首页 / 专利库 / 作物管理 / 农作物 / 饲料作物 / 修饰的麦草畏单加氧酶及其使用方法

修饰的麦草畏单加酶及其使用方法

阅读:1027发布:2020-12-13

专利汇可以提供修饰的麦草畏单加酶及其使用方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了麦草畏加单 氧 酶(DMO)的经修饰的变体。本发明涉及出乎意料的发现:表达该DMO的细胞显示出对 除草剂 麦草畏的高 水 平耐受性。提供了包含编码DMO的核酸的组合物和使用方法。,下面是修饰的麦草畏单加酶及其使用方法专利的具体信息内容。

1.分离的核酸分子,其选自:
a)编码SEQ ID NO:1的多肽的核酸分子;
b)包含SEQ ID NO:2的序列的核酸分子;和
c)核酸分子,其编码与SEQ ID NO:1的多肽有至少90%序列同一性 的多肽,其中后一多肽具有麦草畏单加酶活性并且在对应于SEQ ID NO:1的基酸112的位置上包含半胱氨酸。
2.权利要求1的分离的核酸分子,其中该核酸分子编码质粒 pKLP36-TEV-TP-DMOc(ATCC保藏号PTA-7357)编码的麦草畏单加氧 酶。
3.DNA构建体,其包含可操作性连接于启动子的权利要求1的核 酸分子。
4.权利要求3的构建体,其中该启动子在植物细胞中是有功能的。
5.权利要求3的构建体,其中所述分离的核酸分子可操作性连接于 叶绿体转运肽。
6.多肽序列,其包含与SEQ ID NO:1有至少90%同一性的氨基酸 序列,其中该多肽具有麦草畏单加氧酶活性并且在对应于SEQ ID NO:1 的氨基酸112的位置上包含半胱氨酸。
7.用权利要求1的核酸分子转化的植物细胞。
8.权利要求7的细胞,其中所述植物细胞是双子叶植物细胞。
9.权利要求7的细胞,其中所述植物细胞是单子叶植物细胞。
10.权利要求7的细胞,其中所述双子叶植物细胞是大豆、花、 玉米或油菜籽植物细胞。
11.包含权利要求7的细胞的植物组织培养物。
12.用权利要求1的核酸分子转化的转基因植物。
13.权利要求12的转基因植物,其中所述植物是双子叶植物。
14.权利要求12的转基因植物,其中所述植物是单子叶植物。
15.权利要求12的转基因植物,其中所述植物是大豆、棉花、玉米 或油菜籽植物。
16.产生麦草畏耐受性植物的方法,其包括向植物中导入权利要求3 的构建体。
17.权利要求16的方法,其包括通过稳定转化起始植物细胞并将所 述细胞再生成为麦草畏耐受性植物而向所述植物中导入权利要求3的构 建体。
18.权利要求16的方法,其中通过将亲本植物自交或与第二种植物 杂交而产生麦草畏耐受性植物,其中所述亲本植物和/或第二种植物包含 转化构建体并且所述麦草畏耐受性植物遗传了来自所述亲本植物和/或 第二种植物的转化构建体。
19.在包含权利要求12的植物或其种子的作物生长环境中控制杂 草生长的方法,其包括对所述作物生长环境施用有效控制杂草生长的量 的麦草畏除草剂
20.权利要求19的方法,其中在所述作物生长环境的顶部施用麦草 畏除草剂。
21.权利要求19的方法,其中所述麦草畏除草剂的量不损害权利要 求12的所述植物或其种子并且损害与权利要求12的植物具有相同基因 型但是缺少权利要求1的核酸的植物。
22.生产食物、饲料或工业产品的方法,其包括:
a)获得权利要求12的植物或其部分;和
b)从所述植物或其部分制备食物、饲料或工业产品。
23.权利要求22的方法,其中所述食物或饲料是油、粗粉、谷粒、 淀粉、面粉或蛋白质
24.权利要求22的方法,其中所述工业产品是生物燃料纤维、工 业化学品、药物或营养品

说明书全文

1.发明领域

本发明一般涉及生物技术领域。更具体地,本发明涉及修饰的麦草 畏单加酶,其能够在转基因生物中赋予对除草剂麦草畏的耐受性。

2.相关领域描述

由于通过使用植物遗传工程技术引入性状如昆虫抗性和除草剂耐 受性,生产田间作物如玉米、大豆和花的方法在过去几十年中已经发 生了显著改变。这些改变已经导致每公顷更大的生产、降低的生产成 本、生产方案中更大的灵活性和效率、杀虫剂使用减少,并且对于昆虫 抗性棉花的情况,农民健康得到改善。从而转基因作物被大量采用并且 现在生长于世界上的数百万英亩上。然而,为了使转基因作物在市场上 有持续的竞争力,需要增加新价值的性状。

尽管提高农作物园艺作物的数量和质量的新的性状已经出现并 且将在以后的数年内继续增速出现,但是仍然需要改进食物、饲料和其 他产品生产方法的性状。例如,尽管当前可以得到耐受除草剂草甘膦、 溴苯腈、磺脲和其他除草剂处理的转基因植物,但是在所控制的杂草范 围和通过开发额外的除草剂耐受性作物可以解决的处理选择中存在空 白点。此外,耐受上述除草剂的杂草的出现(尽管通常是局部的和可变 的)造成了对额外或备选的杂草控制措施的需要。

尽管已经证明转基因除草剂耐受性在商业背景中是有价值的,但是 因此需要耐受其他除草剂的植物以避免过度依赖于任何单一除草剂和 增加管理难以控制的杂草种类的选项。尤其需要的是为得到环境友好的 并且在控制杂草方面高度有效的除草剂而开发除草剂耐受性。麦草畏是 有效且环境友好的除草剂的一个这样的例子,其已经被农民使用40多 年。麦草畏尤其可用于控制玉米、高粱、小米、牧草、干草、牧场、甘 蔗、芦笋、草皮和草籽作物中一年生和多年生阔叶杂草和几种窄叶杂草 (Crop Protection Reference,1995)。不幸的是,麦草畏可以伤害许多商业 作物和双子叶植物,如大豆、棉花、豌豆、铃薯、向日葵和油菜,它 们对于甚至低平的该除草剂也特别敏感。尽管如此,麦草畏在控制杂 草生长中给出有效并且从而是农业中的重要工具。

最近,从嗜麦芽假单胞菌(Pseudomonas maltophilia)分离了编码 麦草畏单加氧酶(DMO)的基因,其赋予对麦草畏的耐受性(美国专利号 7,022,896)。DMO参与将除草剂麦草畏(3,6-二氯-邻-茴香酸)转化为无毒 的3,6-二氯水杨酸。该基因在美国专利号7,022,896中公开为在表达 DMO基因的植物中提供对麦草畏的耐受性。然而,该基因的变体的开 发将有很大益处。此类变体可能在特定环境条件下具有改变的效率。以 这种方式,可以选择为特定环境优化的变体,在所述环境中,该变体将 意在被使用并且可以显示出尤其有益的动力学特征。该变体尤其可以在 不同的温度或pH条件下显示出最大效率,并且从而取决于细胞内条件 和/或预期的作物生长条件被选择用于特定的作物物种。

发明概述

一方面,本发明提供了分离的核酸序列,其选自:a)编码SEQ ID NO:1的多肽的核酸序列;b)包含SEQ ID NO:2的序列的核酸序列;和 c)编码与SEQ ID NO:1的多肽有至少90%序列同一性的多肽的核酸序 列,其中后一多肽具有麦草畏单加氧酶活性并且在对应于SEQ ID NO:1 的基酸112的位置包含半胱氨酸。在其他实施方案中,提供了DNA 载体,其包含可操作性连接于启动子的编码本文所述核酸的DMO。该 启动子可以在植物细胞中是有功能的。在一些实施方案中,编码麦草畏 单加氧酶的核酸序列可以可操作性连接于叶绿体转运肽。

另一方面,本发明提供了与SEQ ID NO:1有至少90%同一性的多肽 序列,其中该多肽具有麦草畏单加氧酶活性并且在对应于SEQ ID NO:1 的氨基酸112的位置包含半胱氨酸。

在再一方面,本发明提供了用本文所述的编码麦草畏单加氧酶的核 酸转化的宿主细胞或组织。在一些实施方案中,宿主细胞可以是植物细 胞。在其他实施方案中,植物细胞可以被定义为双子叶植物细胞或单子 叶植物细胞。在特定实施方案中,宿主细胞是大豆、棉花、玉米或油菜 植物细胞。在进一步的实施方案中,提供了包含本文所述的转基因细胞 的组织培养物。

在再一方面,本发明提供了用本文所述的编码麦草畏单加氧酶的核 酸转化的转基因植物和其后代。在一些实施方案中,植物可以被定义为 双子叶植物或单子叶植物。在特定实施方案中,植物是大豆、棉花、玉 米或油菜植物。

在再一方面,本发明提供了产生麦草畏耐受性植物的方法,其包括 向植物中导入本文提供的转化构建体。在该方法的一个实施方案中,导 入转化构建体可以通过稳定转化一个或多个植物细胞并将所述一个或 多个细胞再生为麦草畏耐受性植物来进行。在另一实施方案中,通过将 亲本植物自交或与第二种植物杂交产生麦草畏耐受性植物,其中该亲本 植物和/或第二种植物包含转化构建体并且麦草畏耐受性植物遗传了来 自亲本植物和/或第二种植物的转化构建体。

在再一方面,本发明提供了生产食物或饲料的方法,包括:a)得到 如本文提供的本发明的植物或其部分;和b)从所述植物或其部分制备食 物或饲料。在本发明的一个实施方案中,所述植物部分是种子。在某些 其他实施方案中,所述食物或饲料是油、粗粉、蛋白质、谷粒、淀粉或 蛋白质。在其他实施方案中,饲料包含草料或牧场植物,如干草。本发 明还提供了生产纤维、药物、营养品(neutraceuticals)和工业化学品, 包括生物燃料以及来自本文提供的植物的任何其他产品的方法。

在再一方面,本发明提供了在包含如本文提供的本发明的植物或其 种子的作物生长环境中控制杂草生长的方法,包括对作物生长环境施用 有效控制杂草生长的量的麦草畏除草剂。在本发明的一些实施方案中, 可以将麦草畏除草剂施用于作物生长环境的顶部。在特定实施方案中, 麦草畏除草剂的量不损害本发明的植物或其种子并且损害与缺少本发 明提供的DMO编码核酸的植物有相同基因型的植物。

在本发明的再一个实施方案中,提供了植物,其包含本发明提供的 DMO编码核酸和至少一种其他转基因编码序列,包括例如,至少两种、 三种、四种、五种或更多种此类编码序列。在具体实施方案中,所述植 物包含赋予一种或多种额外的有益性状如除草剂或害虫/昆虫耐受性的 转基因。例如,如下文中描述,除了麦草畏耐受性外,还可以提供对一 种或多种除草剂的耐受性,以及其他有益性状。本发明因此特别提供了 植物,其包含与额外的转基因性状以任何希望的组合“叠加”的本发明 的编码DMO的核酸。

