首页 / 专利库 / 生物防治 / 对照植物 / UBC32蛋白及其编码基因在调控植物耐旱性中的应用

UBC32蛋白及其编码基因在调控植物耐旱性中的应用

阅读:596发布:2020-05-12

专利汇可以提供UBC32蛋白及其编码基因在调控植物耐旱性中的应用专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种UBC32蛋白及其编码基因在调控 植物 耐旱性中的应用。本发明所提供的应用具体为UBC32蛋白在如下a1)‑a4)任一中的应用:a1)提高植物抗旱性;a2)选育抗旱性提高的植物品种;a3)协同ABA促进植物气孔关闭;a4)协同ABA抑制植物气孔开放。实验证明,UBC32基因过表达植株,相比野生型对照植株,对干旱胁迫的耐受性显著提高。本发明对植物抗干旱分子机制的研究具有重要意义,为培育抗逆境作物新品种提供了重要的可能性,对农业生产具有重大意义,适合于推广应用。,下面是UBC32蛋白及其编码基因在调控植物耐旱性中的应用专利的具体信息内容。

1.UBC32蛋白在如下a1)-a4)任一中的应用:
a1)提高植物抗旱性;
a2)选育抗旱性提高的植物品种;
a3)协同ABA促进植物气孔关闭;
a4)协同ABA抑制植物气孔开放;
所述UBC32蛋白为如下任一:
A1)基酸序列如序列表中序列1所示的蛋白质
A2)在A1)所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
2.UBC32蛋白相关生物材料在如下a1)-a4)任一中的应用:
a1)提高植物抗旱性;
a2)选育抗旱性提高的植物品种;
a3)协同ABA促进植物气孔关闭;
a4)协同ABA抑制植物气孔开放;
所述UBC32蛋白相关生物材料为如下任一:
(A)编码权利要求1中所述UBC32蛋白的核酸分子;
(B)含有所述核酸分子的重组载体、表达盒、转基因细胞系或重组菌。
3.根据权利要求2所述的应用,其特征在于:所述核酸分子为序列表中序列2的第118-
1047位所示的DNA分子。
4.根据权利要求1-3中任一所述的应用,其特征在于:所述植物为双子叶植物或单子叶植物。
5.根据权利要求4所述的应用,其特征在于:所述双子叶植物为十字花科植物。
6.培育抗旱性提高的转基因植物的方法,包括如下步骤:向受体植物中导入权利要求1中所述UBC32蛋白的编码基因,得到转基因植物;所述转基因植物与所述受体植物相比抗旱性提高。
7.根据权利要求6所述的方法,其特征在于:所述编码基因是通过含有所述编码基因的重组载体导入所述受体植物的。
8.培育抗旱性降低的转基因植物的方法,包括如下步骤:对受体植物中权利要求1中所述UBC32蛋白的编码基因进行抑制表达或缺失,得到转基因植物;所述转基因植物与所述受体植物相比抗旱性降低。
9.根据权利要求6-8中任一所述的方法,其特征在于:所述编码基因为序列表中序列2的第118-1047位所示的DNA分子。
10.根据权利要求6-8中任一所述的方法,其特征在于:所述植物为双子叶植物或单子叶植物。
11.根据权利要求10所述的方法,其特征在于:所述双子叶植物为十字花科植物。

说明书全文

UBC32蛋白及其编码基因在调控植物耐旱性中的应用

技术领域

[0001] 本发明属于生物技术领域,涉及一种UBC32蛋白及其编码基因在调控植物耐旱性中的应用。

背景技术

[0002] 随着全球性气候的变化,农业用地沙化和盐渍化以及资源短缺等生态问题日益严重,干旱已经成为制约农业发展的主要因素。严重的干旱灾害直接影响到国家的粮食安全和社会稳定。截止到2050年,全球人口数量迅速增加,粮食产量需面临增加70%的压,同时干旱胁迫导致耕地面积却在迅速减少。到本世纪末,干旱发生率会升高近20%,造成巨大的经济损失,在降水量低,灌溉技术发展不完善的地区,干旱造成的减产甚至将超过总产量的50%。我国作为一个人口大国,耕地面积有限,粮食缺口大,而干旱发生率高。中国平均每年受旱耕地面积约2,231.6万公顷,约占各种气象灾害影响耕地面积的三分之二,因旱灾每年损失粮食100亿千克。因此,解决干旱对粮食产量造成的影响是当务之急。为了减少干旱胁迫的影响,对植物耐旱基因的挖掘和抗旱节水品种的选育及推广显得尤为重要。
[0003] 随着研究的深入,研究人员发现在植物响应干旱胁迫的过程中抗逆激素脱落酸(ABA)发挥着极其重要的调控作用。在维持体内水分平衡和抵御渗透胁迫时,ABA对于启动植物适应机制起着重要作用。一方面,ABA可以提高植物对干旱环境的适应能力。植物在受到干旱胁迫时,植物体合成大量ABA,ABA通过木质部运输到地上部分调节气孔开度,通过促进气孔关闭减少叶片的蒸腾作用,进而减少水分蒸发适应干旱环境。另一方面,ABA可以提高植物的耐旱能力。部分ABA依赖的转录因子通过识别抗胁迫相关基因中的ABRE等顺式作用元件诱导抗胁迫基因的表达,从分子细胞水平提高植物耐旱性。此外,ABA还可以降低叶片伸展率,调整保卫细胞离子通道,提高植物抗化系统的活性,提高清除活性氧的效率,从而帮助植物有效应对干旱的威胁。由此可见ABA在干旱途径中扮演着重要的色,因此,研究和利用植物的ABA信号转导途径,寻找调节ABA信号途径的基因,是培育抗旱植物的突破口。

