各向异性导电膜

阅读:526发布:2024-01-31

专利汇可以提供各向异性导电膜专利检索,专利查询,专利分析的服务。并且能够在将窄间距化后的电部件彼此 各向异性 导电连接时抑制 短路 的发生并且抑制导通可靠性由于在高温高湿环境下的保管而降低的各向异性导电膜具有至少在第一绝缘性 树脂 组成物层上层叠有将导电粒子 单层 排列于层状的 粘合剂 树脂组成物而成的导电粒子含有层的构造。在此, 粘合剂树脂 组成物的最低熔体 粘度 为第一绝缘性树脂组成物的最低熔体粘度以上。此外,也可以在导电粒子含有层的与第一绝缘性树脂组成物层相 反面 还层叠有第二绝缘性树脂组成物层。在该情况下,粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高。,下面是各向异性导电膜专利的具体信息内容。

1.一种各向异性导电膜,至少在第一绝缘性树脂组成物层上层叠有将导电粒子单层排列于层状的粘合剂树脂组成物而成的导电粒子含有层,其中,
粘合剂树脂组成物的最低熔体粘度为第一绝缘性树脂组成物的最低熔体粘度以上。
2.根据权利要求1所述的各向异性导电膜,其中,在导电粒子含有层的与第一绝缘性树脂组成物层相反面还层叠有第二绝缘性树脂组成物层,粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高。
3.根据权利要求2所述的各向异性导电膜,其中,第一绝缘性树脂组成物和第二绝缘性树脂组成物的一个的最低熔体粘度比另一个的最低熔体粘度高。
4.根据权利要求2所述的各向异性导电膜,其中,在第一绝缘性树脂组成物的最低熔体粘度和第二绝缘性树脂组成物的最低熔体粘度相同或大致相同的情况下,第一绝缘性树脂组成物层和第二绝缘性树脂组成物层的一个的层厚比另一个的层厚厚。
5.根据权利要求1~4的任一项所述的各向异性导电膜,其中,在导电粒子含有层中,相互邻接的导电粒子彼此的粒子间距离为1μm以上。
6.一种连接体,经由根据权利要求1~5的任一项所述的各向异性导电膜将第一电部件的端子和第二电部件的端子各向异性导电连接而成,其特征在于,在从侧面方向观察其截面时,导电粒子含有层弯曲。
7.根据权利要求6所述的连接体,其中,在从连接体的平面方向观察时,邻接电极间看上去像短路

说明书全文

各向异性导电膜

技术领域

[0001] 本发明涉及各向异性导电膜。

背景技术

[0002] 在液晶面板或有机EL面板等许多显示元件中,驱动IC和基板经由各向异性导电膜而被各向异性导电连接,为了实现近年来的显示元件的高精细化和高功能化,这样的IC的凸起也正在窄间距化。
[0003] 以往,为了应对IC凸起的窄间距化,提出了在各向异性导电膜中以单层排列导电粒子。例如,提出了:将导电粒子散布到在基片形成有粘接剂层的粘接片材的该粘接剂层,通过鼓(air blow)除去未与粘接剂层接触的导电粒子来形成单层的导电粒子含有层,将形成有该导电粒子含有层的基片以规定的延伸倍率双轴延伸,以使得到意图的粒子间距离,由此,对导电粒子进行单层排列(专利文献1)、或者,使导电粒子配置于磁性介质的特定区域,在除去过剩附着的导电粒子后将所配置的导电粒子转印到绝缘性粘接剂膜,由此,对导电粒子进行单层排列(专利文献2)。在这些情况下,考虑:使导电粒子的粒径变小并且使各向异性导电膜中的导电粒子密度变高,由此,容易应对窄间距化。
[0004] 现有技术文献专利文献
专利文献1:专利第4789738号;
专利文献2:专利第4887700号。

发明内容