附图简述

下面的附图形成了本说明书的部分并且被包括用以进一步说明本 发明的某些方面。参考一个或多个这些附图以及本文给出的特定实施方 案的详细描述,可以更好地理解本发明。

图1.用于为了在高等植物中表达而遗传改造麦草畏单加氧酶基因 (DMOc)的盒的略图,其中使用来自花生褪绿条死病病毒的FLt36启动 子、烟草蚀纹病毒(TEV前导序列)翻译增强子序列,和来自豌豆Rubisco 小亚基基因的终止子区。所制备的另一种遗传改造形式的DMOc基因含 有来自豌豆Rubisco小亚基基因的转运肽编码区,其用于TEV翻译增 强子区和DMOc的编码区之间DMO的叶绿体定位

图2.DNA,RNA和蛋白质印迹图,表明遗传改造的DMO基因在 T1代转基因烟草植物中的存在和表达。泳道Q到V描绘了从多种T1代 转基因烟草植物提取的DNA、mRNA和DMO种类。来自非转基因烟草 植物的提取物在泳道WT中描绘,而泳道Ox显示了克隆的DMO基因 构建体的限制酶消化产物(上图)和在大肠杆菌(E.coli)中过量产生 的约37kDa DMO酶(下图)。通过向DMO抗血清中加入Rubisco抗 体的检测,在蛋白质印迹中检测Rubisco的约55kDa的大亚基,Rubisco 用作比较每个泳道中总的蛋白质负荷的内标。如通过一式两份凝胶的溴 化乙锭染色判断的,在每个泳道加载了相等量的RNA。箭头指出DMO DNA、mRNA或蛋白质带的位置。

图3.用麦草畏以2.2kg/ha处理两种T1烟草植物的效果,其中的一 种含有缺少叶绿体转运肽编码序列的遗传改造的DMOc基因(右),一 种缺少DMOc基因(右数第二个)。右边视图上的转基因植物显示出很 小(如果有)的来自麦草畏处理的损伤。左边的两株植物没有用麦草畏 处理并且代表转基因植物(左边的)和含有DMOc基因的转基因植物(左 数第二个)。

图4.DMOw引起的随着时间DCSA的形成。

图5.确定DMOw的最适测定pH。

图6.确定DMOw的最适测定温度。

图7.确定DMOc的最适pH。

图8.确定DMOc的最适温度。

图9.DMOc和DMOw的温度和pH最适条件概述。

图10.DMOw的稳态动力学。

图11.DMOc的稳态动力学。

图12.在50mM TRIS pH7.5和100mM KPi pH 7.0中30℃下预温育 DMOc 45分钟的效果。

图13.用静置一周并在4℃保存的酶在TRIS缓冲液(两个测定法 在左边;分别为在保存前和保存后的测定法)和KPi缓冲液(两个测定 法在右边;分别为在保存前和保存后的测定法)中的DMOc测定法。

图14.经遗传改造用于在烟草叶绿体中同源重组并表达的麦草畏 加单氧酶构建体。

图15.用DMO基因转化的转基因烟草系的叶绿体基因组的同质体 状态的阐明,所述DMO基因被设计用来在烟草叶绿体中同源重组并表 达。左图显示了用于通过同源重组将DMO整合到叶绿体中的构建体(如 图14中显示)。左边导向序列上方的条形指出了为了制备洋地黄毒苷 标记的杂交探针而被扩增的DNA片段。右图显示了DNA印迹:泳道1 含有大小标记。泳道2含有来自非转基因烟草植物的DNA。泳道3-11 含有在壮观霉素存在下的第一轮选择和再生后不久(上图)和几轮选择 和再生后得到叶绿体基因组的表观同质体时(下图)从转基因植物分离 的DNA。从转基因和非转基因植物分离用于DNA印迹分析的DNA并 进行用BamH I的限制酶消化,然后电泳分离并用与叶绿体基因组转化 载体的“左导向序列”互补的经标记的DNA片段(即,洋地黄毒苷标 记的杂交探针)探测经印迹的DNA。5.6kb DNA条带对应于含有DMO 基因的叶绿体DNA片段并且3.3kb条带对应于缺少插入的DMO基因构 建体的同源天然叶绿体条带。

图16.用28kg/ha水平的麦草畏处理的含有叶绿体编码的麦草畏单 加氧酶基因的T1代同质体转基因烟草植物(植物1-2和植物3-4来自 两株独立转化的R0植物)。

图17.在非转基因烟草植物和在叶绿体基因组中含有DMO基因的 转基因烟草植物中的DMO表达和对麦草畏处理的敏感性和抗性。用 DMO抗体探测的蛋白质印迹:泳道1含有纯化的DMO。泳道2是空白 的并且泳道3含有来自非转基因烟草植物的蛋白质提取物。泳道4和8 含有从“假阳性”烟草植物分离的蛋白质,所述烟草植物在用壮观霉素 选择期间显示出抗生素抗性,但是缺少完整的DMO基因。泳道5-7 含有转基因植物的提取物,所述转基因植物表达整合到叶绿体基因组中 的DMO基因编码的DMO。S=对0.56kg/ha的麦草畏敏感的植物;R= 抗5.6kg/ha的麦草畏的植物。如通过用抗Rubisco抗体检测的Rubisco 大亚基蛋白质的量判断的,几乎等量的提取物被加载到泳道4-8中, 而明显更多的来自非转基因植物的蛋白质被加载到泳道3中。箭头指出 DMO蛋白质的位置。

图18.野生型DMO多肽序列的部分与其他-硫加氧酶的保守区 的比较,表明DMO是独特的,与已知的酶具有低同一性,但是W112 (箭头)在其他铁-硫加氧酶中是保守的并且被两个保守结构域即 Rieske和Non-Haem Fe(SEQ ID NOS:4-23)围绕。

发明详述

本发明提供了在本文中被称作DMOc的麦草畏单加氧酶(DMO)变 体,其在对应于SEQ ID NO:1中所示的DMO的112位的位置包含半胱 氨酸。已表明DMOc当在转基因植物中表达时产生对除草剂麦草畏的高 水平耐受性。结果是令人惊奇的,因为所改变的氨基酸位置在其他铁- 硫加氧酶中是高度保守的。在所分析的来自45个物种的78种铁-硫加氧 酶序列中,具有至少15%同一性的所有52种加氧酶序列在对应于SEQ ID NO:1的氨基酸112的位置具有W,尽管最高的总同一性为仅仅38%。 该位置也被两个保守的功能结构域围绕(图18)。从而所产生的高水平 的除草剂耐受性DMOc是出乎意料的。

DMOc相对于未改变序列(DMOw;美国专利号7,022,896)的米-曼 参数分析揭示所述酶在催化效率方面不同:DMOc比DMOw的效率高5 倍并且DMOc似乎具有更高的更新次数和更严格的底物结合。此外, DMOc相对于天然酶在更低pH条件和更高温度下更好地发挥功能。这 些结果表明基于期望的使用条件,如作物生长条件选择用于特定转基因 植物的DMO变体的可能性。本发明的一方面因此涉及为至少一个作物 物种鉴定候选作物生长环境,并基于例如DMOc和DMOw的动力学鉴 定适于该环境的DMO酶。例如,本领域技术人员可以在具体实施方案 中,选择DMOc编码序列,用于相对于其他植物物种或生长环境具有更 低的植物内(inplanta)pH条件和/或在生长环境的情况下具有更高温度 的植物中。通过掺入土壤(种植前掺入);喷雾土壤(出苗前);和喷 雾在植物顶部(出苗后处理)来施用麦草畏,而对麦草畏的耐受性水平 可以在植物生长期间不同的时间而不同。

如上面指出的,在表达DMOc的转基因植物中得到了对极高水平的 除草剂麦草畏的耐受性。在例如通常对甚至极低水平麦草畏敏感的烟草 中,产生了表达DMOc的转基因植物,其耐受5.6kg/ha或以上的麦草 畏处理,例如,比为控制阔叶杂草通常推荐的田间施用率高10-20倍。 当将DMOc基因插入到烟草植物的叶绿体基因组中时,得到对至少28 kg/ha的麦草畏耐受性。也产生了带有细胞核编码的DMOc基因的转基 因大豆、番茄和拟南芥(Arabidopsis thaliana)植物并且发现它们耐受 高水平的麦草畏。例如,DMOc向大豆植物的核基因组中的插入产生了 对2.8kg/ha处理的耐受性,从而允许使用麦草畏控制表达DMOc的植 物田中的杂草。

从而表明DMOc在赋予麦草畏耐受性中是有效的,不需额外的编码 序列,如嗜麦芽假单胞菌DI-6菌株,铁氧还蛋白或还原酶。经修饰的 DMO基因作为孟德尔基因在遗传上是稳定的并且没有明显丧失外显率 或表达。尽管用叶绿体转运肽得到某种程度更强的表达,但是缺少转运 肽编码序列的具有DMO转基因的转基因植物也显示出高水平的出苗后 麦草畏耐受性。

A.核酸和重组构建体

1.麦草畏单加氧酶(DMO)

在本发明的一个实施方案中,提供了DNA构建体,其包含编码麦 草畏单加氧酶多肽的核酸,所述麦草畏单加氧酶多肽在对应于SEQ ID NO:1的112位的位置包含半胱氨酸。示例性DMO编码序列在本文中以 SEQ ID NO:2提供。该序列除了包含SEQ ID NO:1的112位的半胱氨酸 外,还包括相对于天然编码序列在ATG起始密码子后加入GCC密码子 (丙氨酸)以加入Nco I限制酶位点和方便克隆。因此,SEQ ID NO:1 中的多肽也包括起始密码子编码的Met后紧邻的额外的Ala残基。将转 运肽序列用Bgl II和EcoR I从质粒切除,然后克隆到pBluescript II KS+ 载体的BamH I和EcoR I位点中。该构建体用作PCR反应中的模板, 所述PCR反应使用在转运肽编码序列任一端加入Nco I限制性位点的引 物。用Nco I消化PCR产物允许在经修饰的DMO基因的ATG起始密码 子位点中插入转运肽编码序列。

从而,在本发明的一个实施方案中,提供了编码SEQ ID NO:1的多 肽的序列,包括但不限于SEQ ID NO:2。如本领域公知的,这些序列的 同源序列和衍生物可以容易地制备和使用。例如,可以使用编码与SEQ ID NO:1的DMOc多肽有至少90%序列同一性,包括与此序列至少约 92%、94%、95%、96%、97%、98%、99%或更高同一性的DMO多肽 的核酸。也可以使用与SEQ ID NO:2提供的核酸有至少90%序列同一 性,包括与此序列至少约92%、94%、95%、96%、97%、98%、99%或 更高同一性并且编码在112位包含半胱氨酸的DMO的核酸。在一个实 施方案中,使用GCG Wisconsin Package(Accelrys,San Diego,CA), MEGAlign(DNAStar,Inc.,1228S.Park St.,Madison,Wis.53715)的序列 分析软件包用默认参数确定序列同一性。该软件通过分配相似性或同一 性程度而匹配相似的序列。

