首页 / 专利库 / 林业机械与工程 / 森林健康 / 用于活的减毒病毒的方法和组合物

用于活的减毒病毒的方法和组合物

阅读:767发布:2020-05-16

专利汇可以提供用于活的减毒病毒的方法和组合物专利检索,专利查询,专利分析的服务。并且公开了减少包括 疫苗 的活的减毒病毒失活和/或降解的一种或多种活的减毒病毒和组合物。这个组合物可以包括至少一种糖类、至少一种 蛋白质 和至少一种高分子量 表面活性剂 。,下面是用于活的减毒病毒的方法和组合物专利的具体信息内容。

1.活的减毒病毒组合物,其包括:
一种或者多种活的减毒病毒;
一种或者多种高分子量表面活性剂
一种或者多种蛋白质剂,和
一种或者多种糖剂;
其中所述组合物能够减少所述活的减毒病毒的失活。
2.根据权利要求1所述的病毒组合物,其中所述活的减毒病毒选自黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒、痘病毒家族和其组合。
3.根据权利要求1所述的病毒组合物,其中所述活的减毒病毒是黄病毒。
4.根据权利要求1所述的病毒组合物,其中所述组合物为含的形式。
5.根据权利要求1所述的病毒组合物,其中所述组合物是部分或全部脱水的。
6.根据权利要求1所述的病毒组合物,其中所述表面活性剂具有1500或更大的分子量。
7.根据权利要求1所述的病毒组合物,其中所述表面活性剂还包括一种或者多种共聚物,其中所述所述表面活性剂的分子量是3000或更大。
8.根据权利要求1所述的病毒组合物,其中所述表面活性剂由一种或者多种EO-PO嵌段共聚物组成。
9.根据权利要求1所述的病毒组合物,其中所述蛋白质剂选自乳清蛋白、血清白蛋白、甲胎蛋白、维生素D结合蛋白、源于脊椎动物种的α白蛋白和其组合。
10.根据权利要求1所述的病毒组合物,其中所述蛋白质剂为源于脊椎动物种的血清白蛋白。
11.根据权利要求1所述的病毒组合物,其中所述糖剂是糖类、多元醇或其组合的至少一种。
12.根据权利要求1所述的病毒组合物,其中所述糖剂的一种或多种选自海藻糖、蔗糖、壳聚糖、山梨糖醇、甘露醇和其组合。
13.根据权利要求1所述的病毒组合物,其中所述糖剂是海藻糖。
14.根据权利要求1所述的病毒组合物,其中至少一种表面活性剂是EO-PO嵌段共聚物普鲁罗尼克F127,至少一种蛋白质剂是血清白蛋白,和至少一种糖剂是海藻糖。
15.根据权利要求14所述的病毒组合物,其中所述EO-PO嵌段共聚物普鲁罗尼克F127浓度为0.1%到4%(w/v),其中所述血清白蛋白浓度为0.001%到3%(w/v),并且所述海藻糖浓度为5%到50%(w/v)。
16.减少活的减毒病毒组合物的失活的方法,其包括:将一种或者多种活的减毒病毒与组合物组合,所述组合物包括一种或者多种高分子量表面活性剂、一种或者多种蛋白质剂和一种或者多种糖类,其中所述组合物能够减少所述活的减毒病毒的失活。
17.根据权利要求16所述的方法,其中所述活的减毒病毒选自黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒、痘病毒家族和其组合。
18.根据权利要求16所述的方法,其还包括使所述组合部分或全部脱水。
19.根据权利要求18所述的方法,其还包括在施用之前,使所述组合物部分或全部再水合。
20.根据权利要求16所述的方法,其中所述组合物增加含水病毒组合物的保存期。
21.根据权利要求16所述的方法,其中所述组合物使含水活的减毒病毒的失活减少24小时或更长。
22.根据权利要求16所述的方法,其中所述组合物在一个或多个冻融循环期间减少含水活的减毒病毒的失活。
23.根据权利要求16所述的方法,其中至少一种高分子量表面活性剂是EO-PO嵌段共聚物普鲁罗尼克F127,至少一种所述蛋白质剂是血清白蛋白,和至少一种所述糖剂是海藻糖。
24.根据权利要求16所述的方法,其中所述病毒组合物被施用给对象以减少健康状况的发作或预防健康状况。
25.根据权利要求24所述的方法,其中所述健康状况选自西尼罗河感染、登革热、日本脑炎、库阿撒鲁尔森林病、澳洲墨莱溪谷脑炎、圣路易脑炎、蜱源脑炎、黄热病和丙型肝炎病毒感染
26.减少活的减毒病毒组合物失活的试剂盒,其包括:
至少一个容器;和
组合物,所述组合物包括一种或者多种蛋白质剂、一种或者多种糖剂和一种或者多种高分子量表面活性剂,其中所述组合物减少活的减毒病毒的失活。
27.根据权利要求26所述的试剂盒,其中至少一种表面活性剂是EO-PO嵌段共聚物普鲁罗尼克F127,至少一种蛋白质剂是血清白蛋白,和至少一种糖剂是海藻糖。
28.根据权利要求27所述的试剂盒,其中所述海藻糖浓度为5%到50%(w/v)。
29.根据权利要求27所述的试剂盒,其中所述EO-PO嵌段共聚物普鲁罗尼克F127浓度为
0.1%到4%(w/v)。
30.根据权利要求27所述的试剂盒,其中所述血清白蛋白浓度为0.001%到3%(w/v)。
31.根据权利要求26所述的试剂盒,其中所述组合物还包括一种或多种活的减毒病毒。
32.根据权利要求31所述的试剂盒,其中所述活的减毒病毒选自黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒、痘病毒家族和其组合。

说明书全文

用于活的减毒病毒的方法和组合物

[0001] 本申请是申请日为2008年4月4日、申请号为201510325174.X、发明名称为“用于活的减毒病毒的方法和组合物”的专利申请的分案申请。
[0002] 优先权
[0003] 本申请要求2007年4月6日提交的美国临时专利申请号60/910,579的优先权权益,其全文通过引用并入本文。

技术领域

[0004] 本文实施方式涉及用于稳定活的减毒病毒的组合物和方法。其他实施方式涉及用于减少活的减毒病毒降解的组合物和方法。其他实施方式还涉及这些组合物在便携式应用和方法的试剂盒中的应用。

背景技术

[0005] 防止病毒感染疫苗已经被有效地用于减少人类疾病的发病率。用于病毒疫苗的最成功的技术之一是用减弱的或者减毒的病毒(“活的减毒病毒”)株免疫动物或者人类。由于免疫之后有限的复制,减毒株不会引起疾病。然而,该有限的病毒复制足以表达病毒抗原全部的所有组成成分并且对该病毒产生有效和持久的免疫反应。因此,当后来暴露于致病的病毒株时,该免疫个体被保护免于疾病。这些活的减毒病毒疫苗是用于公众健康的最成功的疫苗之一。
[0006] 在美国批准销售的病毒疫苗的十六分之十是活的减毒病毒。高度成功的活的病毒疫苗包括黄热病17D病毒,1、2和3型萨宾脊髓灰质炎病毒(Sabin poliovirus)、麻疹病毒、腮腺炎病毒、疹病毒、痘病毒以及痘苗病毒。使用痘苗病毒疫苗控制天花爆发导致第一次和仅有的人类疾病的根除。萨宾脊髓灰质炎病毒疫苗已经帮助在全世界预防顽症并且在致根除脊髓灰质炎中被使用。幼儿接种麻疹、流行性腮腺炎、风疹以及水痘疫苗在国际范围内防止成千上万的死亡和疾病。
[0007] 最近的技术进展例如重配、反求遗传学以及冷适应,已经导致用于流感和轮状病毒的活的减毒病毒的许可证的颁发。用重组DNA技术开发的许多活的病毒疫苗处于人类临床试验中,其包括用于西尼罗河疾病、登革热、疟疾、结核以及HIV的疫苗。这些重组病毒疫苗依赖于很好表征的减毒病毒疫苗的操作,例如腺病毒、痘苗病毒、黄热病17D或者登革热病毒、DEN-2 PDK-53。安全的减毒病毒被基因工程化以表达其他病毒或者细菌性病原体的保护性抗原。几种重组病毒疫苗已经被批准用于动物用途,其包括金丝雀/猫科动物白血病重组病毒、金丝雀/犬瘟重组病毒、金丝雀/西尼罗河重组病毒以及黄热病/西尼罗河重组病毒。作为类群,活的减毒病毒疫苗是人类历史上是最成功的医学干涉之一,仅仅次于抗生素的出现并且有在全世界范围内改善公共健康的希望。
[0008] 为了使活的减毒病毒疫苗是有效的,它们必须在免疫之后能够复制。因此,任何使病毒失活的因素可以削弱疫苗。例如,第二次世界大战之前天花疫苗的广泛分发和应用被限制,因为该病毒在环境温度下仅仅几天后就失活。在20世纪20年代,法国科学家证明冷冻干燥的疫苗提供长期稳定性,并且在20世纪40年代发展了用于大规模生产冷冻干燥疫苗的技术(参见,例如Collier 1955)。除了冷冻干燥外,各种能够帮助稳定活的减毒病毒疫苗中的病毒的添加剂也已经被确定(参见例如Burke,Hsu等1999)。这些稳定剂典型地包括一种或者多种以下的成分:二价阳离子、缓冲盐溶液、螯合剂、尿素、糖(例如,蔗糖、乳糖、海藻糖)、多元醇(例如,甘油、甘露醇、山梨糖醇、聚乙二醇)、基酸、蛋白水解物(例如,酪蛋白水解物、乳清蛋白水解物、蛋白胨)、蛋白质(例如,明胶、人血清白蛋白)或者聚合物(例如,葡聚糖)。