[0005] 发明要解决的课题然而,利用专利文献1~2的技术来制作的只有导电粒子含有层的单层类型的各向异性导电膜或还层叠有绝缘性树脂组成物层的2层构造类型的各向异性导电膜存在不能充分地应对IC芯片的高级别的窄间距化的情况。具体地,在使用这样的各向异性导电膜来将电部件彼此各向异性导电连接时,存在发生如下这样的问题的情况:短路的发生增大或者由于在高温高湿环境下的保管而使导通电阻增大而使导通可靠性降低。
[0006] 本发明的目的在于解决以上的以往的技术的问题点,并且,在于,在使用各向异性导电膜来将窄间距化后的电部件彼此各向异性导电连接时,能够抑制短路的发生并且抑制导通可靠性由于在高温高湿环境下的保管而降低。
[0007] 用于解决课题的方案本发明人发现:在至少在第一绝缘性树脂组成物层上层叠有将导电粒子单层排列于层状的粘合剂树脂组成物而成的导电粒子含有层的各向异性导电膜中或者在与第一绝缘性树脂组成物层相反侧的导电粒子含有层的表面还层叠有第二绝缘性树脂组成物层的各向异性导电膜中调整各个树脂组成物的最低熔体粘度,由此,能够达成本申请发明的目的,达到完成本发明。
[0008] 即,本发明提供一种各向异性导电膜,所述各向异性导电膜至少在第一绝缘性树脂组成物层上层叠有将导电粒子单层排列于层状的粘合剂树脂组成物而成的导电粒子含有层,其中,粘合剂树脂组成物的最低熔体粘度为第一绝缘性树脂组成物的最低熔体粘度以上。本发明的该各向异性导电膜包含以下的方式。
[0009] 为如下的方式:在导电粒子含有层的与第一绝缘性树脂组成物层相反面还层叠有第二绝缘性树脂组成物层,粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高。
[0010] 再有,该方式包含:第一绝缘性树脂组成物和第二绝缘性树脂组成物的一个的最低熔体粘度比另一个的最低熔体粘度高的方式、在第一绝缘性树脂组成物的最低熔体粘度和第二绝缘性树脂组成物的最低熔体粘度相同或大致相同的情况下第一绝缘性树脂组成物层和第二绝缘性树脂组成物层的一个的层厚比另一个的层厚厚的方式。
[0011] 本发明还提供了一种连接体,经由本发明的各向异性导电膜将第一电部件的端子和第二电部件的端子各向异性导电连接而成,其特征在于,在从侧面方向观察其截面时,导电粒子含有层为弯曲的状态。
[0012] 发明效果在至少在第一绝缘性树脂组成物层上层叠有将导电粒子单层排列于层状的粘合剂树脂组成物而成的导电粒子含有层的本发明的各向异性导电膜中,粘合剂树脂组成物的最低熔体粘度被调整为第一绝缘性树脂组成物的最低熔体粘度以上。因此,在将第一电部件的端子和第二电部件的端子以在它们之间配置各向异性导电膜以使第一绝缘性树脂组成物层成为第一电部件侧的方式各向异性导电连接来制作连接体的情况下,当从其连接面的平面方向观察时,如图1A那样,看上去像以高粒子密度混合的导电粒子1彼此相互连续地接触而使电极2间短路。但是,如图1B所示那样,在从A-A线截面方向观察时,在第一电部件3的端子3a和第二电部件4的端子4a之间热压接的导电粒子含有层10向与第一绝缘性树脂组成物层11相反侧塞入而弯曲,其结果是,导电粒子1向第二电部件4侧移动,导电粒子1在厚度方向上彼此隔离,因此,抑制短路的发生,也抑制导通可靠性的降低。在该情况下,关于导电粒子含有层10和第一绝缘性树脂组成物层11,树脂成分相互混合,它们的界面变得不明确的情况较多。此外,存在第一绝缘性树脂组成物层11也进入到导电粒子含有层10的第二电部件4侧的情况。在图1B中,如那样示出了第一绝缘性树脂组成物层11也进入到导电粒子含有层10的第二电部件4侧的情况。