根据本公开,可以通过本领域公知的技术得到表达DMO多肽的多 核苷酸分子。从而可以制备能够降解麦草畏的本文提供的DMOs的变体 并根据本文公开的方法测定活性。此类序列也可以例如从合适的生物 (包括降解麦草畏的细菌)鉴定(美国专利号5,445,962;Krueger etal., 1989;Cork和Krueger,1991;Cork和Khalil,1995)。分离克隆的DMO序 列的一种方法是通过例如与从来源生物构建的文库进行合适杂交,或者 使用来自来源生物的mRNA和基于所公开的DMO设计的引物进行 RT-PCR。本发明因此包括使用在严格条件下与本文所述的DMO编码序 列杂交的核酸。本领域技术人员理解通过增加盐浓度和降低温度可以使 得条件的严格性降低。从而,可以容易地操作杂交条件并且其将通常是 取决于希望的结果的选择的方法。高严格条件的一个实例是5X SSC, 50%甲酰胺和42℃。通过在此类条件下进行洗涤,如10分钟,在这些 条件下不与特定靶序列杂交的那些序列将被除去。本发明的一个实施方 案从而包括使用DMO编码核酸,所述核酸被定义为在5X SSC,50%甲 酰胺和42℃下持续10分钟的洗涤条件下与SEQ ID NO:2的核酸杂交 的核酸。

根据本领域公知的技术,用本文描述的DMO多核苷酸序列也可以 化学合成变体。例如,通过亚磷酰胺化学在自动化DNA合成仪中可以 合成DNA序列。化学合成具有许多优点。具体地,化学合成是所希望 的,因为宿主(DNA序列将在其中表达)优选的密码子可以用于优化表 达。使用拟南芥密码子选择从而优化用于在双子叶植物中表达的此类序 列的实例是SEQ ID NO:3中显示的DMO序列。经预测分别在2,3,112 位具有Ala,Thr,Cys的多肽在SEQ ID NO:1中给出。由于在紧邻ATG 起始密码子后加入丙氨酸密码子以简化载体构建(如下述),相对于野 生型DMO在2位加入了Ala残基。

并不是需要所有密码子被改变以得到改进的表达,而是优选至少将 在宿主中很少使用的密码子改变成宿主优选的密码子,例如,更经常用 于宿主中并且通常比罕见的非优选的密码子更容易翻译的密码子。通过 将大于约50%,最优选至少约80%的非优选的密码子改变成宿主优选 的密码子,可以得到高水平表达。许多宿主细胞的密码子优先性是已知 的(PCT WO 97/31115;PCT WO 97/11086;EP 646643;EP 553494;和美国 专利号:5,689,052;5,567,862;5,567,600;5,552,299和5,017,692)。通过 本领域已知的方法可以推导其他宿主细胞的密码子优先性。而且,使用 化学合成,可以容易地改变DNA分子或其编码的蛋白质的序列以例如 优化表达(例如,消除干扰转录或翻译的mRNA二级结构),在方便的 位点加入独特的限制位点,以及去除蛋白酶切割位点。

可以对蛋白质的多肽序列,如本文提供的DMO序列进行修饰和改 变同时保留酶活性。下面是基于改变蛋白质的氨基酸以产生等同的或甚 至改进的经修饰的多肽和对应的编码序列的讨论。在本发明的具体实施 方案中,可以以这种方式改变DMO序列并用于本发明的方法中。通过 改变DNA序列的密码子可以实现氨基酸改变。

已知例如,某些氨基酸可以替代蛋白质结构中的其他氨基酸而与结 构,如底物分子上的结合位点的相互结合能力没有明显损失。因为是蛋 白质的相互作用能力和性质限定了该蛋白质的生物功能活性,所以可以 在蛋白质序列和当然,在作为基础的DNA编码序列中进行某些氨基酸 序列替代,并且仍然得到具有相似性质的蛋白质。从而预期可以在本文 所述的DMO多肽序列和对应的DNA编码序列中进行多种改变而它们 的生物效用或活性没有明显损失。

在进行此类改变时,可以考虑氨基酸的亲水指数。亲水氨基酸指数 在对蛋白质赋予相互作用生物功能中的重要性是本领域公知的(Kyte et al.,1982)。公认氨基酸的相对亲水特征对所得蛋白质的二级结构有贡 献,所述二级结构又确定了该蛋白质与其他分子如酶、底物、受体、DNA、 抗体、抗原等等的相互作用。每个氨基酸已经基于它们的疏水性和电荷 特征被分配了疏水性指数(Kyte et al.,1982),这些为:异亮氨酸(+4.5);缬 氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲 硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8); 色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5); 谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9);和精氨酸 (-4.5)。

本领域已知氨基酸可以被具有相似亲水指数或得分的其他氨基酸 替代并且仍然得到具有相似的生物活性的蛋白质,即仍然得到生物学功 能等同的蛋白质。在进行此类改变时,亲水指数在±2以内的氨基酸替代 是优选的,在±1以内是尤其优选的,在±0.5是尤其更优选的。这里,考 虑到天然和改变的氨基酸之间不同的亲水指数并且将不被本领域技术 人员用于根据现有技术产生功能变体,所以在112位的色氨酸用半胱氨 酸替代的DMO具有生物活性并且得到耐受高水平麦草畏的植物这一观 察结果是令人惊奇的。

本领域也理解基于亲水性可以有效进行类似氨基酸的替代。美国专 利4,554,101公开了蛋白质的最大的局部平均亲水性(如通过其相邻氨 基酸的亲水性控制)与蛋白质的生物学性质相关。如美国专利4,554,101 中详述,下面的亲水性值被分配给氨基酸残基:精氨酸(+3.0);赖氨酸 (+3.0);天冬氨酸(+3.0±1);谷氨酸(+3.0±1);丝氨酸(+0.3);天冬酰胺 (+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5±1);丙 氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5); 亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);色氨酸 (-3.4)。可以理解氨基酸可以替代具有相似亲水性值的另一氨基酸并且仍 然得到生物学等同的蛋白质。在此类改变中,亲水性值在±2以内的氨基 酸替代是优选的,±1以内的氨基酸替代是尤其优选的,在±0.5以内的氨 基酸替代是甚至更尤其优选的。考虑这些和多种前述特征的示例性替代 是本领域技术人员公知的并且包括:精氨酸和赖氨酸;谷氨酸和天冬氨 酸;丝氨酸和苏氨酸;谷氨酰胺和天冬酰胺;以及缬氨酸、亮氨酸和异 亮氨酸。再次,考虑到改变的和天然氨基酸之间的非常不同的亲水性值 并且该替代将不被本领域技术人员用于根据现有技术产生功能变体, DMOc的活性是令人惊奇的。

根据本发明的DMO序列的修饰可以通过考虑该酶内的保守结构域 而进行指导。例如,在下面阐明DMO酶含有功能结构域,如Rieske铁 -硫簇和游离铁的结合位点(例如,见图18)。该信息与本领域关于蛋 白质的功能结构域和修饰的知识相组合一般因此可用于产生经修饰的 DMO酶同时在本发明范围内保留酶的活性(见例如,Mason和Cammack, 1992;Jiang et al.,1996)。

2.转化构建体

用于本发明的DMO编码多核苷酸将通常被导入细胞中作为构建 体,其包含有效表达必须的表达控制元件。操作性连接表达控制元件与 编码序列的方法是本领域公知的(Maniatis et al.,1982;Sambrook et al., 1989)。表达控制序列是以任何方式参考转录控制的DNA序列。合适的 表达控制序列和使用它们的方法是本领域公知的。尤其可使用启动子, 使用或不使用增强子,5’非翻译区,用于将蛋白质或RNA产物靶向植 物细胞器,尤其叶绿体的转运肽或信号肽,和3’非翻译区,如聚腺苷 酸化位点。本领域技术人员将知道多种增强子、启动子、内含子、转运 肽、导向信号序列和5’和3’非翻译区(UTRs)可用于设计有效的植物 表达载体,如美国专利申请公开2003/01403641中描述的那些。

适于当前和其他用途的启动子是本领域公知的。描述此类启动子的 实例包括美国专利6,437,217(玉米RS81启动子),美国专利5,641,876 (稻肌动蛋白启动子),美国专利6,426,446(玉米RS324启动子),美国专 利6,429,362(玉米PR-1启动子),美国专利6,232,526(玉米A3启动子), 美国专利6,177,611(组成型玉米启动子),美国专利5,322,938,5,352,605, 5,359,142和5,530,196(35S启动子),美国专利6,433,252(玉米L3油质 蛋白启动子),美国专利6,429,357(稻肌动蛋白2启动子以及稻肌动蛋 白2内含子),美国专利5,837,848(根特异性启动子),美国专利 6,294,714(光诱导型启动子),美国专利6,140,078(盐诱导型启动子),美 国专利6,252,138(病原体诱导型启动子),美国专利6,175,060(磷缺乏诱 导型启动子),美国专利6,635,806(γ-coixin启动子),和美国专利申请序 号09/757,089(玉米叶绿体缩酶启动子)。可以使用的额外启动子是胭 脂合酶(NOS)启动子(Ebert et al.,1987),章鱼碱合酶(OCS)启动子 (其在根癌农杆菌的肿瘤诱导质粒上携带),花椰菜花叶病毒启动子,如花 椰菜花叶病毒(CaMV)19S启动子(Lawton et al.,1987),CaMV 35S启 动子(Odell et al.,1985),玄参花叶病毒35S-启动子(Walker et al., 1987),蔗糖合酶启动子(Yang et al.,1990),R基因复合启动子 (Chandler et al.,1989),和叶绿素a/b结合蛋白基因启动子等等。对于用 于本发明尤其有益的可以是CaMV35S(美国专利号5,322,938;5,352,605; 5,359,142;和5,530,196),FMV35S(美国专利6,051,753;5,378,619),PC1SV 启动子(例如美国专利5,850,019,和SEQ ID NO:24),和AGRtu.nos (GenBank检索号V00087;Depicker et al,1982;Bevan et al.,1983)启动 子。

通过使用编码转运肽的序列表达异源基因也可以得到益处。转运肽 通常指当连接到目的蛋白质时将该蛋白质导向特定组织、细胞、亚细胞 位置或细胞器的肽分子。实例包括,但不限于,叶绿体转运肽、核导向 信号,和液泡信号。叶绿体转运肽尤其可用于本发明中用于将DMO酶 的表达导向于叶绿体。预期通过植物细胞中发现的内源还原酶和铁氧还 蛋白降解麦草畏可以促进DMO功能。植物叶绿体尤其富含还原酶和铁 氧还蛋白。因此,在用于产生转基因的麦草畏耐受性植物的优选实施方 案中,可以使用编码肽的序列,其将降解麦草畏的加氧酶导向叶绿体中。 备选地或额外地,也可以在细胞中表达异源还原酶和/或铁氧还蛋白。