[0009] 然而,即使使用这些稳定剂,许多常用的疫苗为了稳定仍然需要冷藏。其他常用的疫苗对温度极限敏感;过分的热或者意外的冷冻可以使疫苗失活。在整个分送期间维持这种“冷链(低温运输系统,cold chain)”在发展中国家特别困难。因此,仍然存在对于改进现有和新开发的活的减毒病毒疫苗的稳定性的需求。
[0010] 黄病毒是最不稳定的病毒之一。它们是具有大约11,000个基的RNA基因组的有包膜病毒。大多数黄病毒通过节肢动物媒介——通常为蚊子——传播。有超过70种不同的黄病毒,其基于血清学分组为三种主要类别:登革热组、日本脑炎组以及黄热病组。在已知的黄病毒中,40种通过蚊子传播,16种通过虱类传播以及18种病毒没有确定的昆虫媒介。因此,大多数黄病毒已经进化到既在它们的节肢动物媒介中又在它们的脊椎动物宿主种类(通常是类或者哺乳动物)中复制。扩张的都市化、世界范围的旅行以及环境变化(例如采伐森林或者雨水类型)已经导致威胁人类公共健康的数种黄病毒的出现。这种病毒包括但不限于黄热病病毒、登革热病毒、西尼罗河病毒、日本脑炎病毒和蜱传脑炎病毒。
[0011] 通过加强的蚊子控制和接种疫苗努力,黄热病从北美洲、中美洲和南美洲、加勒比海和欧洲的大部分地区消除。然而,最近20年中,报道病例的国家数量已经增加。黄热病病毒在非洲和南美州以及一些加勒比海岛屿的主要地区现在是地方病。世界卫生组织(WHO)估计:每年200,000例黄热病的病例出现,这导致30,000人死亡。自第二次世界大战以来,登革黄病毒已经传播到遍及全世界的热带和亚热带区域并且现在威胁到超过35亿人,这大约是世界人口的一半。WHO估计每年5000万-1亿的登革热病例出现。这些中的500,000例为更严重、威胁生命的疾病类型,称作登革出血热,其导致每年25,000以上的病例死亡。西尼罗河病毒的特别致命的形式在1999年在纽约大概通过旅行被引入到西半球。蚊子传播的病毒感染鸟类作为第一宿主,但是也在人类和中引起疾病和死亡。西尼罗病毒传遍美国并且传入加拿大和墨西哥。因为其传入,西尼罗河病毒已经引起超过20,000例报道的西尼罗河疾病病例,在美国导致950人死亡。日本脑炎病毒每年导致30,000到50,000例的神经系统疾病,主要是在东亚和南亚。报道病例的25-30%是致命的。蜱传脑炎病毒对于欧洲和亚洲的部分地区是地方病,并且继续导致影响成千上万个体的突然爆发(episodic outbreaks)。与具有更有限的地理传播相关的病毒包括澳洲和新几内亚的库京病毒(kujing virus)(西尼罗河的近属)和澳洲墨莱溪谷脑炎病毒、北美和南美的圣路易斯脑炎病毒、非洲的乌苏土、库坦戈以及雅温德病毒、和南美洲的Cacipacore病毒。
[0012] 已经开发了安全并且防御黄病毒疾病例如黄热病和日本脑炎的活的减毒病毒疫苗。活的减毒病毒疫苗17D已经被广泛用于预防黄热病。目前的黄病毒疫苗在稳定剂的存在下被冷冻干燥。但是,该疫苗要求在2–8℃储存和运输,这在发展中国家和发达国家较为偏僻的地区这是难以达到的要求。此外,一旦重构,即使储存在2–8℃,该疫苗也迅速丧失效价。
[0013] 麻疹疫苗是世界范围内使用以预防疾病的不稳定减毒病毒的另一个例子。麻疹病毒是副黏病毒家族有包膜的、非分段(non-segmented)的负链RNA病毒。麻疹是高度传染性、季节性疾病,其几乎可以影响每个青春期之前不接种的儿童。在发展中国家,麻疹感染儿童的死亡率可以高达2到15%。实际上,虽然努力建立世界范围内免疫接种,但是麻疹每年仍然导致7,000个以上的儿童死亡。麻疹疫苗是在原代鸡纤维细胞中制造的活的减毒病毒。疫苗用明胶和山梨糖醇稳定并随后冻干。如果在2到8℃下储存,稳定的冻干疫苗具有2年或更长的保存期。然而,该冻干的疫苗仍然需要在发展中世界里难以保持的冷链。此外,一旦重构,该疫苗在室温(20到25℃)下一小时内丧失其效价的50%。
[0014] 因此,在该领域内存在对改进的疫苗制剂的需要。
[0015] 发明概述
[0016] 本文实施方式涉及降低或者防止活的减毒病毒组合物生物致劣或者失活的方法和组合物。公开的一些组合物可以包括减少活的减毒病毒的生物致劣的成分的组合。本文其他实施方式涉及大大提高活的减毒病毒的稳定性的赋形剂的组合。本文其他组合物和方法更涉及减少对于较低温度(例如,冷藏或者冷冻贮藏)的需求,同时增加含水和/或重构的活的减毒病毒的保存期。
[0017] 依照这些实施方式,某些活的减毒病毒涉及黄病毒。涉及组合物的一些实施方式可以包括但不限于一种或者多种活的减毒病毒,例如,一种或者多种活的减毒黄病毒与一种或者多种高分子量表面活性剂、蛋白质以及糖类的结合。
[0018] 本文考虑的组合物可以提高活的减毒病毒的稳定性和/或减少活的减毒病毒的失活和/或降解,所述活的减毒病毒包括,但不限于活的减毒黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、瘟病毒(pestivirus)、小RNA病毒、杯状病毒、呼肠孤病毒、细小病毒(parvovirus)、乳多空病毒、腺病毒、疱疹病毒、或痘病毒。
[0019] 其他实施方式涉及活的减毒病毒组合物和方法,其涉及能够减少或者防止由本文考虑的一种或者多种病毒引起的医学状况发作的疫苗组合物。根据这些实施方式,医学状况可以包括但不限于,西尼罗河感染、登革热、日本脑炎、库阿撒鲁尔森林病(Kyasanur forest disease)、澳洲墨莱溪谷脑炎(murray valley encephalitis)、Alkhurma出血热、圣路易脑炎(St.Louis encephalitis)、蜱源脑炎、黄热病和丙型肝炎病毒感染。
[0020] 在某些实施方式中,本文考虑的组合物可以被部分地或者全部地脱水或者水合。在其他实施方式中,考虑用于本文组合物的蛋白质剂包括但不限于,乳清蛋白、人血清白蛋白、重组人血白蛋白(rHSA)、血清白蛋白(BSA)、其它血清白蛋白或白蛋白基因家族成员。
糖类或多元醇剂可以包括但不限于,单糖、二糖、糖醇、海藻糖、蔗糖、麦芽糖、异麦芽糖、纤维二糖(cellibiose)、龙胆二糖、昆布二糖、木乙糖、甘露二糖、乳糖、果糖、山梨糖醇、甘露醇、乳糖醇、木糖醇、赤藓糖醇、子糖、直链淀粉(amylse)、环糊精、壳聚糖、或纤维素。在某些实施方式中,表面活性剂可以包括但不限于,非离子型表面活性剂,例如烷基聚(环乙烷)、聚(环氧乙烷)和聚(环氧丙烷)的共聚物(EO-PO嵌段共聚物)、聚(乙烯吡咯烷(pyrroloidone))、烷基多聚葡糖苷(例如,蔗糖单硬脂酸酯、月桂基二葡糖苷、或山梨聚糖单月桂酯、辛基葡糖苷和癸基麦芽糖苷)、脂肪醇(十六烷醇或油醇)、或椰油酰胺(cocamide)(椰油酰胺MEA、椰油酰胺DEA和椰油酰胺TEA)。
[0021] 在其他实施方式中,表面活性剂可以包括但不限于,普鲁罗尼克(Pluronic)F127、普鲁罗尼克F68、普鲁罗尼克P123,或者其他大于3,000-4,000 MW的EO-PO嵌段共聚物。
[0022] 在一些实施方式中,疫苗组合物可以包括但不限于,一种或者多种是血清白蛋白的蛋白质剂;一种或者多种是海藻糖的糖剂;以及一种或者多种是EO-PO嵌段共聚物普鲁罗尼克F127的表面活性剂聚合物。
[0023] 本文的一些实施方式涉及部分地或者全部脱水的活的减毒病毒组合物。根据这些实施方式,组合物可以是20%或者以上、30%或者以上、40%或者以上、50%或者以上、60%或者以上、70%或者以上、80%或者以上、或者90%或者以上脱水的。
[0024] 其他实施方式涉及用于减少活的减毒病毒失活的方法,其包括但不限于:将一种与多种活的减毒病毒与能够减少活的减毒病毒失活的组合物组合,该组合物包括但不限于,一种或者多种蛋白质剂;一种或者多种糖类或者多元醇剂;以及一种或者多种高分子量表面活性剂,其中该组合物减少活的减毒病毒的失活。根据这些实施方式,活的减毒病毒可以包括但不限于,黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、瘟病毒、小RNA病毒、杯状病毒、呼肠孤病毒、细小病毒、乳多空病毒、腺病毒、疱疹病毒或痘病毒。此外,本文公开的方法和组合物可以包括冷冻干燥或者其他组合的脱水方法。依照这些方法和组合物,该方法和组合物减少冷冻干燥的或者部分或者全部脱水的活的减毒病毒的失活。在其它方法中,减少活的减毒病毒的失活的组合物可以包括含水组合物,或者可以包括脱水后再水合的组合物。本文描述的组合物能够增加含水或者再水合的活的减毒病毒的保存期。
