首页 / 专利库 / 软件 / 软件包 / 软件组件 / 微件 / 用于光敏聚酰亚胺的微波处理的方法

用于光敏聚酰亚胺的微波处理的方法

阅读:1024发布:2020-07-06

专利汇可以提供用于光敏聚酰亚胺的微波处理的方法专利检索,专利查询,专利分析的服务。并且在本文中提供用于处理例如 电子 器件中使用的光敏聚酰亚胺(PSPI)膜的方法和装置。在一些实施方式中,一种用于 固化 光敏聚酰亚胺(PSPI)膜的方法包括:在所选 基板 上沉积PSPI膜;以及在包含从约20ppm至200,000ppm的 氧 浓度的所选气氛中、在从约200℃至340℃的所选 温度 下通过 微波 加热来固化所述膜。所述工艺气氛可为静止或流动的。氧的添加改进对 丙烯酸 酯残余物的去除并且改进固化的膜的Tg,而微波工艺的低处理温度特性防止氧损伤聚酰亚胺主干。所述方法可进一步包括以下步骤:在固化前,光 图案化 所述PSPI膜并且使所述PSPI膜显影。所述工艺尤其适于用于电子应用的 硅 上的介电膜。,下面是用于光敏聚酰亚胺的微波处理的方法专利的具体信息内容。

1.一种用于固化光敏聚合物膜的方法,所述方法包括:
基板上沉积光敏聚合物膜;
提供已知量的气(O2)或调节压以提供包含从约20ppm至200,000ppm范围的氧浓度的所选气氛;以及
在所述所选气氛中通过微波加热达所选时间来固化所述光敏聚合物膜。
2.根据权利要求1所述的方法,其中所述光敏聚合物是光敏聚酰亚胺(PSPI)。
3.根据权利要求2所述的方法,其中所述光敏聚酰亚胺(PSPI)包含聚酰胺酸(PAA)前驱物树脂,所述聚酰胺酸前驱物树脂用光敏甲基丙烯酸醇酯改性以形成光敏聚酰胺酯(PAE)。
4.根据权利要求3所述的方法,其中所述光敏甲基丙烯酸醇酯包含甲基丙烯酸酯族类(R-CH2CH2OC(O)CH=C(CH3)2)的单体和寡聚物中的一或多种组合物,其中R表示附在所指示的位置处的任何所选有机部分。
5.根据权利要求1所述的方法,其中所述所选时间从约60分钟至约180分钟。
6.根据权利要求1所述的方法,其中所述所选气氛包含从约200ppm至200,000ppm范围的氧浓度。
7.根据权利要求1所述的方法,其中所述光敏聚合物是聚苯并恶唑(PBO)。
8.一种用于固化光敏聚合物膜的方法,所述方法包括:
在基板上沉积光敏聚合物膜;
图案化所述光敏聚合物膜;
使所光图案化的光敏聚合物膜显影;以及
在包含从约20ppm至200,000ppm的氧浓度的所选气氛中通过微波加热达所选时间来固化所显影的光敏聚合物膜,其中通过以下至少之一维持所述氧浓度:提供已知量的氧气至所述气氛或调节所述气氛的压力。
9.根据权利要求8所述的方法,其中所述光敏聚合物是光敏聚酰亚胺(PSPI)。
10.根据权利要求9所述的方法,其中所述光敏聚酰亚胺(PSPI)包含聚酰胺酸(PAA)前驱物树脂,所述聚酰胺酸前驱物树脂用光敏甲基丙烯酸醇酯改性以形成光敏聚酰胺酯(PAE)。
11.根据权利要求10所述的方法,其中所述甲基丙烯酸醇酯包含甲基丙烯酸酯族类(R-CH2CH2OC(O)CH=C(CH3)2)的单体或寡聚物中的一或多种组合物,其中R表示附在所指示的位置处的任何所选有机部分。
12.根据权利要求8所述的方法,其中所述所选时间从约60分钟至约180分钟。
13.根据权利要求8所述的方法,其中所述所选气氛包含从约200ppm至200,000ppm范围的氧浓度。
14.根据权利要求8所述的方法,其中所述光敏聚合物是聚苯并恶唑(PBO)。

说明书全文

用于光敏聚酰亚胺的微波处理的方法

[0001] 本申请是申请日为2015年1月13日、申请号为201580004321.1、发明名称为“用于光敏聚酰亚胺的微波处理的方法”的发明专利申请的分案申请。