编码叶绿体导向序列的DNA可以优选被置于编码DMO的序列上 游(5’),但是也可以被置于编码序列的下游(3’),或者编码序列的上游 和下游。尤其可以将叶绿体转运肽(CTP)改造为与将被导向于植物叶绿 体的蛋白质的N-末端融合。许多叶绿体定位的蛋白质从核基因表达为前 体并且被CTP导向于叶绿体,CTP在输入步骤中被去除。叶绿体蛋白质 的实例包括核糖-1,5,-二磷酸羧化酶的小亚基(RbcS2)、铁氧还蛋白、 铁氧还蛋白氧化还原酶、捕获光的复合蛋白I和蛋白II,和硫氧还蛋白 F。已经在体内和体外阐明通过使用与CTP的蛋白质融合体可以将非叶 绿体蛋白导向于叶绿体并且CTP足够将蛋白质导向于叶绿体。例如,已 经表明在转基因植物中,合适的叶绿体转运肽,如拟南芥(Arabidopsis thaliana)EPSPS CTP(Klee et al.,1987)和Petuniahybrida EPSPS CTP (della-Cioppa et al.,1986)的掺入将异源EPSPS蛋白质序列导向于叶绿体 中。其他示例性叶绿体导向序列包括玉米cab-m7信号序列(Becker et al.,1992;PCT WO 97/41228)和豌豆谷胱甘肽还原酶信号序列 (Creissen et al.,1991;PCT WO 97/41228)。在本发明中,AtRbcS4(CTP1; 美国专利5,728,925),AtShkG(CTP2;Klee et al.,1987),AtShkGZm (CTP2synthetic;见WO04009761的SEQ ID NO;14),和PsRbcS(Coruzzi et al.,1984)例如在DMO多肽的表达方面是尤其有益的。

作为翻译前导序列发挥功能的5’UTR是位于基因的启动子序列 和编码序列之间的DNA遗传元件。翻译前导序列存在于翻译起始序列 上游的完全加工的mRNA中。翻译前导序列可以影响一级转录物向 mRNA的加工、mRNA稳定性或翻译效率。翻译前导序列的实例包括玉 米和牵花热激蛋白前导序列(美国专利号5,362,865)、植物病毒包膜蛋 白前导序列、植物rubisco前导序列,等等(Turner和Foster,1995)。在本 发明中,尤其可发现益处的5’UTR是GmHsp(美国专利5,659,122), PhDnaK(美国专利5,362,865),AtAnt1,TEV(Carrington和Freed,1990), 和AGRtunos(GenBank检索号V00087;Bevan etal.,1983)。

3’非翻译序列、3’转录终止区或聚腺苷酸化区指DNA分子,其 连接到基因的编码区并位于基因的编码区下游并且包括提供聚腺苷酸 化信号和能够影响转录、mRNA加工或基因表达的其他调节信号的多核 苷酸。聚腺苷酸化信号在植物中发挥功能,引起在mRNA前体的3’末 端加入聚腺苷酸核苷酸。聚腺苷酸化序列可来自天然基因、来自多种植 物基因,或来自T-DNA基因。3’转录终止区的一个实例是胭脂碱合酶 3’区(nos3’;Fraley et al.,1983)。已经描述了不同3’非翻译区的用途 (Ingelbrecht et al.,1989)。来自豌豆(Pisum sativum)RbcS2基因 (Ps.RbcS2-E9;Coruzzi et al.,1984)和AGRtu.nos(Rojiyaa et al.,1987, Genbank检索号E01312)的聚腺苷酸化分子对于本发明是尤其有益的。

编码DMO的多核苷酸分子表达单位可以连接到含有可筛选/可评分 标记或赋予所希望性状的基因的遗传元件的表达单位中的第二种多核 苷酸分子。用于筛选假定的转化细胞的常用基因包括β-葡糖醛酸糖苷酶 (GUS)、β-半乳糖苷酶、萤光素酶和氯霉素乙酰转移酶(Jefferson,1987; Teeri et al.,1989;Koncz etal.,1987;De Block et al.,1984),绿色荧光蛋白 (GFP)(Chalfie et al.,1994;Haseloff et al.,1995;和PCT申请WO 97/41228)。

第二种多核苷酸分子可以包括但不限于,作为选择标记的基因。第 二种或另一种基因可以提供与植物形态、生理、生长和发育、产量、营 养增强、疾病或害虫抗性或环境或化学耐受性相关的所希望的特征并且 可以包括遗传元件,所述遗传元件包含除草剂抗性(美国专利6,803,501; 6,448,476;6,248,876;6,225,114;6,107,549;5,866,775;5,804,425; 5,633,435;5,463,175),增加的产量(美国专利RE38,446;6,716,474; 6,663,906;6,476,295;6,441,277;6,423,828;6,399,330;6,372,211; 6,235,971;6,222,098;5,716,837),昆虫控制(美国专利6,809,078;6,713,063; 6,686,452;6,657,046;6,645,497;6,642,030;6,639,054;6,620,988; 6,468,523;6,326,351;6,313,378;6,284,949;6,281,016;6,248,536; 6,242,241;6,221,649;6,177,615;6,156,573;6,153,814;6,110,464; 6,093,695;5,959,091;5,942,664;5,942,658,5,880,275;5,763,245; 5,763,241),真菌疾病抗性(美国专利6,653,280;6,573,361;6,506,962; 6,316,407;6,215,048;5,516,671;5,773,696;6,121,436;6,316,407; 6,506,962),病毒抗性(美国专利6,617,496;6,608,241;6,015,940; 6,013,864;5,850,023;5,304,730),线虫抗性(美国专利6,228,992),细菌疾 病抗性(美国专利5,516,671),植物生长和发育(美国专利6,723,897; 6,518,488),淀粉生产(美国专利6,538,181;6,538,179;6,538,178; 5,750,876;6,476,295),改变的油生产(美国专利6,444,876;6,426,447; 6,380,462),高油产量(美国专利6,495,739;5,608,149;6,483,008; 6,476,295),修饰的脂肪酸含量(美国专利6,828,475;6,822,141;6,770,465; 6,706,950;6,660,849;6,596,538;6,589,767;6,537,750;6,489,461; 6,459,018),高蛋白质产量(美国专利6,380,466),果实成熟(美国专利 5,512,466),增强的动物和人类营养(美国专利6,723,837;6,653,530; 6,5412,59;5,985,605;6,171,640),生物聚合物(美国专利RE37,543; 6,228,623;5,958,745和美国专利公开号US20030028917),环境胁迫抗性 (美国专利6,072,103),药用肽和可分泌的肽(美国专利6,812,379; 6,774,283;6,140,075;6,080,560),改进的加工性状(美国专利6,476,295), 提高的可消化性(美国专利6,531,648),低棉子糖(美国专利6,166,292), 工业酶生产(美国专利5,543,576),改进的味(美国专利6,011,199),固 氮作用(美国专利5,229,114),杂种制种(美国专利5,689,041),纤维生产 (美国专利6,576,818;6,271,443;5,981,834;5,869,720)和生物燃料生产 (美国专利5,998,700)。如本领域技术人员参考本公开可以理解,这些或 其他遗传元件、方法和转基因的任一种可以用于本发明。

表达单位可以作为第一种质粒的右边界(RB)和左边界(LB)区 之间的T-DNA与携带T-DNA转移和整合功能的第二种质粒一起在农杆 菌(Agrobacterium)中提供。构建体也可以含有在细菌细胞中提供复制 功能和抗生素选择的质粒主链DNA区段,如大肠杆菌复制起点,如 ori322,宽宿主范围复制起点,如oriV或oriRi,和选择标记的编码区, 如编码Tn7氨基糖苷腺苷酸转移酶(aadA)的Spec/Strp,其赋予对壮观霉 素或链霉素的抗性,或者庆大霉素(Gm,Gent)选择标记基因。对于植物 转化,宿主细菌菌株通常是根癌农杆菌ABI、C58或LBA4404。然而, 植物转化领域技术人员已知的其他菌株可以在本发明中发挥功能。

3.转基因细胞的制备

通过本领域公知的任一种将转基因导入细胞的技术可以实现转化 植物细胞(见例如,Miki et al.,1993)。认为此类方法的实例包括几乎任 何将DNA导入细胞的方法。已经描述的方法包括如美国专利号 5,384,253中阐明的电穿孔;美国专利号5,015,580;5,550,318;5,538,880; 6,160,208;6,399,861;和6,403,865中阐明的微粒轰击;如美国专利号 5,635,055;5,824,877;5,591,616;5,981,840;和6,384,301中阐明的农杆菌 介导的转化;和美国专利号5,508,184中阐明的原生质体转化。通过应 用诸如这些技术,可以根据本发明稳定转化和选择几乎任何植物物种的 细胞并将这些细胞发育成转基因植物。

将表达载体导入植物的最广泛利用的方法是基于农杆菌的天然转 化系统(例如,Horsch et al.,1985)。根癌农杆菌和发根农杆菌(A. rhizogenes)是植物病原性土壤细菌,其遗传转化植物细胞。根癌农杆菌 和发根农杆菌的Ti和Ri质粒分别携带负责植物的遗传转化的基因(例 如,Kado,1991)。农杆菌载体系统和农杆菌介导的基因转移方法的描述 由许多参考文献提供,包括Miki et al.,上文,Moloney et al.,1989,和美 国专利号:4,940,838和5,464,763。与植物天然相互作用的其他细菌, 如大豆根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和中间根瘤 菌属(Mesorhizobium)可以被修饰以介导基因转移到许多不同的植物中。 通过获得卸甲(disarmed)的Ti质粒和合适的二元载体可以使得这些植 物相关的共生细菌对于基因转移为感受态的(Brothers et al,2005)。

B.组织培养和植物再生

通过首先在发芽培养基上并随后在生根培养基上培养外植体可以 实现所转化的植物细胞再生为可育的植物。有时,可以在愈伤组织培养 基上培养外植体然后转移到发芽培养基上。可以为每种植物系统实现并 优化多种培养基和转移要求用于植物转化和转基因植物的回收。因此, 此类培养基和培养条件可以被修饰或用营养等同的组分或用于选择和 回收转基因事件的类似方法替代。

可以将营养培养基制备为液体,但是这可以通过向液体中加入能够 提供固体支持的物质固化。琼脂最常用于该目的。Bactoagar、Hazelton 琼脂、Gelrite和Gelgro是特定类型的固体支持体,其适于组织培养中植 物细胞的生长。一些细胞类型将在液体悬浮液或固体培养基或在两种培 养基上生长和分裂。

