 / 电缆,导体和接线 / 利兹线 / Electric motor and generator component having a plurality of windings made from a plurality of individually conductive wires

Electric motor and generator component having a plurality of windings made from a plurality of individually conductive wires

阅读:437发布:2020-11-19

专利汇可以提供Electric motor and generator component having a plurality of windings made from a plurality of individually conductive wires专利检索,专利查询,专利分析的服务。并且An electric motor or generator assembly includes a component, such as a stator, having a plurality of windings. A wire set including a plurality of individually conductive wires twisted together is manipulated within a core to establish the desired number of windings having the desired cross sectional area. In one example, a plurality of such wire sets are manipulated simultaneously to establish the windings. Litz wire is one example type of wire set that is useful in an assembly designed according to this invention. There are more than 100 individual wires within each winding according to one example stator designed according to this invention.,下面是Electric motor and generator component having a plurality of windings made from a plurality of individually conductive wires专利的具体信息内容。

We claim:1. An electric motor or generator assembly, comprising: a first portion; a second portion that is supported for rotational movement relative to the first portion, the first or second portion having a plurality of windings comprising at least one wire set including a plurality of individual conductors twisted together. 2. The assembly of claim 1, wherein the wire set comprises a Litz wire. 3. The assembly of claim 1, wherein the windings comprise a plurality of the wire sets. 4. The assembly of claim 1, including at least ten individual conductors in the set. 5. The assembly of claim 1, including at least one hundred individual conductors in the windings. 6. The assembly of claim 1, wherein the second portion comprises a stator having a metal core with a plurality of longitudinal grooves that each support the individual conductors. 7. The assembly of claim 6, wherein a portion of the individual conductors extend outwardly from the core forming electrically conductive leads adapted to couple the windings to a source of power. 8. A stator for use in an electric motor or generator, comprising: a core having a plurality of longitudinally extending grooves; and at least one Litz wire extending through the grooves to establish a plurality of windings in the core. 9. The stator of claim 8, including a plurality of Litz wires in each groove each comprising a plurality of individual conductors. 10. The stator of claim 9, wherein there is at least one hundred individual conductors. 11. The stator of claim 8, wherein the Litz wire is continuous and a portion of the Litz wire extends out of the core and provides a lead for making an electrical connection between the windings and an external source of power. 12. A method of making a component for use in an electric motor or a generator, comprising the steps of: (A) providing a core having a plurality of longitudinally extending channels; (B) pulling at least one wire set having at least ten individual conductive wires twisted together through one of the channels; (C) manipulating the wire set outside of the first channel; (D) pulling the wire set through another one of the channels; and (E) performing steps (B) through (D) until all of the channels have the desired amount of wire extending through them to form windings in the core. 13. The method of claim 12, including performing steps (B) through (E) using a plurality of the wire sets. 14. The method of claim 13, including simultaneously performing steps (B) through (E) with the plurality of wire sets. 15. The method of claim 12, including using a Litz wire as the wire set.

说明书全文

BACKGROUND OF THE INVENTION

&null;0001&null; 1. Field of the Invention

&null;0002&null; This invention generally relates to electric motors and generators. More particularly, this invention relates to electric motor and generator components having electrically conductive windings with large cross sections.

&null;0003&null; 2. Description of the Prior Art

&null;0004&null; Electric motors and generators are well known and in widespread use. There are a variety of applications for electric motors and generators. Depending on the application, different motor and generator characteristics are required.

&null;0005&null; In conventional low speed electric motors and generators, stator windings are constructed by winding coils of conductors in parallel. For many applications one to three single strand conductors in parallel provide the desired characteristics. For high speed or low voltage applications, however, the electromagnetic design often requires a lower number of turns and a proportionally increased cross sectional area of each winding. The increased cross section is typically achieved by using larger cross section conductors or a plurality of large conductors in parallel.