[0013] 此外,在与第一绝缘性树脂组成物层相反侧的导电粒子含有层的表面还层叠有第二绝缘性树脂组成物层并且粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高的情况下,考虑第一绝缘性树脂组成物和第二绝缘性树脂组成物的任一个的最低熔体粘度比另一个的最低熔体粘度高的情况。如图2所示,假设在第一绝缘性树脂组成物层20的最低熔体粘度比第二绝缘性树脂组成物21的最低熔体粘度低的情况下,导电粒子含有层22向最低熔体粘度低的第一绝缘性树脂组成物侧塞入而弯曲,其结果是,导电粒子彼此在厚度方向上隔离,因此,抑制短路的发生,也抑制导通可靠性的降低。在该情况下,关于导电粒子含有层22、第一绝缘性树脂组成物层20和第二绝缘性树脂组成物层21,树脂成分相互混合,它们的界面变得不明确的情况较多。
[0014] 再有,在第一绝缘性树脂组成物的最低熔体粘度和第二绝缘性树脂组成物的最低熔体粘度相同或大致相同的情况下,也考虑不能形成导电粒子含有层的弯曲,但是,如图3所示,存在第一绝缘性树脂组成物层30和第二绝缘性树脂组成物层31的任一个的层厚比另一个的层厚厚的情况。假设在第一绝缘性树脂组成物层的层厚比第二绝缘性树脂组成物层31的层厚厚的情况下,导电粒子含有层32向层厚薄的第二绝缘性树脂组成物层31侧塞入而弯曲,其结果是,导电粒子彼此在厚度方向上隔离,因此,抑制短路的发生,也抑制导通可靠性的降低。在该情况下,关于导电粒子含有层32、第一绝缘性树脂组成物层30和第二绝缘性树脂组成物层31,树脂成分相互混合,它们的界面变得不明确的情况较多。
[0015] 再有,在第一电部件的端子(例如凸起)的高度和第二电部件的端子(例如凸起)的高度相互较大地不同的情况下,存在能够将导电粒子含有层向端子高度低的侧塞入而弯曲的情况。附图说明
[0016] 图1A是连接体的平面透视图。
[0017] 图1B是图1A的A-A线截面图。
[0018] 图2是连接体的截面图。
[0019] 图3是连接体的截面图。
[0020] 图4是本发明的各向异性导电膜的截面图。
[0021] 图5是本发明的各向异性导电膜的截面图。
[0022] 图6A是用于单层排列导电粒子的装置结构说明图。
[0023] 图6B是用于单层排列导电粒子的装置结构说明图。
[0024] 图6C是导电刮板(squeegee)的截面图。

具体实施方式

[0025] <各向异性导电膜>本发明的各向异性导电膜40的特征在于,如图4所示那样具有至少在第一绝缘性树脂组成物层41层叠有将导电粒子42单层排列于层状的粘合剂(binder)树脂组成物43而成的导电粒子含有层44的构造,粘合剂树脂组成物的最低熔体粘度为绝缘性树脂组成物的最低熔体粘度以上。只要粘合剂树脂组成物的最低熔体粘度为第一绝缘性树脂组成物的最低熔体粘度以上,则在各向异性导电连接时使导电粒子含有层44在邻接端子间弯曲变得容易。
在此,最低熔体粘度为通过粘弹性测定装置(流变仪(rheometer)RS150,HAAKE公司)测定的值。
[0026] <第一绝缘性树脂组成物层>关于第一绝缘性树脂组成物层41的最低熔体粘度,从均匀的流动性的方面出发,优选的是,调整为10~5000mPa·s,更优选的是,调整为50~3000mPa·s。最低熔体粘度的调整能够通过树脂组成物的结构成分的种类的选择、混合比例的选择、预备的加热或者UV照射的实施等来进行。