体细胞靶包括,但不限于,分生组织细胞、愈伤组织、未成熟胚 和配子细胞,如小孢子花粉、精细胞和卵细胞。可以用于再生可育的转 基因植物的任何细胞可以用于一些实施方案中。例如,可以转化未成熟 胚,接着选择和启动愈伤组织并随后再生可育的转基因植物。未成熟胚 的直接转化避免了对长期开发受体细胞培养物的需要。分生细胞(即, 能够持续细胞分裂并且特征为未分化的细胞学外观(通常存在于植物的 生长点或组织,如根尖、茎尖、侧芽等处)的植物细胞)也可以用作受 体植物细胞。因为它们未分化的生长和能够器官分化和全能性,所以可 以从单个转化的分生细胞回收完整的转化植物。

体细胞是多种类型的。胚发生细胞是可以通过胚形成被诱导再生植 物的体细胞的一个实例。非胚发生细胞是通常不以这种方式应答的那些 细胞。

可以使用在细胞群体内富集受体细胞的某些技术。例如,II型愈伤 组织发育,接着人工选择和培养脆性的胚发生组织,通常导致富集用于 例如微粒转化的受体细胞。

在一些实施方案中,在培养中生长后选择受体细胞。培养的细胞可 以在固体支持物上或者以液体悬浮液的形式生长。在任一情况中,可以 以培养基的形式为细胞提供营养,并控制环境条件。有许多类型的组织 培养基,其包含氨基酸、盐、糖、生长调节剂和维生素。用于本发明实 践中的大多数培养基将具有一些相似的组分,而根据公知的组织培养实 践,培养基可以在组成和成分的比例方面不同。例如,多种细胞类型通 常在一种以上的培养基中生长,但是将取决于生长培养基而显示出不同 的生长速率和不同的形态。在一些培养基中,细胞存活但是不分裂。也 经常基于所选的物种或细胞类型优化培养基组成。

以前已经描述了适于植物细胞培养的多种类型的培养基。这些培养 基的实例包括但不限于,Chu et al.(1975)描述的N6培养基和MS培养 基(Murashige & Skoog,1962)。在一些实施方案,优选使用具有某种程 度上较低的氨/硝酸盐比例的培养基如N6,以将细胞保持在能够持续分 裂的原胚状态从而促进受体细胞的产生。也可以使用Woody植物培养基 (WPM)(Lloyd和McCown,1981)。

保持细胞培养物的方法可以促进它们作为用于转化的受体细胞来 源的应用。用于转移到新鲜培养基的细胞的手工选择、转移到新鲜培养 基的频率、培养基的组成,和环境因子,包括但不限于,光质量和数量 和温度都是保持用作受体细胞来源的愈伤组织和/或悬浮培养物中的因 素。愈伤组织在不同的培养条件之间交替对于在培养中富集受体细胞是 有益的。例如,可以将细胞在悬浮培养物中培养,但是以规则的时间间 隔转移到固体培养基中。在固体培养基上生长一段时间后,可以手工选 择细胞用于返回到液体培养基中。重复该转移到新鲜培养基的顺序可以 用于富集受体细胞。将细胞培养基穿过1.9mm筛也可以用于保持愈伤 组织或悬浮培养物的脆性并当使用此类细胞类型时富集可转化的细胞。

C.转基因植物

一旦已经选择了转基因细胞,可以使用本领域公知的技术将该细胞 再生成可育的转基因植物。随后分析转化植物以确定在DNA构建体中 存在或不存在特定目的核酸。分子分析可以包括但不限于,DNA印迹 (Southern,1975)或PCR分析、免疫诊断方法。也可以使用田间评估。可 以进行这些和其他公知的方法来证实所公开方法产生的转化植物的稳 定性。这些方法是本领域技术人员公知的(Sambrook et al.,1989)。

从而可以产生包含本文提供的DMO编码序列的转基因植物。具体 地,经济上重要的植物,包括作物、树、和其他植物可以用本发明的 DNA构建体转化使得它们是麦草畏耐受的或者具有增加的耐受性。当前 认为耐受生长素样除草剂的植物从而可以被转化以增加它们对该除草 剂的耐受性。可以用于本发明的植物的一些非限制性实例包括苜蓿、大 麦、菜豆、甜菜、绿花椰菜、甘蓝、胡萝卜、芸苔、花椰菜、芹菜、大 白菜、玉米、棉花、黄瓜、茄子、韭葱、莴苣、甜瓜、燕麦、洋葱、豌 豆、胡椒、花生、马铃薯、西葫芦、萝卜、稻、甜玉米、高粱、大豆、 菠菜、南瓜、糖甜菜、向日葵、蕃茄、西瓜和小麦。

一旦已经制备了含有转基因的转基因植物,可以通过杂交将该转基 因导入与第一种植物性相容的任何植物,而不需要直接转化第二种植 物。因此,如本文所用,术语“后代”指根据本发明制备的亲本植物的 任何世代的后代,其中后代包含根据本发明制备的所选的DNA构建体。 “转基因植物”可以是任何世代的转基因植物。如本文公开的,与植物 “杂交”以提供相对于起始植物品系具有一种或多种添加的转基因或等 位基因的植物品系被定义为如下技术:其通过将起始品系与包含本发明 的转基因或等位基因的供体植物品系杂交导致特定序列被导入植物品 系中。为了实现该目的,可以例如进行下面的步骤:(a)种植第一种 (起始品系)和第二种(包含所希望的转基因或等位基因的供体植物品 系)亲本植物的种子;(b)将所述第二种和第二种亲本植物的种子生 长为带有花的植物;(c)将来自第一种亲本植物的花与来自第二种亲 本植物的花粉授粉;和(d)收获在带有被受精的花的第一种植物上产 生的种子。

本发明从而提供了包含本文提供的DMO编码核酸的转基因植物组 织。该组织可以已经用DMO编码核酸直接转化或者遗传了来自祖细胞 的核酸。本发明提供的组织特别包括但不限于,细胞、胚、未成熟胚、 分生细胞、未成熟雄花穗、小孢子、花粉、叶、花药、根、根尖、花和 种子。本发明从而提供了包含本文所述的核酸的任何此类组织,包括任 何植物部分。种子尤其在以谷粒的形式用于商业或食品应用,以及用于 种植而生长额外的作物中特别有益。

实施例

包括下面的实施例用于阐明本发明的实施方案。本领域技术人员将 理解下面实施例中公开的技术代表本发明人发现的在本发明的实践中 良好地发挥作用的技术。然而,本领域技术人员根据本公开将理解可以 在公开的特定实施方案中进行许多改变并且仍然得到相似或类似的结 果而不背离本发明的概念、精神和范围。更具体地,将显而易见的是化 学或生理学相对的某些物质可以代替本文所述的物质而实现相同或相 似的结果。认为本领域技术人员显而易见的所有此类相似的替代方案和 修饰在所附权利要求定义的本发明的精神、范围和概念之内。

实施例1

用于遗传改造的DMO基因的载体构建

最初从DMOw模板通过PCR扩增产生DMOc变体编码序列。在该 扩增中,从质粒pPLH1扩增DMOw的编码区,所述质粒含有DMOw基 因作为嗜麦芽假单胞菌菌株DI-6,DNA的3.5kbp Xho I/Sst I片段。为了 DNA扩增,使用5’引物和3’引物,5’引物在PCR产物的5’末端 附近插入Nco I限制位点和ATG起始密码子后紧邻的丙氨酸的密码子, 3’引物在PCR产物的3’末端产生Xba I限制位点(步骤细节在下文提 供)。随后通过核酸测序鉴定112W向112C的改变。

为了产生植物转化载体,用分别加入编码区的5’和3’末端的Nco I和Xba I位点将DMOc基因插入到pRTL2载体(Carrington和Freed, 1990)中,从而将编码区融合到载体的烟草蚀纹病毒(TEV前导序列)翻译 增强子元件。使用特别设计的PCR引物导入5’Nco I位点并在ATG 起始密码子后加入GCC密码子(丙氨酸)并在编码区的3’末端产生 Xba I限制位点。为了允许将DMOc递送到叶绿体,将来自豌豆Rubisco 亚基基因的叶绿体转运肽编码区(Coruzzi et al.,1983)置于DMOC编码区 上游以允许导向于叶绿体。将Bgl II和EcoR I片段上携带的转运肽编码 序列克隆到pBluescript II KS+载体的BamH I和EcoR I位点中。该构建 体用作PCR反应中的模板,其在转运肽序列的3’末端和5’末端都插 入Nco I位点。将扩增的产物克隆到pRLT2载体的Nco I位点中使得转 运肽序列直接位于DMO基因编码区的上游并且与符合其读码框。用 Xho I和Xba I从pRTL2载体切除由TEV前导序列、转运肽区和DMO DNA编码序列组成的盒并将其克隆到pKLP36载体(U.S.5,850,019;图 5)中,使用相同的限制酶位点用于连接该盒与PC1SV启动子和 PsRbcS2-E9聚腺苷酸序列。新的载体被标记为pKLP36-TEV-TP-DMOc (也称作pKLP36-DMOc),并在2006年2月2日保藏在美国典型培养物 保藏中心(ATCC),10801 University Boulevard,Manassas,Va.20110-2209 USA,并分配ATCC保藏号PTA-7357。

pKLP36-DMOc载体用于转化烟草、拟南芥和番茄植物。对于大豆 转化,将DMOc盒从pKLP36-TEV-TP-DMOc切出作为EcoR I/Acc I区 段并克隆到EcoR I/Acc I消化的pPZP101(Hajdukiewicz et al.,1994)中用 于得到右和左边界。然后用ScaI切割该载体(pPZP101+DMOc盒)并将 DMOc盒克隆到二元载体pPTN200(见下文)——pPZP201的衍生物 (Hajdukiewicz et al.,1994)中,其含有侧翼为左和右T-DNA边界的bar 盒并允许在除草剂Basta的存在下选择再生转化体。将新的两个T-DNA 二元载体称作pPTN348并且用于大豆转化。通过首先将来自pGPTV-bar (Becker et al.,1992)的nos启动子-bar元件作为PstI/BamHI区段克隆到 pPZP201(见Hajdukiewicz et al.,1994)中制备pPTN200载体,并将所得 质粒命名为pPTN193。将来自pE7113-GUS(见Mitsuhara et al.,1996) 的nos终止子克隆到pPTN193中处于nos启动子-bar元件的下游以得到 bar盒。

从Fermentas或Invitrogen得到限制酶和其他酶。从Roche得到 DIG-11-dUTP(碱标记的),CSPD(随时可用的),DIG III分子量标记,抗洋 地黄毒苷-AP(Fab片段)和封闭试剂。从Ambion得到预杂交溶液 ULTRAhyb。从Roche得到DIG-RNA分子量标准I。从Amersham Biosciences得到抗兔IgG、过氧化物酶-连接的抗体(驴)和Hybond ECL (硝酸纤维素)膜。用标准技术(Ausubel et al.,1995)进行DNA、RNA、蛋 白质印迹、重组DNA技术和其他分子生物学方法。