&null;0006&null; For many applications, the cross sectional area of the winding required makes manufacturing difficult or impractical when using conventional approaches. Large cross-section conductors, for example, are difficult to manipulate and form. Additionally, stator core designs are typically well suited for a particular number of conductors in a given orientation. Another disadvantage of using a plurality of large conductors in parallel is that it can be difficult to maintain the several parallel conductors together during the manufacturing or winding process.

&null;0007&null; Additionally, whichever of the two conventional approaches is chosen, there is a requirement for making an electrical connection between the winding wires and an external power source. In conventional arrangements, a separate lead wire is connected to the stator winding to make such a connection. This introduces an additional manufacturing step and introduces the possibility for a less than perfect connection to be made.

&null;0008&null; This invention addresses the need for being able to easily manufacture and design an electric motor or generator component requiring windings with large cross sectional areas.

SUMMARY OF THE INVENTION

&null;0009&null; In general terms, this invention is an electric motor or generator assembly having a component with a plurality of windings that each comprise a relatively large number of individual conductors twisted together. The individual conductors provide a cross section as large as required but allows for easy handling and manipulation of the wire set, which makes the manufacturing process simpler and more economical.

&null;0010&null; An example assembly designed according to this invention includes a first portion and a second portion that is supported for a rotational movement relative to the first portion. The first portion or the second portion has the plurality of windings made up of at least one wire set that includes a plurality of individual conductors twisted together.

&null;0011&null; In one example, Litz wire is used as the wire set. The individual conductors are twisted together so that they stay together during the handling and manipulation of the wire while forming the windings. In one example, a plurality of such wire sets are used to achieve the desired cross section of the conductive windings.

&null;0012&null; A method of making an electric motor or generator component according to this invention includes several steps. First a core having a plurality of longitudinally extending channels is provided. At least one wire set that has at least ten individual conductive wires twisted together is pulled through one of the channels. The wire set is then manipulated outside the channel and pulled through another one of the channels. This process is repeated until all of the channels have the desired amount of wire within them to achieve the desired cross section of the windings.

&null;0013&null; The inventive arrangement and approach provides an improved motor or generator assembly and increased manufacturing economies because the ability to handle the wires required to make the windings of desired cross section is simplified compared to prior attempts. This winding configuration can be either hand or machine wound due to the reduced number of wire sets. In one example, an in-slot winding technique is used, although other winding techniques may also be used.

&null;0014&null; The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.

BRIEF DESCRIPTION OF THE DRAWINGS

&null;0015&null; FIG. 1 schematically illustrates an electric motor or generator assembly designed according to this invention.

&null;0016&null; FIG. 2 schematically illustrates an example electric motor or generator component designed according to this invention.

&null;0017&null; FIG. 3 is a cross-sectional view taken along the lines 3-3 in FIG. 2.

&null;0018&null; FIG. 4 schematically illustrates an example wire set used to form windings in an example component designed according to this invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

&null;0019&null; FIG. 1 schematically illustrates an assembly 20 that may be an electric motor, generator or both. The assembly 20 includes a first portion 22 and a second portion 24. One of the portions 22 or 24 is supported to be rotational relative to the other about an axis 26 of the motor assembly. The manner of powering an electric motor or obtaining power from a generator is known.

&null;0020&null; FIG. 2 schematically illustrates a stator motor and generator component 30 designed according to this invention. The illustrated stator 30 includes an exterior coating 32 of an epoxy material, which can be selected from among known materials for coating a stator portion of the type schematically illustrated in FIG. 2. Other examples do not include such a coating. A stator core 34 includes a plurality of longitudinally extending slots 35 (best seen in FIG. 3). The stator core 34 can be formed in a conventionally known manner using a plurality of sheets or laminations of metal material. The channels or grooves 35 support a plurality of electrically conductive windings 36 that have a plurality of individual conductors that collectively establish a cross sectional dimension sufficient to meet the needs of a particular situation. The windings 36 extend through the channels 35 and loop around ends of the core 34 as shown at 38. The slots 35 may be the open (as shown in FIG. 3) or closed type.