[0025] 在某些具体的实施方式中,用于本文考虑的疫苗组合物的活的减毒病毒可以包括但不限于一种或者多种活的减毒黄病毒疫苗,其包括但不限于,减毒的黄热病病毒(例如17D)、减毒的日本脑炎病毒(例如SA14-14-2)、减毒的登革热病毒(例如DEN-2/PDK-53或者DEN-4Δ30)或者重组嵌合的黄病毒。
[0026] 在某些实施方式中,本文考虑的组合物能够在室温(例如大约20℃到大约25℃)或者冷藏温度(例如大约0℃到大约10℃)下减少脱水的活的减毒病毒的失活和/或降解24小时以上。在更具体的实施方式中,混合组合物能够将大约100%的活的减毒病毒维持24小时以上。此外,本文考虑的混合组合物能够在至少2个冻融循环期间减少脱水的活的减毒病毒的失活。其他方法涉及这样的组合物,其能够在冷藏温度(例如,大约0℃到大约10℃)下将脱水的活的减毒病毒的失活减少大约24小时到大约50天。在这些方法中考虑的组合物可以包括但不限于:一种或者多种血清白蛋白的蛋白质剂;一种或者多种海藻糖的糖剂;以及一种或者多种普鲁罗尼克F127的EO-PO嵌段共聚物。在某些实施方式中,活的减毒病毒组合物在大约21℃下在7天之后保持大约100%的病毒效价和在大约4℃的冷藏温度下在50天之后保持大约100%的病毒效价。本文其他实施方式可以包括在大约21℃、7天之后保持大约90%、或者大约80%的病毒效价的活的减毒病毒组合物,和在大约4℃的冷藏温度下在50天之后保持大约90%、或大约80%的病毒效价的活的减毒病毒组合物。与本领域已知的其他组合物相比,所考虑的其它实施方式包括在大约37℃下数小时(例如20小时)之后保持在大约3×到大约10×浓度的病毒效价的活的减毒病毒组合物(参见例如,图4和5)。当该组合物被储存大约37℃下时,本文公开的组合物减少活的减毒病毒的降解。
[0027] 其他实施方式涉及用于降低活的减毒病毒组合物失活的试剂盒,其包括但不限于,容器;和组合物,所述组合物包括但不限于一种或者多种蛋白质剂、一种或者多种糖或者多元醇剂、和一种或者多种EO-PO嵌段共聚物剂,其中所述组合物减少活的减毒病毒的失活和/或降解。根据这些实施方式,试剂盒组合物可以包括一种或者多种血清白蛋白的蛋白质剂;一种或者多种海藻糖的糖剂;以及一种或者多种EO-PO嵌段共聚物剂。此外,本文考虑的试剂盒还可以包括一种或者多种活的减毒病毒,所述活的减毒病毒包括但不限于黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、瘟病毒、小RNA病毒、杯状病毒、呼肠孤病毒、细小病毒、乳多空病毒、腺病毒、疱疹病毒或痘病毒。某些实施方式中,本文的组合物可以包括作为糖剂的海藻糖。根据这些实施方式,海藻糖浓度可以等于或者大于5%(w/v)。在某些实施方式中,本文组合物可以包括作为EO-PO嵌段共聚物剂的聚合物F127。根据这些实施方式,聚合物F127浓度可以是大约0.1到大约4%(w/v)。
[0028] 其他实施方式中,本文考虑的组合物可以包括痕量或者无二价阳离子。例如,本文考虑的组合物可以具有痕量或者无/镁(Ca2+/Mg2+)。
[0029] 附图简述
[0030] 以下附图形成本说明书的的部分并且被包括以进一步说明本文具体实施方式的某些方面。通过参考一个或多个这些附图连同本文提供的详细描述,实施方式可以被更好地理解。
[0031] 图1代表使用各种组合物测试该组合物中示例性病毒DEN-2 PDK53黄病毒稳定性的实验的示例性直方图。
[0032] 图2代表对于示例性病毒DEN-2 PDK 53病毒在各种示例性组合物中在37℃的病毒失活的动力学分析的示例性图。
[0033] 图3代表示例性病毒DEN-2 PDK 53病毒在37℃贮藏21小时的分析的示例性直方图。数值被表示为在温育后剩余的病毒效价相对于输入效价的百分比。制剂百分比参照各个赋形剂(w/v)。
[0034] 图4代表示例性病毒DEN-2 PDK 53病毒在不同的组合物中在37℃贮藏23小时的分析的示例性直方图。数值被表示为在温育后剩余的病毒效价相对于输入效价的百分比。
[0035] 图5代表示例性病毒DEN-2 PDK 53病毒在不同组合物中在37℃贮藏23小时的分析的示例性直方图。数值被表示为在温育后剩余的病毒效价相对于输入效价的百分比。每个制剂百分比的两个柱代表试验中的重复。
[0036] 图6代表示例性病毒DEN-2 PDK 53病毒被储存在不同制剂中时在两个冻-融循环后的示例性直方图分析。数值被表示为在冻-融循环后剩余的病毒效价相对于输入效价的百分比。
[0037] 图7代表代表示例性病毒DEN-2 PDK 53/WN重组黄病毒在各种示例性组合物中在25℃经过数周时间的病毒失活的动力学分析的示例性图。
[0038] 图8代表示例性病毒DEN-2 PDK 53/WN重组黄病毒在各种示例性组合物中在4℃经过数周时间的病毒失活的动力学分析的示例性图。
[0039] 图9代表示例性病毒DEN-2 PDK-53病毒在各种示例性组合物中冻干后的示例性直方图分析。如上所述评估在不同温度下两周后的病毒失活。

具体实施方式

[0040] 定义
[0041] 如本文所用,“一个(a)”或者“一个(an)”可以是指一个或者一个以上的项目。
[0042] 如本文所用,“大约”可以表示多达和包括加或减百分之五,例如,大约100可以指95和可达105。
[0043] 如本文所用,“糖”剂可以指一种或者多种单糖(例如,葡萄糖、半乳糖、核糖、甘露糖、鼠李糖、塔罗糖、木糖、或者阿洛糖阿拉伯糖),一种或者多种二糖(例如,海藻糖、蔗糖、麦芽糖、异麦芽糖、纤维二糖、龙胆二糖、昆布二糖、木乙糖、甘露二糖、乳糖、或者果糖)、三糖(例如,阿卡波糖、棉子糖、松三糖、潘糖、或纤维三糖)或者糖聚合物(例如,葡聚糖、黄原胶、支链淀粉、环糊精、直链淀粉、支链淀粉、淀粉、纤维寡糖、纤维素、麦芽寡糖、糖原、壳聚糖或者壳多糖)。
[0044] 如本文所用,“多元醇”剂可以指任何糖醇(例如甘露醇、山梨糖醇、阿拉伯糖醇、赤藓糖醇、麦芽糖醇、木糖醇、多羟直链糖醇、乙二醇、聚多羟直链糖醇、聚乙二醇、聚丙二醇、或甘油)。如本文所用,“高分子量表面活性剂”可以指分子量大于1500的表面活性的两亲分子。
[0045] 如本文所用,“EO-PO嵌段共聚物”可以指由聚(环氧乙烷)和聚(环氧丙烷)的嵌段组成的共聚物。另外,如本文所用,“普鲁罗尼克(Pluronic)”可以指在EOx-POy-EOx中的EO-PO嵌段共聚物。EO-PO嵌段共聚物的这种构型也称为“泊咯沙姆(Poloxamer)”或“泊洛沙姆(Synperonic)”。
[0046] 如本文所用,“减毒病毒”可以指这样的病毒,其被施用动物时,显示减弱的疾病临床症状或者没有疾病临床症状。
[0047] 发明详述
[0048] 在下面的部分,为了详述各种实施方式,描述了各种示例性组合物和方法。实践各种实施方式不需要利用所有或者甚至一些的本文描述的具体细节,而是相反地,浓度、时间和其他具体细节可以通过常规实验进行修改,这对于本领域的技术人员是显而易见的。在一些情况中,在说明书中没有包括众所周知的方法或者组分。
[0049] 已经评价了现有的黄热病和日本脑炎的活的减毒病毒的黄病毒疫苗的稳定性。当在1987年进行测试时,在那时候制造的黄热病疫苗仅仅有十二分之五符合稳定性的最低标准。后来,显示加入糖、氨基酸和二价阳离子的混合物稳定冻干的疫苗,使得疫苗在37℃下温育14天之后丧失小于1个log的效力。已经描述了黄热病疫苗的稳定的冻干制剂(见,例如美国专利4,500,512)。美国专利4,500,512描述了乳糖、山梨糖醇、二价阳离子——钙和镁——和至少一种氨基酸的组合。虽然这种制剂可以帮助稳定冻干的疫苗,但其不能给含水形式的疫苗提供稳定性。另一研究检验了包括上面描述的组合物的几种不同制剂的能力(稳定性)以及蔗糖、海藻糖和乳清蛋白对冻干的黄热病疫苗的影响。发现仅由10%蔗糖组成、由2%山梨糖醇与4%肌醇组成、或者由10%蔗糖与5%乳清蛋白、0.1g/l CaCl2和0.076g/l MgSO4组成的制剂提供最好的稳定性(参见,例如Adebayo,Sim-Brandenburg等,
1998)。然而,在悬浮之后在所有的情况中,黄热病疫苗仍然非常不稳定并且必须在仅仅大约一小时之后必须被丢弃(参见,例如,Monath,1996;Adebayo,Sim-Brandenburg等,1998)。
这导致疫苗浪费并且如果使用不稳定的疫苗,在现场条件下(field conditions)可能导致疫苗给予无效。