实施例2

转基因植物的产生和分析

烟草、番茄、大豆和拟南芥用于转基因表达遗传改造的DMOc基因 和证实在表达该基因的植物中的麦草畏耐受性。将二元载体pKLP36中 的DMOc编码序列通过三亲交配(Ditta 1980)导入含有卸甲Ti质粒 pMP90(Koncz和Schell,1986)的土壤农杆菌菌株C58C1中。用Horsch et al.(Horsch 1985)描述的叶盘方案将所得的转接合子用于烟草(cv Xanthi) 和番茄(cv Rutgers)转化。通过花浸入技术(Clough和Bent,1998)转化拟 南芥。通过子叶节农杆菌介导的转化系统(Zhang et al.,1999)进行大豆品 种Thorne和NE-3001的转化。

DMOc基因向烟草植物基因组的农杆菌介导的基因转移产生了几 种独立来源的T1代植物。用DNA、RNA和蛋白质印迹分析测试植物的 DMOc基因的存在和表达。图2说明尽管该分析中的所有转基因植物(泳 道1-6)在限制酶消化后都含有与克隆的DMO基因(泳道8)相同的 DNA片段,但是mRNA转录物和DMO蛋白质水平在转化体之间显著 不同。例如,提取物在泳道5中描述的植物显示出相对高水平的DMO mRNA但是极低水平的酶。相反,在泳道3中显示的提取物中几乎相同 水平的DMO mRNA与DMO的高表达水平偶联。然而,表明通过该方 法可以始终得到具有强表达的事件。

使用压缩空气、马达驱动的具有扁平扇形8002E喷嘴的轨道喷雾器溶剂和商品级麦草畏(Clarity;BASF)喷雾温室中的植物,该喷雾器以 1.87mph喷雾。添加剂包括:1.25%v/v的28%硝酸脲铵和1.0%v/v的 非离子表面活性剂。以182L/ha(40加仑每英亩)应用含有不同浓度麦草 畏的溶液。用Clarity除草剂以2.8kg/ha(2.51b/ac)喷雾大豆田间植株。

烟草植物,像大多数双子叶植物一样,对麦草畏处理相当敏感。这 通过比较未处理的和用增量麦草畏处理的非转基因烟草植物阐明。以 0.017kg/ha的水平喷雾麦草畏后容易检测到除草剂损害症状。在农业施 用中杂草控制的通常使用的水平:0.28kg/ha和0.56kg/ha下症状相当严 重。

用5.6kg/ha(比正常的施用率高10到20倍)在出苗后处理含有 DMOc的转基因烟草植物引起了很少的症状(如果存在),而非转基因 植物遭受严重损害。通过用含有表面活性剂的溶剂溶液(用作麦草畏应 用的载体)喷雾植物可以复制转基因植物的下方叶子的伤害。用麦草畏 处理转基因植物后产生的叶子没有显示出可见的损害迹象。携带遗传改 造的DMOc基因的转基因番茄植物同样当用高水平麦草畏喷雾时也没 有显示出损害,在该具体情况中,首先用0.56kg/ha,随后用5.6kg/ha 处理。表达DMOc基因的拟南芥也展示出对麦草畏处理的强烈耐受性。 在该研究中,使用的麦草畏浓度提供了1.12kg/ha的剂量。出乎意料的 发现是观察到用缺少转运肽编码区的DMOc基因转化的烟草植物也耐 受平均浓度的麦草畏的出苗后处理,所述耐受性仅仅稍稍低于带有具有 转运肽编码区的DMOc基因的植物的耐受性。在该研究中,比较了用 2.2kg/ha麦草畏对两株T1烟草植物的处理,一株携带缺少叶绿体转运 肽的DMOc,另一株由于遗传分离完全缺少DMOc基因。后一植物对麦 草畏处理引起的伤害完全敏感并且死于该处理(图3)。携带缺少转运 肽的DMOc基因的转基因植物完全耐受2.2.kg/ha麦草畏的处理。转基 因烟草植物中DMOc基因遗传的遗传学研究也表明该性状在多数植物 中以正常孟德尔方式遗传并且关于除草剂耐受性保持最初的表达水平。

在大豆中,产生了超过50个R0转基因大豆事件并收集T1、T2和 T3代种子。因为使用了根癌农杆菌二元载体系统,所以回收了带有标记 基因的和无标记的含有DMOc基因的转基因植物。在任一情况中,多数 转基因大豆品系在温室条件下显示出对2.8kg/ha和5.6kg/ha麦草畏处 理的强烈耐受性和在两年的田间试验中显示出对2.8kg/ha(最高测试水 平)麦草畏的强烈耐受性。这些结果提示与高效控制宽范围的阔叶杂草 相关的携带DMOc基因的转基因大豆和其他作物的宽的安全界限。

在带有DMO基因的转基因大豆植物中高水平麦草畏耐受性表明能 够在大豆田中施用麦草畏来强烈抑制与阔叶杂草的竞争而无作物损害。 此外,使用转基因的除草剂耐受作物,麦草畏耐受性作物可以是当前的 杂草控制选择的重要补充。即,它们在控制现有的除草剂耐受性杂草和 抑制额外除草剂耐受性杂草的出现中是有价值的财产,所述额外除草剂 耐受性杂草可以最终威胁当前的除草剂和除草剂耐受性作物的长期使 用和价值。

实施例3

DMOw和DMOc的过表达、纯化和酶促性质的比较

A.克隆和过表达

将野生型(DMOw)和变体(DMOc)DMO编码序列从质粒 pMON95900DMO(DMOw)和pMON58499DMO(DMOc)克隆到载体 pET28b(Novagen,.San Diego,CA)中并转化到大肠杆菌BL21细胞 (Novagen,San Diego,CA)中。细胞在1升LB培养液中37℃下生长到600 nm的吸光度为0.4到0.6。通过加入50μM Fe(NH4)SO4,100μM Na2S, 和1mM异丙基-β-硫代吡喃半乳糖苷(IPTG)并将细胞转换到15℃ 而诱导蛋白质表达。15℃ 48-72小时后,以10000xg离心20分钟收获细 胞。将细胞在-20℃下保存备用。

DMOw和DMOc在大肠杆菌中的蛋白质表达产量是不同的。尽管 DMOw产量为每升LB培养基约100到150mg纯蛋白质,但是DMOc 的产量为低10倍,或每升约10到15mg纯蛋白质。这是预料之外的, 因为大肠杆菌对于半胱氨酸没有稀有密码子并且色氨酸仅有一个密码 子,但是在两种情况中表明不管产量如何,在大肠杆菌中能够异源产生 蛋白质。包含体中蛋白质的量在两种情况下是低的,提示蛋白质主要保 留在可溶级分中。

见来自嗜麦芽假单胞菌(Pseudomonas maltophilia)菌株DI-6的His 标记的重组DMOw蛋白和大肠杆菌菌株BL21中表达的His标记的重组 DMOc通过Ni-NTA柱层析纯化至均一。将细胞悬浮在裂解缓冲液(100 mM NaPi pH 8.0,300mM NaCl,和10mM咪唑)中并通过超声处理破 坏。以55000xg离心细胞裂解物1小时。将上清液装入Ni-NTA柱,用 洗涤缓冲液(100mM NaPi pH 8.0,300mM NaCl,和20mM咪唑)洗涤 柱子以除去非特异附着到树脂的蛋白质。用洗脱缓冲液(100mM NaPi pH8.0,300mM NaCl,和250mM咪唑)洗脱His标记的蛋白质。对于 DMOw纯化,逐步梯度足够得到95%纯的酶,而对于DMOc需要20到 250mM浓度咪唑的线性梯度来实现相同水平的纯度。从柱子洗脱的酶 为约95%纯度,如在SDS-聚丙烯酰胺凝胶电泳上大小分级分离后对酶 的蛋白质印迹所估计的。迁移到约40kDa(37.3kDa DMO酶加上3kDA His标记)的单个主要条带表明已经过量产生了正确的蛋白质。

B.DMOc和DMOw的测定法和稳态动力学

通过Bradford测定法用兔IgG作为标准测定蛋白质浓度。通过 SDS-PAGE分离蛋白质并用考马斯蓝染色。通过形成DCSA测量DMO 活性,用Discovery C18柱(Supelco,Sigma-Aldrich,St.Louis,MO)通过 HPLC(Waters Corporation,Milford,MA)分离DCSA。DCSA的保留时间 为8分钟,麦草畏的保留时间为9.5分钟。对于动力学研究,在HPLC 柱上从反应混合物分离后,检测到DCSA并通过在420nm(激发波长 310nm)下的荧光发射定量。DCSA的设定浓度(12和24μM)用作定量 标准。

使用麦草畏的储存液(100、200、400、800、1000、2000、5000和 10000μM),0.1M KPi pH 7.2,0.1M FeSO4,0.1M NADH,和1M MgCl2。 测定法在30℃进行20分钟并通过加入40μl H2SO4淬灭反应。为了测量 活性,DMO与来自嗜麦芽假单胞菌菌株DI-6的过量的纯化的铁氧还蛋 白和还原酶偶联。

因为DMO活性的测定法是不连续的测定法,所以重要的是建立为 得到有意义的动力学参数该测定法必须运行的时间。从而,该测定法必 须在初始条件下运行,因为产生的DCSA的量对于正运行的测定法的时 间是线性的(图4)。结果提示该测定法可以运行20到30分钟并且仍 然保持线性。图5显示了在0.1M Kpi缓冲液存在下进行的测定法的最 适pH为7.2并且发现最适温度为约37℃(图6)。

C.动力学数据分析

通过将数据代入非线性稳态方程(方程1)确定米-曼参数(方程 1)。用Sigma plot 8.0(Jandel Scientific)分析数据。

Vo=Vmax*[S]/(Km+[S])  方程1

也测定的DMOw和DMOc的最适pH和温度。对于两种形式的酶, 最适pH在30℃测定20分钟,并最适温度测定也在pH7.2下测量了20 分钟。结果在图7-9中概述并且在下文讨论。

结果表明DMOw和DMOc的动力学性质不同。例如,为DMOw和 DMOc计算的米-曼参数为:对于DMOw,Km=49±7μM和Vmax =633±24纳摩尔/分钟/mg,对于DMOc,Km=20.5±5μM和 Vmax=676±37纳摩尔/分钟/mg。这些结果在图10和11中显示并且 在下面的表1中概述。此外,为DMOw和DMOc进行的两个额外的分 析产生了相似的结果(表2和3)。