技术领域

[0002] 本公开案的实施方式涉及用于使用微波能量进行材料处理的装置和方法,并且尤其涉及用于处理用于电子器件的光敏聚酰亚胺(PSPI)膜的方法。

背景技术

[0003] 众所周知并已证实微波(MW)能量用于增强化学反应速度的用途。这种产生热量的独特方法可以致使活化能(Ea)减小或反应物的组合的动能(等式1中的f和p)增大[参见D.A.Lewis,J.D.Summers,T.C.Ward,和J.E.McGrath,"Accelerated Imidization Reactions using Microwave Radiation(使用微波辐射加速的亚胺化反应)",Journal of Polymer Science:Part A(高分子科学期刊:A版);Polymer Chemistry(高分子化学),第30期,1647-53(1992)]。化学文献还表明了[参见J.Mijovic和J.Wijaya,"Comparative Calorimetric Study of Epoxy Cure by Microwave vs.Thermal Cure(通过微波进行的环树脂固化与热固化的比较量热研究)",Macromolecules(大分子)23:3671(1990),以及J.Mijovic,A.Fishbain,和J.Wijaya,"Mechanistic Modeling of Epoxy-Amine Kinetics:2-Comparison of Kinetics in Thermal and Microwave Fields(环氧树脂-胺动能机械建模:2-热和微波场中的动能比较)",Macromolecules(大分子)25:986(1992)]微波能量不是实践中和商业上可行的。然而,最近二十年来,在广泛应用中,已采用了微波能量来对许多重要树脂进行固化。这种矛盾中的一些在于微波加热的机制的反直观性。另外,即使彻底理解这种机制也不预期微波能量提供一些出人意料且幸运的机会。
[0004] k=fpexp[Ea/RT]   等式1
[0005] 传导、感应和对流基础加热方法涉及热量在一组更高能的分子与另一组较少能量的分子之间通过随机碰撞进行传递。这些碰撞是物理顺序的,并独立于分子结构(除了分子的体加热(ΔH))之外)。相比之下,MW辐照在许多相关材料(包括聚合物)中具有高渗透深度,这消除了标准热传递方法中相邻分子顺序相互作用的需要。MW加热仅取决于可极化键中的介电松弛,介电松弛导致化学官能团的双极旋转。这些旋转(在所有可极化键处,无论它们是否处于潜在反应位点)形成高度有效且高产的运动以及在辐照路径中的所有分子之间的碰撞。
[0006] 对于一些商业用途而言,微波加热会通常因在任何电磁场(包括微波)中的高能量分布节点和低能量分布节点而一般不可行。可商购的定频、多模式微波加热系统众所周知在大空腔中产生空间不均匀性,并且易于在处理金属材料时引发电弧以及其他不利影响。然而,这些影响在必要时可通过使用特别是如1998年4月14日颁发给Fathi等人的美国专利
5,738,915和1999年3月9日颁发给Fathi等人的美国专利5,879,756教示的可变频率微波(VFM)来缓解,上述专利名称均为“Curing polymer layers on semiconductor substrates using variable frequency microwave energy(使用可变频率微波能量在半导体基板上固化聚合物层)”。通过在无金属电弧险的情况下形成高度均匀的场,VFM已允许MW固化在更多工业应用中变为商业有用的。
[0007] 使用微波操纵反应温度已被发现在降低体材料中测量到的反应(或“固化”)温度而无特殊化学改性的方面是一直有用的。在375℃以上的常规烘炉中完全地亚胺化的未改性的聚酰胺酸树脂能够在低至200℃的温度下利用MV来完全地亚胺化[参见R.Hubbard,Z.Fathi,I.Ahmad,H.Matsutani,T.Hattori,M.Ohe,T.Ueno,C.Schuckert,"Low Temperature Curing of Polyimide Wafer Coatings(聚酰亚胺晶片涂层的低温固化)",Proceedings of the International Electronics and Manufacturing Technologies(国际电子学和制造技术学报),(2004),以及,R.Hubbard,"Reduced Stress and Improved 2.5D and 3DIC Process Compatibility With Stable Polyimide Dielectrics(减小的应以及与稳定的聚酰亚胺电介质的改进的2.5D和3DIC工艺兼容性)",Proceedings of the International Wafer Level Packaging Conference(国际晶片级封装会议学报),