[0027] 关于第一绝缘性树脂组成物层41的层厚,从连接后的短路防止的方面出发,优选的是0.5~30μm,更优选的是3~20μm。
[0028] 第一绝缘性树脂组成物层41是由绝缘性热可塑性树脂组成物、绝缘性热固化性树脂组成物或者绝缘性光固化性树脂组成物形成的层。关于这些树脂组成物的成分结构,能够从公知的成分结构之中适当选择,但是,大部分的各向异性导电连接通过热压接来实施,因此,优选的是,采用热固化性树脂组成物的结构。作为热固化性树脂组成物的聚合形式,也可以是热游离基聚合(thermal radical polymerization),也可以是热阳离子聚合(thermal cationic polymerization),也可以是热阴离子聚合(thermal anionic polymerization),但是,从低温下的迅速的固化和连接稳定性的方面出发,热阳离子聚合是优选的。作为这样的热阳离子聚合型固化性树脂组成物,能够优选举出将环化合物、氧杂环丁烷(Oxetane)化合物、乙烯醚化合物等热阳离子聚合性化合物5~80质量份(优选的是,10~70质量份)、芳香族锍盐等热阳离子聚合引发剂0.2~30质量份(优选的是,0.5~20质量份)、以及苯氧基树脂等成膜树脂5~95质量份(优选的是,10~90质量份)混合后的组成物。根据需要,在热阳离子聚合型固化性树脂组成物中,能够含有偶联剂、防锈剂、着色剂溶剂等添加剂。
[0029] <导电粒子含有层>导电粒子含有层44具有将导电粒子42单层排列于层状的粘合剂树脂组成物43的构造。
作为将导电粒子42单层排列于层状的粘合剂树脂组成物43的手法,只要不损害发明的效果,则不被特别限定。例如,能够采用在现有技术的栏中提及的专利文献1~2所公开的手法。
[0030] 作为导电粒子42,能够采用构成公知的各向异性导电膜的导电粒子。例如,可举出镍等金属粒子、在树脂核(core)的表面形成了镍等的金属电膜的金属包覆树脂粒子等。根据需要,也可以形成绝缘薄膜
[0031] 作为这样的导电粒子42的平均粒径,从想要连接的端子与导电粒子的接触性的方面出发,优选的是,1~20μm,更优选的是,2~10μm。
[0032] 关于导电粒子含有层44中的导电粒子密度,从短路防止的观点出发,优选的是,5000~80000个/mm2,更优选的是,10000~60000个/mm2。
[0033] 此外,在导电粒子含有层44中,关于相互邻接的导电粒子彼此的粒子间距离,从短路防止的观点出发,优选的是,1μm以上,更优选的是,1μm以上导电粒径的30倍以内,特别优选的是,2μm以上导电粒径的20倍以内。该粒子间距离意味着从排列的任意的导电粒子到最接近的导电粒子的距离。在此,为了确定粒子间距离而选择的导电粒子是不凝集而独立存在的导电粒子。
[0034] 再有,作为构成导电粒子含有层44的粘合剂树脂组成物43,除了使其最低熔体粘度为第一绝缘性树脂组成物的最低熔体粘度以上以外,能够采用与第一绝缘性树脂组成物同样的结构。
[0035] 关于导电粒子含有层44的层厚,从使导电粒子的保持性稳定的方面出发,优选的是,导电粒径的0.3倍以上3倍以下,更优选的是,0.5倍以上2倍以下。
[0036] <另一方式的各向异性导电膜>如图5所示,本发明的另一方式的各向异性导电膜50具有在与第一绝缘性树脂组成物层41相反侧的导电粒子含有层44的表面还层叠有第二绝缘性树脂组成物层51的构造。在该方式中,构成导电粒子含有层44的粘合剂树脂组成物43的最低熔体粘度也比第一和第二绝缘性树脂组成物层41、51的最低熔体粘度高。当粘合剂树脂组成物43的最低熔体粘度比第一和第二绝缘性树脂组成物层41、51的最低熔体粘度高时,在各向异性导电连接时使导电粒子含有层44在邻接端子间弯曲变得容易。