发明内容

[0004] 本发明的目的是提供一种UBC32蛋白及其编码基因在调控植物耐旱性中的应用。
[0005] 本发明所提供的应用具体为如下几种:
[0006] 第一种,UBC32蛋白或者能够提高所述UBC32蛋白的表达和/或活性的物质在如下a1)-a4)任一中的应用:
[0007] a1)提高植物抗旱性;
[0008] a2)选育抗旱性提高的植物品种;
[0009] a3)协同ABA促进植物气孔关闭;
[0010] a4)协同ABA抑制植物气孔开放;
[0011] 所述UBC32蛋白为如下A1)-A4)任一:
[0012] A1)基酸序列如序列表中序列1所示的蛋白质
[0013] A2)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;
[0014] A3)与A1)或A2)所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且具有相同功能的蛋白质;
[0015] A4)在A1)-A3)中任一所限定的蛋白质的N端和/或C端连接标签后得到的融合蛋白。
[0016] 为了便于所述蛋白质的纯化,可在所述蛋白质的氨基末端或羧基末端连接上如表1所示的标签。
[0017] 表1标签的序列
[0018] 标签 残基 序列Poly-Arg 5-6(通常为5个) RRRRR
Poly-His 2-10(通常为6个) HHHHHH
FLAG 8 DYKDDDDK
Strep-tag II 8 WSHPQFEK
c-myc 10 EQKLISEEDL
[0019] 第二种,UBC32蛋白相关生物材料在如下a1)-a4)任一中的应用:
[0020] a1)提高植物抗旱性;
[0021] a2)选育抗旱性提高的植物品种;
[0022] a3)协同ABA促进植物气孔关闭;
[0023] a4)协同ABA抑制植物气孔开放;
[0024] 所述UBC32蛋白相关生物材料为如下任一:
[0025] (A)编码所述UBC32蛋白的核酸分子;
[0026] (B)含有所述核酸分子的重组载体、表达盒、转基因细胞系或重组菌。
[0027] 所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA、hnRNA或tRNA等。
[0028] 进一步,本发明中所述核酸分子可为如下任一:
[0029] B1)序列表中序列2的第118-1047位所示的DNA分子;
[0030] B2)在严格条件下与B1)限定的DNA分子杂交且编码所述UBC32蛋白的DNA分子;
[0031] B3)与B1)或B2)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性,且编码所述UBC32蛋白的DNA分子。
[0032] 上述严格条件可为用6×SSC,0.5%SDS的溶液,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。
[0033] 所述表达盒由能够启动所述核酸分子表达的启动子,所述核酸分子,以及转录终止序列组成。
[0034] 在上述两种应用的a3)和a4)中,所述ABA的使用浓度具体可为10μM。
[0035] 第三种,能够降低UBC32蛋白的表达和/或活性的物质在如下b1)-b4)任一中的应用:
[0036] b1)降低植物抗旱性;
[0037] b2)选育抗旱性降低的植物品种;
[0038] b3)在植物经ABA处理时减缓ABA对植物气孔关闭的促进作用;
[0039] b4)在植物经ABA处理时减缓ABA对植物气孔开放的抑制作用。
[0040] 本发明还提供了两种培育转基因植物的方法。
[0041] 第一,培育抗旱性提高的转基因植物的方法,包括如下步骤:向受体植物中导入所述UBC32蛋白的编码基因,得到转基因植物;所述转基因植物与所述受体植物相比抗旱性提高。
[0042] 其中,所述编码基因是通过含有所述编码基因的重组载体导入所述受体植物的。
[0043] 所述重组表达载体可用现有的植物表达载体构建。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等,如pCAMBIA-1300-221、pGreen0029、pCAMBIA3301、pBI121、pBin19、pCAMBIA2301、pCAMBIA1301-UbiN或其它衍生植物表达载体。所述植物表达载体还可包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端。使用所述基因构建重组表达载体时,在其转录起始核苷酸前可加上任何一种增强型、组成型、组织特异型或诱导型启动子,例如花椰菜花叶病毒(CAMV)35S启动子、泛素基因Ubiquitin启动子(pUbi)、胁迫诱导型启动子RD29A等,它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的基因构建重组表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用重组表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因、具有抗性的抗生素标记物或是抗化学试剂标记基因等。也可不加任何选择性标记基因,直接以逆境筛选转化植株。
[0044] 在本发明中,所述重组表达载体中启动所述UBC32蛋白的编码基因转录的启动子为35S启动子。
[0045] 更为具体的,所述重组表达载体为将所述UBC32蛋白的编码基因插入pCAMBIA1300载体的多克隆位点Xba I和Kpn I之间后得到的重组质粒。
[0046] 在上述方法中,将携带有所述UBC32蛋白的编码基因的所述重组表达载体导入所述受体植物,具体可为:通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导、真空渗入法等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。
[0047] 第二,培育抗旱性降低的转基因植物的方法,包括如下步骤:对受体植物中所述UBC32蛋白的编码基因进行抑制表达或缺失,得到转基因植物;所述转基因植物与所述受体植物相比抗旱性降低。
[0048] 其中,所述“对受体植物中所述UBC32蛋白的编码基因进行抑制表达”具体可通过向所述受体植物中导入干扰片段实现。所述“对受体植物中所述UBC32蛋白的编码基因进行缺失”具体可通过在所述受体植物中在所述受体植物中进行基因编辑或者通过订购T-DNA插入突变体实现。
[0049] 在上述两种方法中,所述UBC32蛋白的编码基因具体为如下任一:
[0050] B1)序列表中序列2的第118-1047位所示的DNA分子;
[0051] B2)在严格条件下与B1)限定的DNA分子杂交且所述UBC32蛋白的DNA分子;
[0052] B3)与B1)或B2)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性,且编码所述UBC32蛋白的DNA分子。
[0053] 上述严格条件可为用6×SSC,0.5%SDS的溶液,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。
[0054] 在上述应用和方法中,所述植物既可为双子叶植物,也可为单子叶植物。
[0055] 所述单子叶植物具体可为水稻,如水稻品种日本晴。所述双子叶植物可为山柑目植物。所述山柑目植物可为十字花科植物。所述十字花科植物可为南芥族植物。所述南芥族植物可为拟南芥属植物。所述拟南芥属植物具体可为拟南芥,例如哥伦比亚生态型拟南芥(Col-0)。
[0056] 实验证明,UBC32基因过表达植株,相比野生型对照植株,对干旱胁迫的耐受性显著提高。本发明对植物抗干旱分子机制的研究具有重要意义;另外,该基因在培育耐旱植物品种中具有重要功能,从而为培育抗逆境作物新品种提供了重要的可能性,对农业生产具有重大意义,适合于推广应用。附图说明
[0057] 图1为为UBC32基因在各植株中的相对表达水平。
[0058] 图2为UBC32过表达和突变体植物的抗旱性检测结果。A为植株表型;B为复水后存活率统计结果。
[0059] 图3为UBC32过表达和突变体植物在ABA处理时气孔的闭合响应。A为气孔开度拍照;B为气孔宽长比的统计结果。*表示过表达和突变体植物气孔宽长比与WT相比差异显著(P<0.05)。