2013年11月4-7日,San Jose,CA(加利福尼亚州圣何塞市),以便了解更多背景信息]。
[0008] 在微电子行业中用作晶片上的介电涂层的大部分的聚酰亚胺具有光敏特性,这允许它们被直接地图案化,而不需要另外的光刻胶涂布、掩模曝光、显影和去除步骤[参见K.Horie和T.Yamashita,"Photosensitive Polyimides-Fundamentals and Applications(光敏聚酰亚胺-基础和应用)",Lancaster,Pennsylvania,Technomic Publishing Co.,Inc.(宾夕法尼亚州兰开斯特技术出版有限公司),第15-88页(1995)]。有用的光敏特性通过用光敏甲基丙烯酸醇酯(methacrylate alcohol)使聚酰胺酸(PAA)前驱物树脂的一些位点改性实现,以便形成如图1所示的光敏聚酰胺酯(PAE)。所描绘的醇是甲基丙烯酸酯族类(R-CH2CH2OC(O)CH=C(CH3)2)单体和寡聚物中的一或多种,已知所述醇通过UV光曝光而交联并形成许多光刻胶材料族类的基础。
[0009] 目前,PAA/PAE共聚物能像常规的光刻胶那样直接光图案化。如图1示意性地示出,通过掩模开口暴露于光的区域在感光基团“R”处交联,从而形成不太溶解于显影溶液的区域。更易溶解区域被显影剂去除,从而留下高分辨率图案。光敏聚酰亚胺膜的“固化”现在涉及(1)亚胺化(或闭环(ring closure))反应步骤以及(2)所述亚胺化的丙烯酸酯残余物副产物的释放,如图2示意性地示出。随后在相同375℃浸渍温度下实现丙烯酸酯残余物的去除。
[0010] 丙烯酸酯残余物的化学反应涉及通常达至少1小时的延长时间(所述时间取决于残余物去除的所需程度)的在超过350℃的温度下的分解反应[参见M.Zussman和R.Hubbard,"Rapid Cure of Polyimide Coatings for Packaging Applications(用于封th装应用的聚酰亚胺涂层的快速固化)",Proceedings of The 13  Symposium on Polymers for Microelectronics,Wilmington,DE,(特拉华州威尔明顿第13届微电子学高分子学术会学报)(2008)]。在350℃的较低固化温度下达1小时,如所预料到的,对流工艺并未去除大量的丙烯酸酯残余物,而VFM工艺看来去除几乎所有的残余物。在图3中,剩余的丙烯酸酯残余物峰在对流固化样本的动态机械分析(DMA)中显现,而未在VFM固化样本中显现。图4中的热重分析(TGA)显示VFM(487℃,上方曲线)在比对流固化(376℃,下方曲线)高得多的温度下存在1%的重量损失,这证实了DMA结论[M.Zussman和R.Hubbard,"Rapid Cure of Polyimide Coatings for Packaging Applications(用于封装应用的聚酰亚胺涂层的快速固化)",Proceedings of The 13th Symposium on Polymers for Microelectronics,Wilmington,DE(特拉华州威尔明顿第13届微电子学高分子学术会学报)(2008)]。
[0011] 非常重要的是,以低氧平(<100ppm)来进行常规高温分解反应,以避免聚酰亚胺介电膜表面发生氧化降解。聚酰亚胺主干(backbone)的分解使介电膜的电学特性劣化,并且产生易碎暗膜。
[0012] 可由本公开案的至少一些实施方式提供的一或多个优点的非限制性实例包括以下内容:提供一种用于固化光敏聚合物的方法;提供一种允许较低热预算以在制造中节能的工艺;提供一种允许在较低温度下完成先前或后续处理步骤的工艺;提供一种用于固化聚合物同时保护任何温敏部件或材料的方法;以及提供一种减小在应力与温度之间具有直接比例关系的材料中的应力的用于聚合物膜的处理方法。本公开案的这些以及其他优点将结合附图从对以下说明的考虑显而易见。