[0037] <第二绝缘性树脂组成物层>在第二绝缘性树脂组成物层51中,关于结构成分、层厚,能够采用与第一绝缘性树脂组成物层41同样的结构。
[0038] 再有,第一绝缘性树脂组成物的最低熔体粘度和第二绝缘性树脂组成物的最低熔体粘度也可以相同,但是,从通过使流动稳定来防止导电粒子彼此的接触的方面出发,优选的是,一个比另一个的最低熔体粘度高。在该情况下,关于两者的差,从控制流动的方向性的方面出发,优选的是,调整为50~10000mPa•s,更优选的是,调整为100~5000mPa•s。
[0039] 在第一绝缘性树脂组成物的最低熔体粘度和第二绝缘性树脂组成物的最低熔体粘度相同或大致相同的情况下,为了实现向同一方向的流动,优选的是,使第一绝缘性树脂组成物层41和第二绝缘性树脂组成物层51的任一个的层厚比另一个的层厚优选地厚1~20μm,更优选地厚2~15μm。
[0040] <图4所示的构造的各向异性导电膜的制造>图4所示的构造的各向异性导电膜能够通过各种手法来制造。在以下说明其一个例子。
[0041] (第一绝缘性树脂组成物层的制作)将热阳离子聚合性化合物、热阳离子聚合引发剂和成膜树脂溶解到乙酸乙酯或甲苯等溶剂中,以使固体量为50%,将所得到的溶液以为规定的干燥厚度的方式通过公知的手法涂敷到剥离PET基膜,例如在50~80℃的烘箱(oven)中干燥3~10分钟,由此,能够在剥离PET基膜上制作第一绝缘性树脂组成物层。
[0042] (导电粒子含有层的制作)如图6A、6B所示,准备在绝缘基板60上设置有具有规定的电极宽度a、电极间距离b和电极深度c的线状电极61的布线基板62,对线状电极61赋予正电位。在该布线基板62表面散布导电粒子63。接着,在布线基板62上,以与线状电极61正交的方式且以能对于线状电极61在长度方向上移动的方式配置用于使导电粒子63正带电的带电器64。进而,在布线基板62上设置对通过带电器64正带电的导电粒子63进行刮擦的导电刮板65。在导电刮板65的刮板表面,交替地设置相当于线状的电极宽度a的矩形凸部65a和相当于电极间距离b的凹部65b(图6C)。接着,一边通过带电器64使导电粒子63正带电一边使该带电器64在线状电极61的长度方向上移动。这样做,正带电的导电粒子63集中于被赋予正电位的线状电极61间。接着,接着带电器64的移动,使导电刮板65以矩形凸部65a抵接于线状电极61的方式对布线基板62表面进行刮擦。由此,能够在线状电极61间将单层的导电粒子63排列为线状。
[0043] 对该排列为线状的导电粒子以不正式固化的级别热压接与第一绝缘性树脂组成物同样地制作的、在剥离PET基膜上形成的粘合剂树脂组成物层,以将导电粒子埋入到粘合剂树脂组成物层中的方式转印,由此,能够在剥离PET基膜上制作导电粒子含有层。像这样,关于排列导电粒子的手法,能够采用使用延伸膜的手法、使用模来转印的手法等公知的手法。在此,在排列导电粒子时,优选的是,使以个数基准90%以上优选的是95%以上的导电粒子具有规则性。规则性意味着不是随机排列的排列。
[0044] (导电粒子含有层和第一绝缘性树脂组成物层的整体化)通过使如上述那样准备的第一绝缘性树脂组成物层和导电粒子含有层相对并以不正式固化的级别进行热压接来整体化,由此,能够得到图4所示的构造的各向异性导电膜。