可以看到,在催化效率方面,DMOw和DMOc酶具有不同的性质: 通过该分析,DMOc是比DMOw好五倍的酶。DMOc的pH谱与DMOw 的不同。首先,DMOc与DMOw相比似乎对使用的缓冲系统(TRIS vs.KPi) 敏感(图9、12和13)。其次,与TRIS相比(此时DMOc的活性随着 pH单位的升高而降低),当在KPi缓冲液中测定时,DMOc在宽范围 的pH内显示出稳定的活性。在KPi或TRIS缓冲液中温育的DMOc的 温度谱是相似的。

观察这两种形式的酶之间的温度谱,DMOw在37℃功能更佳,而 DMOc在一定程度较低的温度下功能更佳(图9)。图9表明DMOc的 较低最适温度,其可以用于生长期早期的转基因植物中。

表1.DMOw和DMOc的稳态动力学参数

  酶 Km(M) Vmax(U/mg) kcat(s-1) Kcat/Km  (M-1s-1) DMOw 49±7×10-6 633±24×10-3 36.63 7.47×105 DMOc 20±5×10-6 676±37×10-3 70.41 35.21×105

表2.DMOw的米-曼参数概述

  研究号 Rsqr Vmax(纳摩尔/分钟/mg) Km(μM) 1. 0.983 633±24 49±7 2. 0.988 583±18 46±5 3. 0.987 590±19 46±5.5

表3.DMOc的米-曼参数概述

  研究号 Rsqr Vmax(纳摩尔/分钟/mg) Km(μM) 1. 0.933 713±43 21±6 2. 0.948 676±37 20±5

实施例4

DMO的保守区域的生物信息学分析

进行生物信息学分析以比较DMO和其他铁-硫加氧酶的多肽序列 并鉴定保守区。最初,基于1e-08的e值截断值和序列比对上70%的DMO 序列覆盖度,选择78条序列用于分析。这78条序列的进一步分析揭示 存在已经在其他研究中鉴定的两个结构域,包括Rieske和非-haem Fe结 构域(Herman et al.,2005)。在这78条序列中,68条含有两个结构域, 而10个仅仅有一个结构域。具有这两个结构域的68种分子被用于进一 步的基序分析。

具有两个结构域的这68种分子在不同同一性水平中的比对揭示了 新的WXWX基序。尽管一些序列不含有该基序,但是系统进化分析法 表明没有该基序的分子落入系统树中的某些进化枝,其与具有该基序的 分子不属于相同的组。没有该基序的那些序列因此从最初的数据集除 去,留下被重新比对的52种剩余序列用于进一步分析。

重新比对的52条序列表明在含有下面形式的两个W残基周围的保 守性:WX1WX2G(W是Trp,G是Gly残基,X1是非极性残基,X2是任 何氨基酸)。该情况中的第二个W对应于SEQ ID NO:1的112位。最近 已经报导了WX1WX2G基序的WXG,并且具有WXG基序的蛋白质与 细胞分泌系统相关(Desvaux et al.,2005)。

色氨酸(W)和半胱氨酸(C)是具有显著不同大小的残基。W是 大残基,而C是相对小的残基。因为W和C都是极性氨基酸,它们共 有一些共同的特征,如质子供给。由于W残基由TGG编码并且Cys由 TGC和TGT编码,所以在第三个密码中的某些转换(G->C或G->T)可以 产生从W到C或从C到W的错义突变。此类转换已经在自然中鉴定并 且生物功能和活性被那些突变改变(见例如,遗传性乳腺癌和卵巢癌中 的BRCAl基因(Xiaoman和Jinghe,1999);凝血因子XII缺陷(Wada et al., 2003),和I型高脂蛋白血症中的脂蛋白脂酶突变(Hoffmann et al.,2000))。

因此,前面的结果表明尽管DMO是独特的并且与已知的酶具有低 同一性,但是W112在其他相关的铁-硫加氧酶中是保守的。此外,112 位被两个保守的功能结构域围绕(图18)。此外,W向C转换通常影 响生物活性。如下发现是尤其令人惊奇的:DMOc产生了比野生型 DMOw酶具有更优的动力学参数的功能性酶并且当在转基因植物中表 达时提供了对麦草畏的高水平耐受性。

实施例5

叶绿体编码的DMO产生了高水平麦草畏耐受性

为了确定DMO是否可以仅在叶绿体内发挥功能和研究限制通过花 粉漂浮“基因扩散”的可能性,基于pFMDV1载体(例如,Svab et al.,1990) 产生了构建体以允许DMOc基因通过同源重组整合到烟草的叶绿体基 因组中并使用抗生素抗性选择分离转化体(图14)。在该构建体中, DMOc基因编码区由含有完整psbA5’UTR序列的psbA叶绿体基因启 动子驱动。抗生素抗性转基因植物的初步DNA印迹分析(图15A)表明在 叶绿体基因组中存在DMOc转基因(5.6kb条带)和被DMOc基因的同源 整合替代的天然基因区(3.3kb条带)(即,叶绿体对于天然基因和DMOc 转基因是异质的)。在含有抗生素的培养基上反复再生和选择转基因植 物导致明显同质的叶绿体,其带有DMOc基因片段但是没有被替代的天 然基因区(图15B)。

对来自两个独立来源的叶绿体转化体的T1、T2和T3代后代测试用 不同剂量麦草畏处理的耐受性。所有都显示出高水平耐受性。实际上, 当用28kg/ha(25lb/ac)比率的麦草畏喷雾时,叶绿体基因组转化体没有 显示出明显损伤(不同于对下方叶子的“仅溶剂损害”)(图16)并且 当用112和224kg/ha的极高麦草畏施用处理植物时,仅仅观察到暂时 损害。在这些极高水平下,最初的损害主要由用于递送麦草畏的溶剂中 表面活性剂和其他组分引起;从受损的顶点生长的组织显示出接近正常 的表型到正常的表型,在最初的生长迟缓后没有显示出生长速率下降并 且保持产生通常数目和质量的种子的能力。

结果与如下可能性一致:烟草叶绿体中还原的铁氧还蛋白可能是将 麦草畏氧化成DCSA所需的DMO电子供体。作为该可能性的直接测试, 在从嗜麦芽假单胞菌DI-6菌株纯化或从大肠杆菌过量产生并纯化的 DMO的存在和不存在下,检查了纯化的菠菜铁氧还蛋白支持麦草畏向 DCSA转化的能力(表4)。结果表明来自菠菜或梭菌属的被还原的铁 氧还蛋白完全能够在体外为DMO供给电子,如通过麦草畏降解或DCSA 出现所测量。

表4A-B.纯化的麦草畏单加氧酶可以利用还原的叶绿体铁氧还 蛋白或还原的梭菌铁氧还蛋白作为电子来源催化麦草畏体外转化为3,6- 二氯水杨酸。

表4A-麦草畏的降解

  反应类型 麦草畏的降解(%) (Ferr+Red)DI-6+NADH 0 (Oxy+Ferr+Red)DI-6+NADH 86 (Oxy)DI-6+(Ferr)菠菜+(Ferr:Oxidored)菠菜+NADPH 83 (Oxy)DI-6+(Ferr:Oxidored)菠菜+NADPH ND (Oxy)DI-6+(Ferr)梭菌+(Ferr:Oxidored)菠菜+No NADPH ND (Oxy)DI-6+(Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH 82 (Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH ND

表4B-DCSA的形成

  反应类型 DCSA的形成(%) (Ferr+Red)DI-6+NADH ND (Oxy+Ferr+Red)DI-6+NADH 100 (Oxy)DI-6+(Ferr)菠菜+(Ferr:Oxidored)菠菜+NADPH 95 (Oxy)DI-6+(Ferr:Oxidored)菠菜+NADPH 2.5 (Oxy)DI-6+(Ferr)菠菜+(Ferr:Oxidored)菠菜+No NADPH 1.2 (Oxy)DI-6+(Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH 90 (Ferr)梭菌+(Ferr:Oxidored)菠菜+NADPH 1.5

ND,未确定

尽管图2中的结果表明所产生的DMO水平是可变的并且有时候 DMOc水平与麦草畏耐受性水平不密切相关,但是结果表明能够一致地 得到对麦草畏的高水平耐受性。显示了在转化体中从核定位的DMOc 基因和从叶绿体定位的DMOc基因产生DMOc。在核转化体中,相对于 总蛋白质构成额外高水平的总DMOc,并且叶绿体转化体中DMOc的量 不是显著不同并且有时低于核转化体。叶组织样品的无细胞提取物中相 对酶活性的估计表明在叶绿体中产生的较高百分比的DMOc比细胞质 中合成的DMOc更有活性并且认为被转移到叶绿体中。

在分析的所有植物中,不用铁氧还蛋白或还原酶基因共转化,实现 了麦草畏耐受性。结果表明所述植物含有一种或多种分子,所述分子可 以将所需的电子转移到DMO以允许麦草畏向3,6-二氯水杨酸(DCSA) 的转化。使用转运肽序列,DMO向叶绿体的最初导向的目标是潜在利 用叶绿体中可充分利用的被还原的铁氧还蛋白。在这方面,重要的是注 意到用缺少叶绿体肽编码序列的DMOc基因构建体转化烟草植物出乎 意料地得到耐受麦草畏的出苗后处理的植物。然而,来自用少数T1代植 物的有限试验的结果表明用这些转基因植物得到的耐受性水平平均稍 微低于用产生含有转运肽的DMOc的烟草植物得到的耐受性水平。这些 观察结果引起了关于转基因植物中可以为DMO生产性供应电子的分子 的有趣问题。从整合到叶绿体基因组的DMOc基因内在地产生DMO的 同质叶绿体显示对极高水平麦草畏的抗性这一事实(图16)和纯化的 DMO可以在体外与还原的菠菜叶绿体铁氧还蛋白发挥功能这一事实 (表4)都提示叶绿体铁氧还蛋白可以与DMO生产性相互作用以允许 电子转移。然而,从缺少叶绿体转运肽编码序列的核基因产生的DMO 的电子来源仍然是未知的。假定铁氧还蛋白不位于植物叶绿体外,必须 认为一种未知的细胞质蛋白可能为DMO提供稳定的电子供应的可能 性。备选地,DMO自身可能含有可提供的叶绿体转运肽,其允许足够 的DMO进入叶绿体中以在麦草畏处理后提供保护防止麦草畏进入细胞 中。

* * * * * *

本文公开和要求保护的所有组合物和/或方法可以根据本公开不用 过度实验进行和实施。尽管已经按照优选实施方案描述了本发明的组合 物和方法,但是本领域技术人员显而易见的是改变的方案可应用于所述 组合物和/或方法和本文公开的方法的步骤或步骤的顺序中而不背离本 发明的概念、精神和范围。更特别地,将显而易见的是化学和生理学相 关的某些物质可以代替本文描述的物质而将实现相同或相似的结果。认 为本领域技术人员显而易见的所有此类相似的替代和修饰都在所附权 利要求限定的本发明的精神、范围和概念之内。