发明内容

[0013] 在本文中提供用于处理例如电子器件中使用的光敏聚酰亚胺(PSPI)膜的方法和装置。在本公开案的一些实施方式中,一种用于固化光敏聚酰亚胺(PSPI)膜的方法包括:在所选基板上沉积PSPI膜;以及在包含从约20ppm至200,000ppm的氧浓度的所选气氛中、在从约200℃至275℃的所选温度下通过微波加热来固化所述膜。
[0014] 在一些实施方式中,一种用于固化光敏聚酰亚胺(PSPI)膜的方法包括:在所选基板上沉积PSPI膜;光图案化所述PSPI膜;使所光图案化的PSPI膜显影;以及在包含从约20ppm至200,000ppm的氧浓度的所选气氛中、在从约200℃至275℃的所选温度下通过微波加热来固化所显影的膜。
[0015] 以下描述本公开案的其他和进一步的实施方式。

附图说明

[0016] 随附本说明书并形成本说明书的一部分的附图被包括在内以描绘本公开案的某些方面。通过参考附图中的示例性的、并因此非限制性的实施方式,将会更容易地清楚本公开案的更透彻的构思以及随本公开案一起提供的系统的部件和操作的更透彻的构思,其中相似数字(如果它们出现在多于一个视图中)指示相同元件。附图中的特征不一定按比例绘制。
[0017] 图1是通过添加甲基丙烯酸酯基团而使聚酰胺酸改性以形成光敏聚酰胺酯的示意图。
[0018] 图2是聚酰胺酯亚胺化和丙烯酸酯去除的处理步骤的示意图。
[0019] 图3是烘炉固化膜和微波固化膜的DMA数据的比较,示出MW固化有效消除残余的聚丙烯酸酯。
[0020] 图4是固化的光敏聚酰亚胺膜的TGA数据的比较,示出MW固化膜在比对流固化样本情况高得多的温度下具有1%的重量损失。
[0021] 图5将晶片上PSPI膜的通过对流固化与通过MW固化的亚胺化结果做出比较。
[0022] 图6将TMA的结果做出比较,示出MW固化比对流固化给出更高Tg。
[0023] 图7示出氧分压对PSPI膜的MW固化的影响。
[0024] 图8示出氧分压对使用批量晶片VFM工艺的PSPI膜的MW固化的影响。