[0050] 预防日本脑炎的另一种活的减毒黄病毒疫苗已经被许可使用并且在中国广泛使用(参见例如,Halstead和Tsai 2004)。日本脑炎疫苗株,SA14-14-2在原代仓鼠肾细胞上生长,收获该细胞上清液并且粗过滤。一种前面的组合物包括作为稳定剂添加的1%明胶和5%山梨糖醇。使用这些稳定剂,冻干疫苗被并随后在2到8℃下稳定至少1.5年,但是在室温下仅仅稳定4个月而在37℃下稳定10天。与黄热病疫苗一样,重构的疫苗是非常不稳定的并且在室温下仅仅稳定2小时(参见,例如Wanf,Yang等,1990)。在本文的某些实施方式中,考虑了用于稳定或者减少日本脑炎降解的活的减毒黄病毒组合物。
[0051] 没有鉴定出活的减毒黄病毒疫苗的制剂,所述制剂在高于2-8℃的温度下提供冻干制剂的长期稳定性。此外,没有描述防止效价丧失、稳定或减少含水疫苗的降解大于几个小时的制剂。
[0052] 也已经描述了其它活的减毒病毒的制剂(参见,例如,Burke,Hsu等,1999)。一种称作为SPGA的常见的稳定剂是2%到10%的蔗糖、磷酸盐、谷氨酸以及0.5%到2%血清白蛋白的混合物(参见,例如Bovarnick,Miller等,1950)。已经用不同阳离子、用淀粉水解物或者葡聚糖取代蔗糖、和用酪蛋白水解物或者聚乙烯吡咯烷酮取代血清白蛋白确定了这种基本制剂的各种改变。其他制剂使用水解的明胶代替血清白蛋白作为蛋白质源(Burke,Hsu等,1999)。然而,明胶可以在免疫的儿童中引起变态反应并且可能是疫苗-相关的不良事件的原因。美国专利6,210,683描述了在疫苗制剂中用重组人血清白蛋白取代从人血清中纯化的白蛋白。
[0053] 本文的实施方式公开了这样的组合物:与现有技术中的那些组合物相比,其提高活的减毒病毒疫苗的稳定性和/或减少活的减毒病毒疫苗的生物致劣。本文公开的某些组合物提供在37℃或大约37℃,含水病毒的稳定性高达2小时;高达3小时;高达4小时和大于4小时。本文公开的某些组合物在室温(例如25℃)或者大约室温(例如25℃)下提供含水病毒的稳定性高至1天到大约1星期或者以上。本文考虑的实施方式为活的减毒病毒提供对例如冷冻和/或解冻、和/或升温的保护增加。在某些实施方式中,本文的组合物在室温条件下(例如,大约25℃)可以稳定脱水的活的减毒病毒产品、减少脱水的活的减毒病毒产品的生物致劣和/或防止脱水的活的减毒病毒产品的失活。在其他实施方式中,本文考虑的组合物在大约25℃或者高至37℃或者在大约37℃下可以稳定含水的活的减毒病毒产品、减少含水的活的减毒病毒产品的生物致劣和/或防止含水的活的减毒病毒产品的失活。本文公开的组合物和方法可以促进病毒疫苗在发达地区和不发达地区的储存、分送、递送和给予。
[0054] 其他实施方式可以包括活的减毒病毒疫苗的组合物,所述组合物包括但不限于,小RNA病毒(例如,脊髓灰质炎病毒、疫病毒)、杯状病毒(例如,SARS病毒、和猫传染性腹膜炎病毒)、披膜病毒(例如,辛德毕斯病毒(sindbis virus)、马脑炎病毒、屈曲病毒、风疹病毒、罗斯河病毒(Ross River virus)、牛腹泻病毒、猪霍乱病毒)、黄病毒(例如,登革热病毒、西尼罗河病毒、黄热病病毒、日本脑炎病毒、圣路易脑炎病毒、蜱源脑炎病毒)、冠状病毒(例如,人冠状病毒(普通感冒)、猪胃肠炎病毒)、棒状病毒(例如,狂犬病病毒、水疱性口炎病毒)、线状病毒(例如,马尔堡病毒(Marburg virus)、埃博拉病毒(Ebola virus))、副黏病毒(例如,麻疹病毒、犬瘟病毒、腮腺炎病毒、副流感病毒、呼吸道体细胞病毒、新城疫病毒、牛瘟病毒)、正黏病毒(例如,人流感病毒、禽流感病毒、马流感病毒),布尼亚病毒(例如,汉坦病毒(hantavirus)、拉克罗斯病毒(LaCrosse virus)、山谷热病毒)、沙粒病毒(例如,拉沙病毒、波利维亚出血热病毒(Machupo virus))、呼肠孤病毒(例如,人呼肠孤病毒、人轮状病毒)、双RNA病毒(例如,传染性腔上囊病毒、鱼胰脏坏死病毒(fish pancreatic necrosis virus))、反转录病毒(例如,HIV1、HIV 2、HTLV-1、HTLV-2、牛白血病病毒、猫免疫缺陷病毒、猫肉瘤病毒、小鼠乳腺瘤病毒)、嗜肝DNA病毒(例如,乙型肝炎病毒)、细小病毒(例如,人细小病毒B、犬细小病毒、猫传染性粒细胞缺乏症病毒)、乳多空病毒(例如,人乳头瘤病毒、SV40、牛乳头瘤病毒)、腺病毒(例如,人腺病毒、犬腺病毒、牛腺病毒、猪腺病毒)、疱疹病毒(例如,单纯疱疹病毒、水痘-带状疱疹病毒、传染性牛鼻气管炎病毒、人细胞巨化病毒、人疱疹病毒6)、和痘病毒(例如,牛痘、禽痘病毒、浣熊痘病毒、臭鼬痘病毒、猴痘病毒、牛痘病毒、接触传染性软疣病毒(musculumcontagiosum virus)。
[0055] 本领域技术人员将认识到:本文的组合物或者配方涉及通过任何方式减毒的病毒,所述任何方式包括但不限于,细胞培养传代、重配、传染性克隆中的突变插入、反求遗传学,其他重组DNA或者RNA操作。此外,本领域技术人员将认识到其他实施方式涉及被工程化以表达任何其他蛋白质或者RNA的病毒,所述病毒包括但不限于,重组黄病毒、重组腺病毒、重组痘病毒、重组反转录酶病毒、重组腺相关病毒以及重组疱疹病毒。这些病毒可以被用作传染病疫苗、治疗肿瘤状况的疫苗、或者引入表达蛋白或RNA以治疗病症的病毒(例如,基因治疗、反义治疗、核酶治疗或小的抑制性RNA治疗)。
[0056] 在一些实施方式中,本文组合物可以含有一种或者多种病毒,所述病毒具有下述病毒的膜包膜(例如,有包膜的病毒):披膜病毒、黄病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒或痘病毒家族。在某些实施方式中,组合物含有下列病毒中的一种或多种有包膜的RNA病毒:披膜病毒、黄病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、或者反转录病毒家族。在其他实施方式中,本文组合物可以含有下列病毒中的一种或多种有包膜的、正链RNA病毒:披膜病毒、黄病毒、冠状病毒、或者反转录病毒家族。在某些实施方式中,组合物可以包含一种或者多种活的减毒黄病毒(例如,登革热病毒、西尼罗河病毒、黄热病病毒或者日本脑炎病毒)。
[0057] 本文的一些实施方式涉及含水或者冻干形式的活的减毒病毒组合物。本领域中技术人员将认识到提高病毒热稳定性并防止冻-融失活的制剂将改进产品,所述产品是液体的、粉末的、冷冻干燥或冻干并通过本领域已知方法制备。在重构后,这些稳定的疫苗可以通过各种途径给予,所述各种途径包括但不限于,皮内给予、皮下给予、肌肉内给予、鼻内给予、肺部给予或者口腔给予。用于疫苗递送的各种装置在本领域内是已知的,其包括但不限于,注射器和针头注射,分叉针头给予,通过皮内贴剂(patches)或给予,无针喷射递送(needle-free jet delivery),皮内颗粒递送,或气溶胶粉末递送(aerosol powder delivery)。
[0058] 实施方式可以包括由一种或者多种活的减毒病毒(如以上描述)和在生理上可接受缓冲液中的一种或者多种高分子量表面活性剂和一种或者多种蛋白质的混合物组成的组合物。在某些实施方式中,组合物包括但不限于,在生理学上可接受缓冲液中一种或者多种活的减毒病毒、一种或者多种高分子量表面活性剂、一种或者多种蛋白质、和一种或者多种糖类。
[0059] 在其他实施方式中,组合物可以含有增加活的减毒病毒的热稳定性的一种或者多种高分子量表面活性剂。表面活性剂已经被结合到疫苗制剂中,以防止物质损失到表面例如玻璃瓶(参见,例如Burke,Hsu等,1999)。然而,本文某些实施方式包括具有用于本文公开的组合物和方法的一些独特的生物化学特性的高分子量表面活性剂。EO-PO嵌段共聚物可以包括聚环氧乙烷嵌段(-CH2CH2O-称为EO)和聚环氧丙烷(-CH2CHCH3O-称为PO)的嵌段。在EOx-POy-EOx排列中,PO嵌段可以与两个EO嵌段在侧面连接。因为PO成分是亲水而EO成分是疏水的,整体亲水性、分子量以及表面活性剂性质可以通过改变EOx-POy-EOx嵌段结构中的x和y进行调整。在水溶液中,EO-PO嵌段共聚物将自装配成具有PO核和亲水EO基团冠的微胞。已经将EO-PO嵌段共聚物制剂作为用于各种疏水药物和用于蛋白质、DNA或者失活的疫苗的潜在药物递送剂进行研究(例如,Todd,Lee等1998;Kabanov,Lemieux等2002)。在高浓度(例如:>10%)下,某些较高分子量EO-PO嵌段共聚物将进行反凝胶化(reverse gelation),随着温度升高而形成凝胶。在体温下形成凝胶允许使用EO-PO嵌段共聚物凝胶以在药物和疫苗递送应用中起到储库的作用(参见,例如Coeshott,Smithson等2004)。此外,由于它们的表面活性剂性质,这些聚合物已经被用于辅剂制剂,并且在局部应用的乳液和凝胶中用作乳化剂。EO-PO嵌段共聚物也显示出促进辐射或者电穿孔介导的损伤后的伤口和灼伤愈合以及密封细胞膜。