参考文献

将下面列出的参考文献引入本文作为参考,直至它们补充、解释、 提供背景或教导本文使用的方法、技术和/或组合物的程度。

美国专利4,554,101;美国专利4,940,838;美国专利5,015,580;美国 专利5,017,692美国专利5,229,114;美国专利5,304,730;美国专利 5,322,938;美国专利5,352,605;美国专利5,359,142;美国专利5,362,865; 美国专利5,378,619;美国专利5,384,253;美国专利5,445,962;美国专利 5,463,175;美国专利5,464,763;美国专利5,508,184;美国专利5,512,466; 美国专利5,516,671;美国专利5,530,196;美国专利5,538,880;美国专利 5,543,576;美国专利5,550,318;美国专利5,552,299;美国专利5,567,600; 美国专利5,567,862;美国专利5,591,616;美国专利5,633,435;美国专利 5,635,055;美国专利5,641,876;美国专利5,659,122;美国专利5,689,041; 美国专利5,689,052;美国专利5,716,837;美国专利5,728,925;美国专利 5,750,876;美国专利5,763,241;美国专利5,763,245;美国专利5,773,696; 美国专利5,804,425;美国专利5,824,877;美国专利5,837,848;美国专利 5,850,019;美国专利5,850,023;美国专利5,866,775;美国专利5,869,720; 美国专利5,880,275;美国专利5,942,658;美国专利5,942,664;美国专利 5,958,745;美国专利5,959,091;美国专利5,981,834;美国专利5,981,840; 美国专利5,985,605;美国专利5,998,700;美国专利6,011,199;美国专利 6,013,864;美国专利6,015,940;美国专利6,023,013;美国专利6,051,753; 美国专利6,063,597;美国专利6,063,756;美国专利6,072,103;美国专利 6,080,560;美国专利6,093,695;美国专利6,107,549;美国专利6,110,464; 美国专利6,121,436;美国专利6,140,075;美国专利6,140,078;美国专利 6,153,814;美国专利6,156,573;美国专利6,160,208;美国专利6,166,292; 美国专利6,171,640;美国专利6,175,060;美国专利6,177,611;美国专利 6,177,615;美国专利6,215,048;美国专利6,221,649;美国专利6,222,098; 美国专利6,225,114;美国专利6,228,623;美国专利6,228,992;美国专利 6,232,526;美国专利6,235,971;美国专利6,242,241;美国专利6,248,536; 美国专利6,248,876;美国专利6,252,138;美国专利6,271,443;美国专利 6,281,016;美国专利6,284,949;美国专利6,294,714;美国专利6,313,378; 美国专利6,316,407;美国专利6,326,351;美国专利6,372,211;美国专利 6,380,462;美国专利6,380,466;美国专利6,384,301;美国专利6,399,330; 美国专利6,399,861;美国专利6,403,865;美国专利6,423,828;美国专利 6,426,446;美国专利6,426,447;美国专利6,429,357;美国专利6,429,362; 美国专利6,433,252;美国专利6,437,217;美国专利6,441,277;美国专利 6,444,876;美国专利6,448,476;美国专利6,459,018;美国专利6,468,523; 美国专利6,476,295;美国专利6,483,008;美国专利6,489,461;美国专利 6,495,739;美国专利6,501,009;美国专利6,506,962;美国专利6,518,488; 美国专利6,521,442;美国专利6,531,648;美国专利6,537,750;美国专利 6,537,756;美国专利6,538,109;美国专利6,538,178;美国专利6,538,179; 美国专利6,538,181;美国专利6,541,259;美国专利6,555,655;美国专利 6,573,361;美国专利6,576,818;美国专利6,589,767;美国专利6,593,293; 美国专利6,596,538;美国专利6,608,241;美国专利6,617,496;美国专利 6,620,988;美国专利6,635,806;美国专利6,639,054;美国专利6,642,030; 美国专利6,645,497;美国专利6,653,280;美国专利6,653,530;美国专利 6,657,046;美国专利6,660,849;美国专利6,663,906;美国专利6,686,452; 美国专利6,706,950;美国专利6,713,063;美国专利6,716,474;美国专利 6,723,837;美国专利6,723,897;美国专利6,770,465;美国专利6,774,283; 美国专利6,803,501;美国专利6,809,078;美国专利6,812,379;美国专利 6,822,141;美国专利6,828,475;美国专利号7,022,896;美国专利公开 2003/0028917;美国专利公开2003/0135879;美国专利公开 2003/01403641;美国专利序号09/757,089;美国专利再版37,543;美国 专利再版38,446

Ausubel et al.,In:Current Protocols in Molecular Biology,John, Wiley & Sons,Inc,New York,1995.

Becker et al.Plant Mol.Biol.20:1195-1197,1992

Becker et al.,Plant Mol.Biol.,20:49,1992.

Bevan et al.,NAR,11:369,1983.

Brothers et al,Nature,433:630,2005.

Carrington and Freed,J.of Virology 64:1590-1597,1990

Carrington and Freed,J.Virology,64:1590,1990.

Chalfie et al.,Science,263:802,1994.

Chandler et al.,Plant Cell,1:1175-1183,1989.

Chang et al.,J.Biol.Chem.,31;278(44):42821-42828,2003.

Chu et al.,Scientia Sinica,18:659,1975.

Clough and Bent,Plant J.,16:735,1998.

Cork and Khalil,Adv.APPl.Microbiol.,40:289,1995.

Cork and Krueger,Adv.Appl.Microbiol.,38:1,1991.

Coruzzi et al.,EMBO J.,3:1671,1984.

Coruzzi et al.,J.Biol.Chem.258:1399-1402,1983

Creissen et al.,Plant J.,2:129,1991.

Crop Protection Reference,Chemical & Pharmaceutical Press,Inc., NY,11th Ed.,1803-1821,1995

De Block et al.,EMBO J.,3:1681,1984.

della-Cioppa et al.,Proc.Natl.Acad.Sci.USA,83:6873-6877,1986.

Depicker et al,J.Mol.Appl.Genet.,1:561,1982.

Desvaux et al.,Biochimica et Biophysica Acta,1745:223 253,2005.

Ditta et al.,Proc.Natl.Acad.Sci.USA,77(12):7347-7351,1980.

Ebert et al.,Proc.Natl.Acad.Sci.USA,84:5745-5749,1987.

欧洲申请553494

欧洲申请646643

Fraley et al.,Proc.Natl.Acad.Sci.USA,80:4803,1983.

Hajdukiewicz et al.,Plant Mol.Biol.25:989-994,1994

Haseloff et al.,TIG,11:328-329,1995.

Herman et al.,J.Biol.Chem.,280:24759-24767,2005.

Hoffmann et al.J.Clin.Endocrinol.Metab.,85(12):4795-498,2000.

Horsch et al.,Science,227:1229,1985.

Ingelbrecht et al.,Plant Cell,1:671,1989.

Jefferson,Plant Mol.Biol.Rep.,5:387,1987.

Jiang et al.,J.Bacteriol.178:3133-3139,1996.

Kado,Crit.Rev.Plant.Sci.,10:1,1991.

Klee et al.,Mol.Gen.Genet.,210:437-442,1987.

Koncz and Schell,Mol.Gen.Genet.,204:383396,1986.

Koncz et al.,Proc.Natl.Acad.Sci.,USA,84:131,1987.

Krueger et al.,J.Agric.Food Chem.,37:534,1989.

Kyte and Doolittle,J.Mol.Biol.,157(1):105-132,1982.

Lawton et al.,Plant Mo l.Biol.,9:315-324,1987.

Lloyd and McCown,Proc.Int.Plant Prop.Soc.,30:421,1981.

Maniatis,et al.,Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Press,Cold Spring Harbor,N.Y.,1982.

Mason,JR,and Cammack,R.,Annu.Rev.Microbiol.46:277-305, 1992.

Miki et al.,In:Methods in Plant Molecular Biology and Biotechnology,Glick and Thompson(Eds.),CRC Press,67 88,1993.

Mitsuhara et al.,Plant Cell Physiol.37:49-59,1996

Moloney et al.,Plant Cell Reports,8:238,1989.

Murashige and Skoog,Physio l.Plant,15:473-497,1962.

Odell et al.,Nature,313:810-812,1985.

PCT申请WO 04009761

PCT申请WO 95/24492

PCT申请WO 97/11086

PCT申请WO 97/31115

PCT申请WO 97/41228

Rojiyaa et al.,(JP 1987201527-A),1987.

Sambrook et al.,In:Molecular cloning::a laboratory manual,2nd Ed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989.

Southern,Mol.Biol.,98:503,1975.

Svab et al.,Plant Mol.Biol.,14:197,1990.

Svab et al.,Proc.Natl.Acad.Sci.USA,87(21):8526-8530,1990.

Teeri et al.,EMBO J.,8:343,1989.

Turner and Foster,Molec.Biotechn.,3:225,1995.

Wada et al.,Thromb.Haemost.,90(1):59-63,2003.

Walker et al.,Proc.Natl.Acad.Sci.USA,84:6624-6628,1987.

Xiaoman and Jinghe,Chin.Med.Sci.J.,14(4):195-199,1999.

Yang et al.,Proc.Natl.Acad.Sci.USA,87:4144-4148,1990.

Zhang et al,Plant Cell,Tissue and Organ Culture,56:3746,1999.

发明背景

本申请要求2006年6月6日提交的美国临时专利申请序列号 60/811,152和2007年6月5日提交的美国专利申请序列号11/758,657的 优先权,将它们的公开完整引入本文作为参考。
序列表
<110>CLEMENTE.THOMAS E.
     DUMITRU,RAZVAN
     FENG,PAUL C.C.
     FLASINSKI,STAN
     WEEKS,DONALD P.
<120>修饰的麦草畏单加氧酶及其使用方法
<130>MONS:093WO
<140>未知
<141>2007-06-06
<150>11/758,657
<151>2007-06-05
<150>60/811,152
<151>2006-06-06
<160>24
<170>PatentIn Ver.2.1
<210>1
<211>340
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>1


<210>2
<211>1023
<212>DNA
<213>人工序列
<220>
<223>人工序列说明:合成引物
<400>2


<210>3
<211>1023
<212>DNA
<213>人工序列
<220>
<223>人工序列说明:合成引物
<400>3

<210>4
<211>120
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>4


<210>5
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>5

<210>6
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>6


<210>7
<211>59
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>7

<210>8
<211>57
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>8

<210>9
<211>57
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>9

<210>10
<211>57
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>10

<210>11
<211>57
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>11

<210>12
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>12

<210>13
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>13

<210>14
<211>60
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>14


<210>15
<211>57
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>15

<210>16
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>16

<210>17
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>17

<210>18
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>18

<210>19
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>19

<210>20
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>20

<210>21
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>21

<210>22
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>22


<210>23
<211>58
<212>PRT
<213>人工序列
<220>
<223>人工序列说明:合成肽
<400>23

<210>24
<211>433
<212>DNA
<213>人工序列
<220>
<223>人工序列说明:合成引物
<400>24
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