[0045] <图5所示的构造的各向异性导电膜的制造>图5所示的构造的各向异性导电膜能够通过各种手法来制造。在以下说明其一个例子。
[0046] 与制造图4所示的构造的各向异性导电膜的情况同样地制作第一绝缘性树脂组成物层和导电粒子含有层。进而,与第一绝缘性树脂组成物层的制作同样地制作第二绝缘性树脂组成物层。通过使用第一绝缘性树脂组成物层和第二绝缘性树脂组成物层夹持如上述那样准备的导电粒子含有层并以不正式固化的级别进行热压接来整体化,由此,能够得到图5所示的构造的各向异性导电膜。
[0047] <连接体>关于本发明的各向异性导电膜,配置在第一电部件(例如,IC芯片)的端子(例如凸起)与第二电部件(例如布线基板)的端子(例如凸起、焊盘(pad))之间,从第一或第二电部件侧通过热压接以正式固化的方式进行各向异性导电连接,由此,得到连接体。在从平面方向观察该连接体时,存在邻接电极间如图1A所示那样看上去像短路的情况,但是,当从侧面方向观察该截面时,如图1B所示那样,导电粒子含有层弯曲,导电粒子彼此不相互接触,平面方向绝缘。因此,连接体为抑制短路的发生并且也抑制导通可靠性的降低的连接体。在此,当考虑在从平面方向的观察中导电粒子看上去像相互接触时,知晓粒子的规则性对短路的抑制有效地起作用。再有,为导电粒子含有层弯曲的状态这样的情况能够理解为,在将排列的导电粒子看作群的情况下,该群示出了弯曲性。
实施例
[0048] 以下,通过实施例来更具体地说明本发明。
[0049] 实施例1~8、比较例1、2(第一绝缘性树脂组成物层的形成)
根据表1所示的混合(单位:质量份),使用甲苯来调制50%固体量的第一绝缘性树脂组成物混合液,将该混合液以为表1的干燥厚度的方式涂敷到剥离PET基片(base sheet)上,在80℃的情况下进行5分钟干燥,由此,形成了第一绝缘性树脂组成物层。再有,通过粘弹性测定装置(流变仪RS150,HAAKE公司)测定第一绝缘性树脂组成物层的最低熔体粘度,在表1中示出了其结果。
[0050] (第二绝缘性树脂组成物层的形成)根据表1所示的混合(单位:质量份),使用甲苯来调制50%固体量的第二绝缘性树脂组成物混合液,将该混合液以为表1的干燥厚度的方式涂敷到剥离PET基片上,在80℃的情况下进行5分钟干燥,由此,形成了第二绝缘性树脂组成物层。再有,通过粘弹性测定装置(流变仪RS150,HAAKE公司)测定第二绝缘性树脂组成物层的最低熔体粘度,在表1中示出了其结果。
[0051] (导电粒子含有层的形成)根据表1所示的混合(单位:质量份),使用甲苯来调制50%固体量的粘合剂树脂组成物混合液,将该混合液以为表1的干燥厚度的方式涂敷到剥离PET基片上,在80℃的情况下进行5分钟干燥,由此,形成了粘合剂树脂组成物层。再有,通过粘弹性测定装置(流变仪RS150,HAAKE公司)测定粘合剂树脂组成物层的最低熔体粘度,在表1中示出了其结果。
[0052] 接着,使用图6A、6B所示的装置(表1的电极宽度、电极间距离3.5μm、电极深度3.5μm),在布线基板上使平均粒径3μm的导电粒子(AUL703,积化学工业(股份))以表1的粒子密度单层排列为线状。针对该单层排列为线状的导电粒子,配置粘合剂树脂组成物层,从剥离PET基片侧在40℃、0.1MPa的情况下进行层压,由此,形成了具有导电粒子被塞入到粘合剂树脂组成物层的构造的表1的厚度的导电粒子含有层。
[0053] (各向异性导电膜的制作)在导电粒子含有层的塞入了导电粒子的侧的表面配置第一绝缘性树脂组成物层,在另一面配置第二绝缘性树脂组成物层,在40℃、0.1MPa的情况下对整体进行层压,由此,制作了各向异性导电膜。