&null;0021&null; The inventive arrangement includes a wire set having a plurality of individually conductive wires twisted or braided together so that the overall cross section of the wire set is consistent with a heavy gauge wire but the flexibility of the wire set is consistent with a lighter gauge wire so that manipulating and twisting the wire set while forming the windings 36 can be readily accomplished. In one example, each winding includes more than one hundred individual wires.

&null;0022&null; According to one example method of making a motor and generator component designed according to this invention, a wire set 40 having a plurality of individual conductors twisted together is pulled through the channels 35 in a selected order from one end of the core 34 to the other and then fed back through another channel in an opposite direction until all of the channels are sufficiently filled to establish the desired winding configuration. The portions of the wire set 40 at the opposite ends of the core 34 are bundled together at 38 and then impregnated with the epoxy coating 32 in a known manner. The windings may be established manually or using automated machinery.

&null;0023&null; In one example, a plurality of wire sets 40 are used for each winding 36. The plurality of wire sets may be simultaneously manipulated and set within the core 34 to establish the windings 36. The number of such sets and the content of each set can be customized depending on the needs of a particular situation.

&null;0024&null; FIG. 4 schematically illustrates a wire set 40 having a plurality of subsets 42 of individual conductors 44 twisted together. Having the conductors 44 pretwisted together makes assembling the windings 36 easier compared to conventional approaches. In this particular example, there are five subsets 42 of seven individually conductive wires 44 all twisted together into a single wire set 40 of thirty-five conductors 44. The number of wires chosen within a wire set and their dimensions depends upon the availability of such wires and the needs of a particular situation. By appropriately selecting the wire numbers and dimensions as a function of the stator dimensions (for example stator bore), the slot fill can be maximized while maintaining winding flexibility and simplifying the terminations.

&null;0025&null; Litz wires are particularly useful wire sets in a motor and generator component designed according to this invention. Round or rectangular wire set configurations may be used. Litz wires are commercially available and preferably are of the type having magnet wire without an external insulating coating around the entire wire set.

&null;0026&null; Those skilled in the art who have the benefit of this description will realize that according to this invention it is possible to select conductive wire sets, such as Litz wire, having outside dimensions, a number of individual wires and a number of turns to obtain the desired fill factor within the slots 35 while using the same type of wire set. This is yet another advantage of this invention. For example, for motor and generator components requiring windings having a cross section that corresponds to thirty-six wires of a given dimension, could include eighteen turns of two such wire sets, six turns of six such wire sets or two turns of eighteen such wire sets.

&null;0027&null; The inventive approach to designing a high speed motor and generator permits selecting the number of turns to optimize both power factor and efficiency, which typically cannot both be maximized at the same time. Using the inventive arrangement and selecting the number of turns according to the requirements of a given situation optimizes performance over a wide range of power and speed.

&null;0028&null; A further requirement for high speed motors is to minimize the bearing span to maximize rotordynamic stability. The inventive arrangement results in the wires lying closely together where they wrap around the end of the core 38 (i.e., at the end winding). This increases compactness and reduces the overall length. The inventive arrangement, therefore, minimizes the bearing span of the motor.

&null;0029&null; The compactness of the end winding 38 is also influenced by the method in which the leadwires are connected to the winding. Typically the leadwire is a separate component which is connected to the winding with a connection occurring in the end winding, which increases the bulk of the end winding. In the illustrated example, a portion of the wire set 40 that forms the windings 36 extends out of the stator assembly 30 to provide a lead for making the electrical connection without requiring a separate leadwire. The wires used as the lead preferably are drawn from different locations within the end winding to further prevent any localized &null;bulking&null; of the end winding.

&null;0030&null; In one example the wires that extend out of the winding to form the leadwire preferably are sleeved using a sleeve which may be Teflon. The end of the sleeve closest to the winding is imbedded within the end winding to create a good seal to prevent any liquids such as oil in oil cooled motors and generators from penetrating inside the sleeve.

&null;0031&null; Litz wires and other wire sets having a plurality of individually conductive wires conventionally have only been used for high frequency applications and have not previously been used for electric motor or generator components like those provided by this invention.

&null;0032&null; The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