[0060] 在其他实施方式中,疫苗组合物可以包括一种或者多种具有1500或者以上分子量的表面活性剂。在某些实施方式中,该表面活性剂是非离子、亲水的、聚氧乙烯-聚氧丙烯嵌段共聚物(或者EO-PO嵌段共聚物)。虽然EO-PO嵌段共聚物已经被用作失活疫苗、蛋白质疫苗或者DNA疫苗的辅剂和递送载体,但是它们阻止活病毒失活的的用途是本领域不能预见的。在具体实施方式中,制剂可以包含一种或者多种具有3,000或者以上分子量的EO-PO聚合物。在进一步实施方式中,组合物可以部分包括EO-PO嵌段共聚物普鲁罗尼克F127或者普鲁罗尼克P123。本领域技术人员将认识到表面活性剂的修饰可以以化学方法进行。本文所考虑的是任何本质上等价的表面活性剂聚合物都被考虑。
[0061] 本文实施方式可以包括一种或者多种活的减毒病毒、一种或者多种表面活性剂以及一种或者多种蛋白质的组合物。在某些实施方式中,蛋白质可以是白蛋白。血清白蛋白是脊椎动物血液中最常见的蛋白质之一并且具有多种功能。该蛋白质具有585个氨基酸,分子量为66500。人血清白蛋白未被糖基化并且具有涉及其多种结合活性的一些的单个游离的硫醇基。血清白蛋白主要为α-螺旋结构,具有三个结构域,每个结构域被细分成两个亚域。已知白蛋白特异结合多种分子,所述多种分子包括药物例如阿司匹林、布洛芬、氟烷、异丙酚和华法林以及脂肪酸、氨基酸、类固醇、谷胱甘肽、金属、胆红素、溶血磷脂酰胆碱、高血红素和前列腺素。不同的结构域涉及在药物结合;大多数小分子药物和激素与位于亚域IIA和IIIA中的两个主要位点中的一个相结合。由于其缺乏免疫原性,白蛋白在生物产品中通常被用作载体蛋白。由于在活的减毒病毒疫苗中包含的蛋白质剂量可以是微克分之几(源于103到105病毒颗粒),所以惰性载体蛋白被用于防止由于吸附和非特异结合到玻璃、塑料或其它表面造成的损失。然而,如本文所示,对于白蛋白和EO-PO嵌段共聚物的结合观察到意想不到的稳定性提高,表明两个成分之间和/或成分和病毒颗粒之间的相互作用。此外,白蛋白存在时病毒稳定性的增强不可能由于作为一般的载体蛋白的功能:其他蛋白质例如明胶和乳铁蛋白未能够提高病毒稳定性。
[0062] 在某些实施方式中,血清白蛋白可以来自于人和其它哺乳动物源。对于意图用于人的疫苗,具体的实施方式可以包括人白蛋白或其它减少或消除不良免疫反应所需要的人制品。本领域技术人员将意识到用于每个物种的特异的白蛋白可以在动物疫苗中使用(例如犬白蛋白用于犬制品、牛白蛋白用于牛制品)。在进一步实施方式中,蛋白质是重组人白蛋白。存在用于在各种不同表达系统中表达重组人白蛋白或其部分的标准方法,所述表达系统包括细菌、酵母菌、藻类、植物、哺乳动物细胞或转基因动物系统。此外,血清白蛋白或其部分可以在无细胞系统中产生或化学合成。这些或任何类似系统中产生的重组人白蛋白并入本文。本领域技术人员将认识到其它蛋白质可以代替白蛋白。例如,白蛋白是多基因家族中的一员。由于它们的结构和序列的相似性,该家族的其它成员(例如甲胎蛋白、维生素D结合蛋白、或α白蛋白(afamin)可以代替本文考虑的组合物和方法中的白蛋白。本领域技术人员也将认识到可以通过本领域已知的任意方法对白蛋白进行修饰,例如,通过重组DNA技术、通过翻译后修饰、通过蛋白酶剪切和/或通过化学方法。本文考虑了对白蛋白的这些取代和改变,其对血清白蛋白提供了本质上等价的稳定功能而没有取代和改变。
[0063] 在某些实施方式中,描述了具有在生理可接受缓冲液中的高分子量表面活性剂、蛋白质和糖类的组合物。在一些实施方式中,糖类是糖或多元醇。糖可以包括但不限于,单糖(例如葡萄糖、半乳糖、核糖、甘露糖、鼠李糖、塔罗糖、木糖或阿洛糖阿拉伯糖)、二糖(例如海藻糖、蔗糖、麦芽糖、异麦芽糖、纤维二糖、龙胆二糖、昆布二糖、木乙糖、甘露二糖、乳糖、或果糖)、三糖(例如阿卡波糖、棉子糖、松三糖、潘糖、或纤维三糖)或糖聚合物(例如葡聚糖、黄原胶、支链淀粉、环糊精、直链淀粉、支链淀粉、淀粉、纤维寡糖、纤维素、麦芽寡糖、糖原、壳聚糖、或者壳多糖)。多元醇可以包括但不限于甘露醇、山梨糖醇、阿拉伯糖醇、赤藓糖醇、麦芽糖醇、木糖醇、多羟直链糖醇、乙二醇、聚多羟直链糖醇、聚乙二醇、聚丙二醇、和甘油。
[0064] 在具体实施方式中,制剂可以含有在生理可接受缓冲液中的一种或者多种EO-PO嵌段共聚物、一种或者多种蛋白质和海藻糖的组合。在某些实施方式中,海藻糖可以以5到50%(w/v)的浓度范围存在。海藻糖已经被用于增强蛋白质制剂的稳定性。作为低温保藏剂在本领域已广泛知道并且实际上被用于保护生物体免受应激。可以忍受低水条件的脱水生活的生物体(anhydrobiotic organisms)含有大量的海藻糖。海藻糖已经显示出防止可以使膜在干燥期间不稳定的膜融合情况和相变。结构分析表明海藻糖在脂双层中的极性头基团之间很适合。海藻糖也防止不稳定蛋白质在干燥期间的变性。据认为海藻糖通过与极性蛋白质残基氢键结合稳定蛋白质。海藻糖是由两个葡萄糖分子以1:1连接组成的二糖。由于
1:1连接,海藻糖有很少或没有还原能力并且因此基本上与氨基酸和蛋白质不反应。这种还原活性的缺乏可以提高海藻糖对蛋白质的稳定作用。在某些实施方式中,海藻糖为活的减毒病毒提供稳定性。海藻糖的这种活性可能是由于它同时稳定病毒的膜和外被蛋白的能力。
[0065] 在进一步实施方式中,组合物可以包括一种或者多种EO-PO嵌段共聚物、一种或者多种蛋白质和一种或者多种糖类,其中糖类之一是在生理可接受缓冲液中的壳聚糖,其为活的减毒病毒提供提高的稳定性。在某些实施方式中,组合物可以包括浓度范围为0.001到2%的壳聚糖(例如,在大约6.8的pH)。壳聚糖是由壳多糖——甲壳动物外骨骼的结构聚合物——的脱乙酰作用衍生的阳离子多糖。它是N-乙酰基-葡糖胺和葡糖胺的聚合物;两种糖的含量取决于脱乙酰作用的程度。壳聚糖的正电荷使其与负电荷的表面和分子结合。因此,它结合粘膜的表面并且被认为促进粘膜的吸附。壳聚糖也可以与DNA、RNA和其它寡核苷酸结合并形成纳米颗粒,并且已经在非病毒基因递送中使用。本文某些实施方式说明壳聚糖增加活的减毒病毒稳定性。
[0066] 在某些实施方式中,可以描述典型地包括生理可接受缓冲液的组合物。本领域技术人员认识到多种生理可接受缓冲液存在,其包括但不限于含有磷酸盐、TRIS、MOPS、HEPES、酸氢盐的缓冲液、本领域已知的其它缓冲液、和多种缓冲液的组合。此外,本领域技术人员认识到调整盐浓度到接近生理水平(例如,盐水或0.15 M的总盐),对于肠胃外施用组合物以防止细胞损害和/或在注射部位疼痛是最佳的。本领域技术人员也将认识到当糖浓度增加时,盐浓度可以减少以维持与制剂相等的渗透性。在某些实施方式中,考虑具有大于pH 6.8的缓冲介质;一些活的减毒病毒(例如黄病毒)在低pH是不稳定的。在另一种实施方式中,生理可接受缓冲液可以是磷酸盐缓冲盐水(PBS)。
[0067] 本文一些活的减毒病毒疫苗组合物涉及这样的组合物,其除了具有减少的免疫原性或非免疫原性之外还增加活的减毒病毒稳定性和/或减少生物致劣。依照这些实施方式,组合物可以包括一种或者多种蛋白剂;一种或者多种糖类或多元醇剂;和一种或者多种高分子量表面活性剂,其中组合物减少活的减毒病毒的失活。因此,本文考虑的某些组合物在被施用给对象时已经减少了不良反应。在一些示例性组合物中,表面活性剂(一种或多种)由一种或者多种EO-PO嵌段共聚物组成;蛋白质剂(一种或多种)选自源于脊椎动物种的乳清蛋白、血清白蛋白、甲胎蛋白、维生素D结合蛋白、α白蛋白(afamin);和糖剂(一种或多种)是糖和/或多元醇的一种或者多种。在某些实施方式中,组合物可以包括选自海藻糖、蔗糖、壳聚糖、山梨糖醇、和甘露醇的糖剂的一种或多种。在某些更具体的实施方式中,为了减少对疫苗的免疫反应,血清白蛋白可以源于脊椎物种,或在其它实施方式中,源于与对象(例如人)相同的来源。在其它实施方式中,糖剂是海藻糖。在某些实施方式中,至少一种表面活性剂是EO-PO嵌段共聚物普鲁罗尼克F127。在一些活的减毒病毒疫苗组合物中,至少一种糖剂是海藻糖。在某些活的减毒病毒疫苗组合物中包括浓度是0.1到4%(w/v)的EO-PO嵌段共聚物普鲁罗尼克F127;和/或浓度为0.001到3%(w/v)的血清白蛋白,和/或浓度为5到50%(w/v)的海藻糖。