[0054] 实施例9除了不使用第二绝缘性树脂组成物层以外,按照在实施例1中进行的操作来制作了2层构造的各向异性导电膜。
[0055] 实施例10除了不使用第一绝缘性树脂组成物层以外,按照在实施例1中进行的操作来制作了2层构造的各向异性导电膜。
[0056] <连接体的评价>(连接体的制作)
使用在各实施例以及比较例中制作的各向异性导电膜,通过热压接将IC芯片的凸起和聚酰亚胺基底(polyimide base)的布线基板的电极之间各向异性导电连接。再有,在各向异性连接时,将第一绝缘性树脂组成物层配置在IC芯片侧。
[0057] 热压接条件:180℃、80MPa、5秒IC芯片的尺寸:1.5mm×13mm、0.5mmt
IC芯片的凸起:镀金凸起、25μm×25μm、凸起高度(表1)、凸起间间隔7.5μm布线基板的电极:镀金电极、线/间隔=16.5μm/16μm、电极高度(表1)、电极间间隔7.5μm
(性能评价)
针对所得到的连接体,如在以下说明的那样,对“导电粒子捕获数量”、“短路发生率”、“初始导通电阻”、“高温高湿负荷试验后的导通电阻(导通可靠性)”、“导电粒子含有层的弯曲方向”、“导电粒子含有层的弯曲长度”、“导电粒子间距离”进行了测定。在表1中示出了所得到的结果。
[0058] “导电粒子捕获数量”从所压接的IC的全部凸起选择任意的300个凸起,通过显微镜对存在于凸起上的导电粒子数量进行计数,求取其平均值和标准偏差。在连接实用上,关于导电粒子数量,优选的是,平均-3σ的值为3个以上。
[0059] “短路发生率”短路发生率通过“短路的发生数量/7.5μm间隔总数”来计算。在实用上,优选的是,为
100ppm以下。
[0060] “初始导通电阻”使用市售的电阻测定器来测定了制作稍后的连接体的初始导通电阻。在实用上,优选的是,为10Ω以下。
[0061] “高温高湿负荷试验后的导通电阻(导通可靠性)”使用市售的电阻测定器来测定了将连接体在维持为85℃、85%Rh的室中放置了1000小时后的连接体的导通电阻。在实用上,优选的是,为10Ω以下。
[0062] “导电粒子含有层的弯曲方向”在相对于平面方向为垂直方向且相对于线状的导电粒子排列正交的方向上切断连接构造体的各向异性连接部,对其切断面进行显微镜观察,调查了“导电粒子含有层的弯曲方向”。关于存在于连接体的平面方向上的凸起间间隔的导电粒子含有层的弯曲,在第一绝缘性树脂组成物层侧为凸的情况下,弯曲方向为“上”,在第二绝缘性树脂组成物层侧为凸的情况下,弯曲方向为“下”。
[0063] “导电粒子含有层的弯曲长度”在相对于平面方向为垂直方向且相对于线状的导电粒子排列正交的方向上切断连接构造体的各向异性连接部,对其切断面进行显微镜观察,求取了“导电粒子含有层的弯曲长度”。将在水平方向上延伸各向异性导电连接后的相对的凸起间的中心的直线与到导电粒子含有层的弯曲凸部顶端为止的最短距离设为“导电粒子含有层的弯曲长度”。
[0064] “导电粒子间距离”在相对于平面方向为垂直方向且相对于线状的导电粒子排列正交的方向上切断连接构造体的各向异性连接部,对其切断面进行显微镜观察,求取了“导电粒子间距离”。将存在于连接体的平面方向上的凸起间间隔的导电粒子含有层中的相互邻接的导电粒子间的距离设为“导电粒子间距离”。
[0065] [表1]<研究>