具体实施方式

[0025] 为了更好地理解和控制对硅晶片上PSPI膜的处理,申请人进行了一系列的实验。
[0026] 在标准对流烘炉固化与微波(VFM)固化的比较中,商购的光敏聚酰亚胺(PSPI)膜[HD4100,HD MicroSystems,Wilmington,DE(特拉华州威尔明顿HD微系统公司HD4100)]在标准的硅晶片上被沉积为5μm厚膜。对于示例的厚度(5μm),以4000rpm来旋涂涂层30秒,并且在90℃下软烘100秒外加在100℃下软烘100秒。随后,在不同温度下通过VFM或对流加热来处理膜达不同时间。如图5所示,与在375℃下的标准对流工艺相比,利用VFM的亚胺化反应的程度在低至200℃的温度下变得完全。由于聚酰亚胺链的氧化已知基本仅在高于约300℃的温度下发生,因此低氧环境在这些较低温度固化条件下并不必要。
[0027] 当在空气环境中、在这些极低固化温度下评估丙烯酸酯残余物去除情况时,获得了令人惊讶的结果。去除大部分的丙烯酸酯残余物产生315℃-325℃的玻璃转变温度(Tg),所述玻璃转变温度(Tg)由针对相同PSPI的渗透模式热机分析(p-TMA)确定。如图6所示,250℃对流固化样本的Tg即使在六个小时后也似乎限于250℃左右,这表明了低水平的丙烯酸酯去除。相比之下,250℃VFM固化样本的Tg表明在很实用的时间内基本完成对丙烯酸酯残余物的去除。
[0028] 然而,当尝试在极低氧的环境下进行工艺(这对标准半导体处理而言更为典型)时,该结果并未得到复制;具体地说,在低固化温度下极佳去除丙烯酸酯残余物没有确实地发生。因此,申请人推测,受控制量的氧可能有用地促进丙烯酸酯去除,并且因此向工艺中添加受控制量的氧。
[0029] 重要的是注意到,氧的添加在常规(对流加热)工艺中将会通常是非常有害的,因为在常规处理温度(~375℃)下,聚酰亚胺主干将会氧化分解,这会使膜性质劣化。相比之下,本发明使用氧化来帮助丙烯酸酯树脂在VFM工艺的较低固化温度特性(~250℃)下分解非常不太可能引起聚酰亚胺主干的氧化分解,并且实际上,图6中的VFM固化样本均未显示膜的特征性暗化,所述暗化将会是聚酰亚胺分解的症状。另外,申请人尚未发现任何证据表明在低于300℃的温度下的微波能量致使这些热塑性材料的任何一者的分解。
[0030] 氧在丙烯酸酯残余物的分解中的作用还由在图7和图8中所示的在高温(340℃)VFM固化评估期间收集的数据证实。很明显,在VFM固化期间使少量的氧存在或通过添加额外的氧流,由于丙烯酸酯去除而使膜的Tg实质上增大。由于尚未发现证据表明在这些VFM固化温度下聚酰亚胺主干氧化,因此最可能地,氧化优先在脂肪族丙烯酸酯残余物处发生而非在主要芳香族聚酰亚胺主干结构处发生,由此有利地保留了固化的聚酰亚胺膜的电学和机械特性。
[0031] 由于尚未发现微波所引起的化学反应中出现的低活化能会致使热分解,因此当氧在VFM固化期间用于敏感的、生成自由基的丙烯酸酯残余物时,可能出现自动氧化效应,这种自动氧化效应渐渐导致丙烯酸酯的烷基部分的氧化,并且随后释放二氧化以及其他气体,从而在此种出人意料低的温度下完成这些残余物从PSPI膜的去除。
[0032] 低温VFM固化与氧助剂的出人意料的组合首次使在极低温度下完全固化(包括丙烯酸酯去除)作为当前在微电子行业中最常用的聚合物介电材料的光敏聚酰亚胺膜的实践方式可行。氧的添加(在空气中或利用流)在这些温度下似乎对膜没有负面影响。低温固化使得以上所列优点(包括对温度敏感材料的保护)以及处理步骤和较低应力的膜能够实现。
[0033] 实例
[0034] 如图5中所示的特定实例,在从约230℃至270℃的固化温度以及从约60分钟至180分钟的时间下,硅晶片上PSPI膜的VFM处理实现基本相同的膜特性。在这些条件下,可安全地引入氧,而不损伤聚酰亚胺。
[0035] 相比之下,相同水平的亚胺化需要对流加热至375℃达300分钟。在这些条件下存在氧,将会不期望地发生对聚酰亚胺的氧化损伤。
[0036] 实例
[0037] 如图6所示,在从约50分钟至350分钟的整个范围内、在类似温度(250℃)下进行处理后,VFM固化的PSPI膜具有显著高于对流固化的膜的Tg。
[0038] 实例
[0039] 如图7所示,在从约20ppm至200,000ppm的氧分压下、在340℃下进行的VFM固化产生从约240℃至280℃的Tg值,Tg值由DMA测量。
[0040] 如图8所示,在包含从约200ppm至200,000ppm浓度的氧的静止(右侧曲线)或流动(左侧曲线)气氛下,在340℃下使用批量晶片VFM固化产生具有从约250℃至320℃范围的Tg值的膜。在此,氧值表示在标称一个大气压力下、在载气(通常是氮气)中的氧浓度,并且最高的值基本表示空气。一般来说,申请人优选使用稀释在载气中的氧,而非等效使用在减小压力下的纯氧,以实现相同有效的氧活动,这仅因为在环境压力下操作更为简单并且所需维护工作更少。然而,在一些情况下,可能期望非环境压力的压力下的操作,并且可独立或一起调节腔室压力和氧浓度,以便维持期望的氧活动水平,这种氧活动水平等效于在环境压力下20ppm至200,000ppm混合物的氧活动水平。实现前述范围内的氧活动的任何手段被视为落在本公开案的范围内。例如,200,000ppm的有效氧浓度可以在1大气压力下使用空气维持,或者在0.2大气压力下使用纯氧维持,或使用一些其他组合来维持。
[0041] 虽然使用VFM处理因容易在整个大处理容积中形成高度均匀的功率密度而是有利的,但是在一些情况下,可使用定频MW固化,例如,如果要处理的部件较小和/或单模空腔被用来在所选工作容积上形成均匀能量密度的话。此外,申请人不意图将它们本身限于任何特定类型的微波系统或微波发生器。
[0042] 本文对沉积在硅晶片上的具体商购的成膜材料的论述仅是示例性的,而不意图将本公开案限于使用硅来作为基板,也不将本公开案限于任何具体制造商的PSPI材料或任何具体制造商的光敏聚合物。
[0043] 本公开案的实施方式可适用于与本文所述特定示例性组合物类似的许多化学体系。具体地说,如所指出,组合物可涉及利用光敏甲基丙烯酸醇酯对聚酰胺酸(PAA)前驱物树脂的一些位点的改性,以形成如图1所示的光敏聚酰胺酯(PAE)。所描绘的醇是甲基丙烯酸酯族类(R-CH2CH2OC(O)CH=C(CH3)2)单体和寡聚物中的一或多种,所述醇已知通过UV光曝光而交联并形成许多光刻胶材料族类的基础。本文所使用的R表示附在所指示的位置处的任何所选有机部分。
[0044] 将进一步了解,本公开案的实施方式可以更普遍应用于其他光敏化学物质,例如,聚苯并恶唑(polybenzoxazole;PBO),只要光敏部分可在后续处理期间至少部分去除并且不会形成聚合物主干的永久部分即可。
[0045] 尽管上述内容针对本公开案的实施方式,但可在不脱离本公开案的基本范围的情况下设计出本公开案的其他和进一步的实施方式。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