[0068] 药物组合物
[0069] 本文实施方式提供将适合于体内药物施用的生物相容形式的组合物施用给对象。“适合于体内施用的生物相容形式”指的是待施用的活性剂(例如该实施方式的活的减毒病毒组合物)的形式,其中活性剂的治疗作用胜过任意毒性作用。治疗活性量的治疗组合物的施用被定义为如此量,其在获得期望结果的必须的剂量和时间段下是有效的。例如,治疗有效量化合物可以按照因素例如个体的疾病状态、年龄、性别、和体重以及制剂引发个体中期望反应的能力而变化。给药方案可以调整以提供最佳的治疗反应。
[0070] 在一些实施方式中,组合物(例如实施方式的药物化学品、蛋白质、多肽)可以以方便的方式施用,例如以皮下、静脉内、通过口服施用、吸入、透皮应用、阴道内应用、局部应用、鼻内或直肠施用。在更具体的实施方式中,化合物可以口服或皮下施用。在另一个实施方式中,化合物可以静脉内施用。在一个实施方式中,化合物可以鼻内施用,例如吸入。
[0071] 化合物可在适当的载体或稀释剂中施用给对象,与组合物同时施用。如本文使用的,术语“药学上可接受载体”意图包括稀释剂,例如盐水和水缓冲溶液。活性剂也可以肠胃外或腹膜内施用。可以在甘油、液体聚乙二醇及其混合物中以及在油中制备分散剂。在普通的贮存和使用条件下,这些制剂可以含有防止微生物生长的防腐剂
[0072] 适合于可注射使用的药物组合物可以通过本领域已知的方法施用。例如,可以使用无菌水溶液(在水中是可溶的)或分散剂和用于无菌可注射溶液或分散剂的临时制剂的无菌粉末。在所有情况下,组合物可以是无菌的并且可以是容易可注射性存在程度的流体。它还可以保护免于微生物例如细菌和真菌的污染作用。药学上可接受载体可以是含有例如水、乙醇、多元醇(例如,甘油、丙二醇和液体聚乙二醇和类似物)、和其适当的混合物的溶剂或分散剂介质。例如,通过使用包衣例如磷脂酰胆碱、在分散剂情况下通过保持要求的颗粒大小和通过使用表面活性剂,可以维持适当的流动性。
[0073] 按需要,通过将一定量的活性化合物与适当溶剂或与以上列举的成分的一种或组合进行合并,接着灭菌,可以制备无菌可注射溶液。
[0074] 在配制时,溶液可以以与剂量制剂相容方式,并且以治疗有效量施用。制剂容易地以多种剂型例如上述可注射溶液的形式施用。考虑的是缓释胶囊、定时释放微粒等也可以用于施用本文组合物。这些具体的水溶液特别适合于静脉内、肌肉内、皮下和腹膜内施用。
[0075] 活性治疗剂可以被配制在混合物内,每剂量可以包括大约0.0001到1.0毫克、或大约0.001到0.1毫克、或大约0.1到1.0克、或甚至大约1到10克。对于预先确定情形,单剂量或多剂量可以按适当的计划表施用。在一些实施方式中,在暴露于本文考虑的病毒之前、期间和/或之后,施用剂量。
[0076] 在另外一个实施方式中,鼻用溶液或喷雾剂、气溶胶或吸入剂可以用于递送感兴趣的化合物。适合于其它施用方式的另外制剂包括栓剂和阴道栓剂。也可以使用直肠阴道栓剂或塞剂(suppository)。一般而言,对于栓剂,传统的粘合剂和载体可以包括例如聚亚烷基二醇或三酰甘油;这种栓剂可以由含有0.5%到10%范围内、优选为1%到2%的活性成分的混合物形成。
[0077] 口服制剂包括这种通常使用的赋形剂,例如制药级的甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、纤维素、碳酸镁等。在某些实施方式中,口服制剂组合物可以包括惰性稀释剂或可被吸收的、可食用的载体,或可以被装入硬或软壳明胶胶囊中,或可以压制成为片剂、或可以直接与饮食的食物混合。对于口服治疗性施用,活性化合物可以与赋形剂合并并以可摄取的片剂、颊含片、锭剂(troches)、胶囊、酏剂、悬浮剂、糖浆、薄片(wafers)等的形式使用。这些组合物和制剂应该含有至少0.1%的活性化合物。组合物和制剂的百分比当然可以改变并且可以方便地为单位重量的大约2到大约75%之间、或优选地为25-60%之间。在这些治疗有用的组合物中活性化合物的量是这样的以便可以获得适当的剂量。
[0078] 试剂盒
[0079] 进一步的实施方式涉及与本文描述的方法和组合物一起使用的试剂盒。在试剂盒中可以提供组合物和活的病毒制剂。试剂盒也可以包括适当的容器、本文详述的活的减毒病毒组合物和任选地一种或多种另外的剂,例如其它抗病毒剂、抗真菌或抗细菌剂。
[0080] 试剂盒还可以包括在需要其的对象中使用的适当等份的组合物。此外,本文组合物可以是部分或完全脱水或含水的。本文考虑的试剂盒可以根据具体的制剂在室温或在如本文公开的冷藏温度贮存。
[0081] 试剂盒的容器方式一般包括至少一个小瓶、试管、烧瓶、瓶子、注射器或其它容器方式,组合物可以被放置在所述容器中并且优选地被适当分成等分。其中提供另外的成分,试剂盒一般也含有一个或多个这种剂或成分放入的另外的容器。本文试剂盒也典型地包括含有剂的工具、组合物和处于紧密封闭的任何其它试剂容器,用于商业销售。这种容器可以包括在其中保留期望的小瓶的注射或吹塑的塑料容器。
[0082] 本发明具体涉及如下技术方案:
[0083] 1.活的减毒病毒组合物,其包括:
[0084] 一种或者多种活的减毒包膜病毒;
[0085] 泊咯沙姆407,其具有0.1%至4%的终浓度;
[0086] 白蛋白,其具有0.1%至小于5%的终浓度,和
[0087] 海藻糖,其具有5%至50%的终浓度;
[0088] 其中所述组合物能够减少所述活的减毒包膜病毒的失活。
[0089] 2.根据项1所述的病毒组合物,其中所述活的减毒包膜病毒选自黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒、痘病毒家族和其组合。
[0090] 3.根据项1所述的病毒组合物,其中所述活的减毒包膜病毒是黄病毒。4.根据项1所述的病毒组合物,其中所述组合物为含水的形式。
[0091] 5.根据项1所述的病毒组合物,其中所述组合物是部分或全部脱水的。6.根据项1所述的病毒组合物,其中所述白蛋白选自乳清蛋白和血清白蛋白。
[0092] 7.根据项1所述的病毒组合物,其中所述白蛋白是血清白蛋白。
[0093] 8.根据项7所述的病毒组合物,其中所述泊咯沙姆407的浓度为0.5-3.0%(w/v),其中所述白蛋白浓度为0.1%到3%(w/v),并且海藻糖浓度为15%到50%(w/v)。
[0094] 9.减少活的减毒包膜病毒组合物的失活的方法,其包括:将一种或者多种活的减毒包膜病毒与组合物组合,所述组合物包括包括泊咯沙姆407,其具有0.1%至4%的终浓度、白蛋白,其具有0.1%至小于5.0%的终浓度,和海藻糖,其具有5%至50%的终浓度,其中所述组合物能够减少所述活的减毒包膜病毒的失活。
[0095] 10.根据项9所述的方法,其中所述活的减毒病毒选自黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒、痘病毒家族和其组合。
[0096] 11.根据项9所述的方法,其还包括使所述组合部分或全部脱水。
[0097] 12.根据项11所述的方法,其还包括在施用之前,使所述组合物部分或全部再水合。
[0098] 13.根据项9所述的方法,其中所述组合物增加含水病毒组合物的保存期。
[0099] 14.根据项9所述的方法,其中所述组合物使含水活的减毒病毒的失活减少24小时或更长。
[0100] 15.根据项9所述的方法,其中所述组合物在一个或多个冻融循环期间减少含水活的减毒病毒的失活。
[0101] 16.根据项9所述的方法,其中所述病毒组合物被用于制备减少感染的发生或预防感染的疫苗组合物。
[0102] 17.根据项16所述的方法,其中所述感染选自西尼罗河感染、登革热、日本脑炎、圣路易脑炎、蜱源脑炎和黄热病。
[0103] 18.减少活的减毒病毒组合物失活的试剂盒,其包括:
[0104] 至少一个容器;和
[0105] 组合物,所述组合物包括:白蛋白,其具有0.1%至小于5.0%的终浓度;海藻糖,其具有5%至50%的终浓度;和泊咯沙姆407,其具有0.1%至4%的终浓度。
[0106] 19.根据项18所述的试剂盒,其中所述白蛋白是血清白蛋白。
[0107] 20.根据项9所述的方法或项18所述的试剂盒,其中所述海藻糖浓度为15%到50%(w/v)。
[0108] 21.根据项9所述的方法或项18所述的试剂盒,其中所述泊洛沙姆407的浓度为0.5%到3%(w/v)。
[0109] 22.根据项19所述的试剂盒,其中所述血清白蛋白浓度为0.1%到3%(w/v)。