在实施例9的各向异性导电膜的情况下,构成导电粒子含有层的粘合剂树脂组成物的最低熔体粘度为第一绝缘性树脂组成物的最低熔体粘度以上,因此,连接体中的导电粒子含有层在布线基板侧以凸的方式弯曲。因此,初始导通电阻也低,高温高湿负荷试验后的导通可靠性也高。此外,还抑制了短路的发生。
[0066] 在实施例10的各向异性导电膜的情况下,构成导电粒子含有层的粘合剂树脂组成物的最低熔体粘度为第二绝缘性树脂组成物的最低熔体粘度以上,因此,连接体中的导电粒子含有层在IC芯片侧以凸的方式弯曲。因此,初始导通电阻也低,高温高湿负荷试验后的导通可靠性也高。此外,还抑制了短路的发生。
[0067] 在实施例1、2、5~8的各向异性导电膜的情况下,构成导电粒子含有层的粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高。而且,第一绝缘性树脂组成物和第二绝缘性树脂组成物的一个的最低熔体粘度比另一个的最低熔体粘度高。因此,连接体中的导电粒子含有层在示出更低的最低熔体粘度的绝缘性树脂组成物层侧以凸的方式弯曲。因此,初始导通电阻也低,高温高湿负荷试验后的导通可靠性也高。此外,还抑制了短路的发生。
[0068] 在实施例3的各向异性导电膜的情况下,构成导电粒子含有层的粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高,但是,第一绝缘性树脂组成物和第二绝缘性树脂组成物的最低熔体粘度相同。但是,IC芯片的凸起高度与布线基板的电极高度相比非常地大,因此,连接体中的导电粒子含有层在IC芯片侧的第一绝缘性树脂组成物层侧以凸的方式弯曲。因此,初始导通电阻也低,高温高湿负荷试验后的导通可靠性也高。此外,还抑制了短路的发生。
[0069] 在实施例4的各向异性导电膜的情况下,构成导电粒子含有层的粘合剂树脂组成物的最低熔体粘度比第一和第二绝缘性树脂组成物的最低熔体粘度高,但是,第一绝缘性树脂组成物和第二绝缘性树脂组成物的最低熔体粘度相同。但是,第一绝缘性树脂组成物的层厚与第二绝缘性树脂组成物的层厚相比非常地厚,因此,连接体中的导电粒子含有层在布线基板侧的第二绝缘性树脂组成物层侧以凸的方式弯曲。因此,初始导通电阻也低,高温高湿负荷试验后的导通可靠性也高。此外,还抑制了短路的发生。
[0070] 与此相对地,关于比较例1的各向异性导电膜和比较例2的各向异性导电膜,虽然导电粒子密度相互不同,但是,第一绝缘性树脂组成物、粘合剂树脂组成物和第二绝缘性树脂组成物的最低熔体粘度相同。因此,使用了比较例1的各向异性导电膜的连接体是短路的发生率高的连接体。使用了比较例2的各向异性导电膜的连接体是导通可靠性低的连接体。
[0071] 产业上的可利用性根据本发明的各向异性导电膜,在使用各向异性导电膜而将窄间距化后的电部件彼此各向异性导电连接时,能够抑制短路的发生,抑制导通可靠性由于在高温高湿环境下的保管而降低。因此,在将IC芯片倒装芯片安装于布线基板时,是有用的。
[0072] 附图标记的说明1、42、63 导电粒子
2 电极
3 第一电部件
3a 端子
4 第二电部件
4a 端子
10、22、32、44 导电粒子含有层
11、20、30、41 第一绝缘性树脂组成物层
21、31、51 第二绝缘性树脂组成物层
40、50 各向异性导电膜
43 粘合剂树脂组成物
60 绝缘基板
61 线状电极
62 布线基板
64 带电器
65 导电刮板
65a 矩形凸部
65b 凹部
a 电极宽度
b 电极间距离
c 电极深度。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