[0110] 23.根据项18所述的试剂盒,其中所述组合物还包括一种或多种活的减毒包膜病毒。
[0111] 24.根据项23所述的试剂盒,其中所述活的减毒包膜病毒选自黄病毒、披膜病毒、冠状病毒、棒状病毒、线状病毒、副黏病毒、正黏病毒、布尼亚病毒、沙粒病毒、反转录病毒、嗜肝DNA病毒、疱疹病毒、痘病毒家族和其组合。
[0112] 25.项1所述的病毒组合物,其中所述海藻糖的浓度为至少15%(w/v)。
[0113] 实施例
[0114] 包括以下实施例以说明本文提供的某些实施方式。本领域技术人员应该意识到实施例中公开的技术代表发现在实践本文公开中运作良好的技术,并且因此可以考虑组成用于其实践的优选方式。然而,根据本公开,本领域技术人员应该意识到在公开的具体实施方式中可以进行许多变化并且在不偏离本文的精神和范围的情况下仍然获得相同或类似的结果。
[0115] 实施例1
[0116] DEN-2 PDK 53黄病毒在液相中的基础稳定性
[0117] 在一个说明性方法中,研究了黄病毒在液相中的热稳定性。依照这个方法,测定储存在磷酸盐缓冲生理盐水(PBS)中的DEN-2 PDK 53亲代疫苗载体在不同温度下的基础稳定性(表1)。在一个实施例中,在2ml的螺盖小瓶中,在4℃、室温(~21℃)或37℃下温育在0.5ml PBS的总体积中的1×104pfu的DEN-2 PDK 53病毒。在温育24小时后,通过中性红琼脂糖覆盖蚀斑滴定试验(Neutral Red agarose overlay plaque titration assay),在非洲绿猴肾细胞(Vero cells)中测定病毒效价和活性。如表1中说明,在PBS中、4℃温育DEN-2 PDK 53导致病毒效价平均减少四倍,而在37℃温育相同时间段导致病毒效价完全丧失。这些结果说明DEN-2 PDK 53黄病毒在不存在稳定赋形剂时的稳定性相对差。
[0118] 表1 Den-2 PDK53病毒在不同温度贮存24小时的稳定性
[0119]
[0120] 实施例2
[0121] 组合物的稳定作用
[0122] 在某些示例性组合物中,本文考虑的有助于活的病毒疫苗的热稳定性的药学上可接受的赋形剂在本领域是已知的。在一个示例性方法中,PBS作为基础组合物使用,以评估不同赋形剂的稳定作用。这些实施例中,每种赋形剂的储备溶液在PBS中制成并且用NaOH调整pH到大约7.1,除了壳聚糖,壳聚糖的储备溶液的pH调整到大约6.8。赋形剂在PBS中稀释到显示的终浓度(w/v)(表2)。依照这个方法,在无血清培养基中,将1×104pfu的DEN-2 PDK 53病毒加入到0.5ml的每种组合物中并在37℃贮存24小时。在温育后,如以上所描述,通过在非洲绿猴肾细胞中的蚀斑滴定测定病毒活性和效价。如在表2中说明,包括单种赋形剂的组合物在与先前试验实施例的浓度相当的不同浓度下的稳定作用是最小的。然而,一些赋形剂例如,海藻糖和重组人血白蛋白(rHSA)在37℃对于稳定DEN-2 PDK 53病毒比其它的赋形剂更有效。在表2中表示的研究结果也显示,几种赋形剂增加的稳定作用——包括rHSA和海藻糖——可以在这些赋形剂的某些浓度范围内获得。在此具体的实施例中,海藻糖在
15%(w/v)浓度以上更有效而F127在0.5和3%之间的浓度更有效。
[0123] 表2当在37℃贮存24小时时,不同赋形剂对DEN-2 PDK53稳定性的作用[0124]
[0125]
[0126] 实施例3
[0127] 包括特定赋形剂组合的组合物的稳定作用
[0128] 在以下说明性步骤中,检验了包括不同组合和浓度的多个赋形剂的组合物对于亲代DEN-2 PDK 53黄病毒疫苗的稳定作用。赋形剂从如实施例2中描述的储备溶液用PBS稀释到指示的最终浓度。在37℃,1×104pfu的DEN-2 PDK 53疫苗病毒在0.5ml的每种组合物中温育21小时(图1)或48小时时段期间(图2)。在规定的时间间隔,通过如实施例1中描述的蚀斑滴定试验测定病毒效价和活性。图1代表这个说明示例性结果,其被表示为在温育后剩余的病毒效价相对于输入的百分比,和表示为图2中log10效价丧失。在这个具体的图解中,赋形剂的不同组合的分析显示,由糖类、普鲁罗尼克共聚物非离子表面活性剂和蛋白质组成的制剂对提高在37℃的CDEN-2 PDK 53稳定性是最佳的。包括海藻糖、F127和rHSA的制剂具有最大的稳定作用。意外地,这三种赋形剂的联合的稳定作用比每个单独成分观察到的稳定作用的总和大得多,表明成分之间协同作用。通过海藻糖、F127和rHSA组合的协同活性获得DEN-2 PDK 53黄病毒的提高的热稳定性,这基于现有技术的实例是不可能预期的。图1和2也图解海藻糖/F127/rHSA混合物的稳定作用通过加入0.05%壳聚糖而进一步地增强。图2显示当病毒贮存在37℃48小时时段时的病毒失活的速度被含有海藻糖、F127和rHSA的组合物显著地降低。在本领域中的实例表明黄病毒的稳定性可以被含有Ca2+和Mg2+二价阳离子的制剂增强。然而,如图1和图2中表示,加Ca2+(0.0009M)和Mg2+(0.0005M)到制剂中没有给予额外的稳定益处。由图2的结果表明二价阳离子的加入可能对在具体实施方式的情况下的长期液相病毒稳定性具有负面影响。
[0129] 在一个示例性方法中,用多个黄病毒评估包括海藻糖、F127和rHSA的组合物的稳定性质。如在实施例1中述,测定表达来自于西尼罗河(DEN-2/WN)、登革热1(DEN-2/D1)、登革热3(DEN-2/D3、或登革热4(DEN-2/D4)病毒的膜和包膜蛋白的嵌合DEN-2黄病毒的稳定性。表3中的说明性结果显示当贮存在包括海藻糖、F127和rHSA的组合物中时,所有嵌合黄病毒的液相稳定性大大提高。这些不同嵌合体表达来自于五种血清学分型不同黄病毒的包膜和膜蛋白。此外,西尼罗河病毒和登革热病毒是显著不同的。这个结果表明本文组合物对于黄病毒家族以及其它病毒家族中的的不同成员的液相稳定性可能是有用的。通过如实施例1中概述的代表性方法检查在室温(~21℃)和4℃稳定黄病毒的能力。表4中说明的示例性结果表明包括海藻糖、F127和rHSA的组合物,在21℃有效地保持病毒活性为7天而在4℃为48天。
[0130] 表3.在PBS或包括15%海藻糖、2%F127和1%rHSA的组合物(F1)中,在37℃贮存21小时的不同嵌合黄病毒的稳定性
[0131]
[0132] 表4.在PBS或包括15%海藻糖、2%F127和1%rHSA的组合物(F1)中,在不同温度下贮存7天或48天的黄病毒的稳定性
[0133]
[0134] 实施例4
[0135] 可选成分的使用
[0136] 使用另一个示例性方法比较牛血清白蛋白(BSA)和明胶与rHSA和不同普鲁罗尼克共聚物的稳定作用。如实施例1和2前面所概述地进行DEN-2 PDK 53病毒稳定性试验。前面实施例表明包括海藻糖、F127和rHSA的制剂,最佳地提高DEN-2 PDK 53亲代疫苗病毒的热稳定性。如图3中实施例所显示,牛血清白蛋白的稳定作用与单独的rHSA或与海藻糖和F127联合的rHSA的稳定作用相当。图3也说明作为独立的赋形剂,明胶在37℃对于稳定DEN-2 PDK 53与rHSA相当。然而,在这个示例性方法中,不同于BSA,没有显出明胶是同时包括海藻糖和F127的组合物中的rHSA的有效替代品。因此,虽然除了rHSA之外的蛋白质可以与海藻糖和F127一起使用,以帮助稳定黄病毒疫苗,但是按照这个示例性方法,使用血清白蛋白或非常相关的蛋白质是更适当的。此外,图3说明,作为独立的赋形剂,在稳定DEN-2PDK-53病毒的能力上,聚合物普鲁罗尼克P123与普鲁罗尼克F127相当。然而,这个示例性方法中,没有显出P123是同样含有海藻糖和血清白蛋白组合物中的F127的有效替代品。如图4中所示例的,含有海藻糖、rHSA和其它常用的药用表面活性剂例如聚山梨糖醇酯20(吐温20)而不是普鲁罗尼克共聚物的组合物,在稳定DEN-2 PDK 53中相对于含有普鲁罗尼克共聚物的制剂不是有效的。这些示例性方法表明,含有显著高分子量普鲁罗尼克共聚物表面活性剂的制剂的稳定效率更好。
[0137] 示例性数据在图4中进一步地图解。图4表示DEN-2 PDK 53病毒在含有不同表面活性剂的组合物中的稳定性。DEN-2 PDK 53在每种制剂中在37℃下贮存23小时。这个实施例中评估的表面活性剂包括正辛基-β-D-吡喃葡萄糖苷(β-OG)、聚山梨糖醇酯20(P 20)、聚山梨糖醇酯80(P 80)和F127(F)。其它制剂成分包括海藻糖(T)和rHSA(A)。数值表示为在温育后剩余病毒效价相对于输入效价的百分比。
[0138] 实施例5
[0139] 不同组合物稳定作用的比较
[0140] 将一种示例性组合物的稳定性质与本领域已知的组合物的稳定性质进行比较。在本领域公开的(美国专利4,500,512)稳定活的黄病毒疫苗的组合物包括在PBS中的4%乳糖、2%山梨糖醇、0.1g/L CaCl2、0.076 MgSO4和0.0005M到0.05M的量级的氨基酸。由Adebayo等(1998)报道的另一种组合物由10%蔗糖、5%乳清蛋白、0.1g/L CaCl2、和0.076g/L MgSO4组成。在一个示例性方法中,将这些制剂的稳定性质与本文的特定实施方式进行比较。在一种实施例组合物F1中,该组合物包括15%海藻糖、2%F127和1%重组HAS。
F2是美国专利4,500,512的没有氨基酸的制剂,而F3是具有氨基酸组氨酸和丙氨酸的相同制剂。F4是Adebayo等的组合物。在0.5ml的每种组合物中,在37℃,将1x104pfu的DEN-2 PDK53疫苗病毒温育23小时,在此之后,如实施例1中所述进行病毒活性和效价的测定。如图
5中所示例的,一些实施方式,例如实施例制剂F1,代表比先前描述组合物显著提高。在显示的实施例中,在本领域已知的制剂(制剂F3和F4)中贮存后几乎没有病毒活性被恢复,但是在本文公开的组合物中贮存后50%以上的初始病毒效价被恢复。这些结果显示在液相贮存期间,先前制剂对促进活病毒疫苗稳定性是无效的。
[0141] 实施例6
[0142] 在多次冻-融后病毒活性的保存
[0143] 在一个示例性方法中,说明了选择组合物以在冻-融循环后保存病毒活性的能力。在螺帽小瓶中,1×104pfu的DEN-2 PDK 53疫苗病毒悬浮在0.5ml的每种组合物中。对于第一个冻-融循环,在-80℃将小瓶冷冻24小时并在37℃快速解冻。这紧接着第二个冻-融循环,在该循环中小瓶在-80℃冷冻1小时并且在37℃快速解冻。病毒效价和活性随后通过如实施例1中描述的蚀斑滴定试验进行测定。如图6中所说明,包括海藻糖、F127和rHSA的特定组合物经过两个冻-融循环后,有效地保存全部病毒活性。另外,包括这三种赋形剂的组合物比只含有单个赋形剂的组合物更有效。此具体的说明性试验的结果表明本文公开的组合物和方法对于黄病毒疫苗是有效冷冻保护剂,并且在冷冻干燥、喷雾干燥或其它脱水技术过程中可以帮助病毒保存。
[0144] 实施例7
[0145] 其它活的减毒病毒的稳定
[0146] 先前说明的实施例显示在包括海藻糖、F127和rHSA的组合物中,数种活的减毒黄病毒的有效的液相稳定。预期本文公开的实施方式在稳定其它活的减毒病毒也可以为有效的。例如,包括海藻糖、F127和rHSA的制剂可以用于稳定活的减毒麻疹病毒、减毒辛德毕斯病毒、减毒流感病毒、重组减毒腺病毒或重组减毒痘苗病毒。在一个示例性方法中,这些非黄病毒-病毒可以在从细胞培养物中收获后直接悬浮和并保持在液相中,在包括海藻糖、F127和rHSA的组合物中。在另一说明性方法中,非黄病毒-病毒在冷冻或喷雾干燥之前、或之后可以悬浮在组合物中。统计学上提高的病毒稳定性可以说明本实施方式的制剂是可以应用于黄病毒家族之外的其它减毒病毒疫苗。本领域技术人员认识到应用可以随后被延伸到其它活的减毒病毒。
[0147] 实施例8
[0148] 安全和体内免疫原性
[0149] 赋形剂和分子或细胞成分之间的分子相互作用不仅可以用来增强病毒疫苗的稳定性,而且可以引起体内细胞或组织损伤的增加。制剂可以减少这些病毒疫苗在活的动物中的免疫原性。在本实施例中,说明了示例性组合物在皮下注射后是安全的并且基本是无免疫活性的。选择四种不同示例性组合物用于小鼠中的检验,如下。
[0150] 制剂1:15%海藻糖、2%F-127、1%rHSA
[0151] 制剂2:15%海藻糖、2%F-127、1%rHSA、1mM CaCl2/0.5mM MgSO4
[0152] 制剂3:15%海藻糖、2%F-127、1%rHSA、0.5%壳聚糖
[0153] 制剂4:22.5%海藻糖、3%F-127、1.5%rHSA
[0154] 制剂5:PBS
[0155] 在本文描述的某些方法中,在0天(d0),通过用1×105pfu的配制的DEN-2 PDK-53/WN重组黄病毒疫苗皮下注射来免疫8或9只NIH Swiss小鼠组,在d29用同样配制的疫苗加强,并且随后在d45用103pfu的致病性西尼罗河菌株(NY99)上活化(攻击)。对照小鼠(四个8只的组)接受没有病毒的单独制剂1–4。在给药后,在任一免疫的小鼠中没有观察到不良情况。因此,在这个实施例中,具有或不具有疫苗病毒的示例性制剂没有引起明显的不良情况。在d0免疫接种之前、在d28加强之前、在d44活化之前以及在d75活化之后收集血清。通过斑减少中和试验(PRNT)测定血清中的西尼罗河中和抗体的效价。该研究的结果在表5中表示。
[0156] 表5:由配制的DEN2/WN疫苗诱导的中和抗体和保护
[0157]
[0158] 1 GMT=几何平均效价(geometric mean titer);<10的效价被任意地指定值1。
[0159] 2%SC=具有PRNT效价>10的血清转变的动物百分比。
[0160] 不论是否是使用无制剂(制剂5)或示例性制剂(制剂1–4)之一,接受DEN-2/WN疫苗的大部分动物在第一剂量后进行血清转变。此外,所有的接种疫苗的动物在加强施用后进行血清转变。在疫苗组之间,几何平均PRNT效价(GMT)显示很小的不同。在初次免疫接种后,效价是低的,在加强后增加3-10倍,并且随后在活化后显示显著的回忆应答。100%的所有免疫接种动物经历攻击(活化)存活,再次不依赖于疫苗制剂。仅22%的对照动物存活,测试后生存的那些动物显示出有效的中和抗体应答。一个优势是本实施例说明在小鼠中,示例性制剂没有降低示例性重组DEN-2/WN疫苗预防西尼罗河疾病能力。
[0161] 实施例9
[0162] 在另一个实施例中,使用含有海藻糖、rHSA和F127的液体组合物来稳定在25℃或4℃贮存不同时间段的西尼罗河嵌合黄病毒。1x104pfu的嵌合DEN-2/WN疫苗病毒在每个温度温育,并且在一或两周的间隔进行病毒活性评估,如实施例1中所述。如图7和8中所图解,含有海藻糖、rHSA和F127的制剂显著提高分别在25℃和4℃贮存期间的DEN-2/WN疫苗病毒的热稳定性。在25℃,7天后,病毒活性的丧失小于1个log。在4℃,当贮存在包括海藻糖、F127和rHSA的示例性制剂中时,对于长达12周的时期的病毒失活可忽略不计。
[0163] 实施例10
[0164] 在另外一个示例性方法中,示出了包括海藻糖、rHSA和普鲁罗尼克共聚物的组合4
物与脱水的DEN-2 PDK 53疫苗一起的稳定作用。依照本文公开的步骤,配制1×10 pfu的DEN-2 PDK 53疫苗病毒。制剂的疫苗放在血清小瓶中并且经历常规的冻干步骤。在真空下塞住干燥的疫苗、在37℃或4℃贮存14天,接着通过加入无菌水将疫苗重构到它的原始液体体积。重构疫苗的病毒活性如在前概述进行评估。在37℃,在磷酸盐缓冲生理盐水中配制的含有海藻糖、rHSA和普鲁罗尼克共聚物的组合物存在时,观察到1个log的平均病毒效价损失(图9)。对于在4℃贮存14天的配制的脱水DEN-2 PDK 53病毒疫苗,没有观察到病毒活性损失。这些结果说明使用本文公开的组合物有效保存脱水的病毒疫苗。
[0165] 图9表示冻干的DEN-2 PDK 53在不同温度下的稳定性。在37℃或4℃温育2周后,配制的冻干DEN-2 PDK 53疫苗病毒的Log效价丧失,如所示的。在磷酸盐缓冲盐水中配制制剂F1(15%海藻糖、2%F127、1%rHSA)和F2(15%海藻糖、2%F127、0.01%rHSA)。在10mM Tris碱中配制制剂F3(15%海藻糖、2%F127、0.01%rHSA)。
[0166] 根据本公开,在没有过分试验的情况下,可以制备和执行本文公开和要求保护的所有的组合物和方法。虽然根据优选的实施方式已经描述了组合物和方法,但在不偏离本文的概念、精神和范围的情况下,变化可以应用到本文描述的组合物和方法以及方法的步骤中或方法的步骤的顺序中,这对于本领域技术人员来说是明显的。更具体地,某些化学和生理相关的剂可以替换本文描述的剂,同时获得相同或相似的结果。对于本领域技术人员来说,明显的所有这些类似取代和修改都被认为在所附权利要求所限定的精神、范围和概念内。
[0167] 本申请中引用的所有文献或文献部分,包括但不限于专利、专利申请、文章、书和专著,通过引用全文明确并入本文。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