具体实施方式

[0060] 下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
[0061] 下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0062] 下述实施例中的定量试验,均设置三次重复实验,结果取平均值。
[0063] 突变体SALK_055050:ABRC(Arabidopsis Biological Resource Center)。
[0064] 哥伦比亚生态型拟南芥(Arabidopsis thaliana ecotype Columbia,Col-0):ABRC(Arabidopsis Biological Resource Center)。
[0065] pCAMBIA1300载体:记载于“Yiyue Zhang,Chengwei Yang,Yin Li,Nuoyan Zheng,Hao Chen,Qingzhen Zhao,Ting Gao,Huishan Guo and Qi Xie(2007)SDIR1Is a RING Finger E3Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis.Plant Cell.19(6):1912-1929.”一文,公众可以从中国科学院遗传与发育生物学研究所获得。
[0066] 根癌土壤杆菌(Agrobacterium tumefaciens)EHA105株:记载于“Yiyue Zhang,Chengwei Yang,Yin Li,Nuoyan Zheng,Hao Chen,Qingzhen Zhao,Ting Gao,Huishan Guo and Qi Xie(2007)SDIR1Is a RING Finger E3Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis.Plant Cell.19(6):1912–1929.”一文,公众可以从中国科学院遗传与发育生物学研究所获得。
[0067] MS培养基的成分见表2。
[0068] 表2 MS培养基成分
[0069]
[0070]
[0071] 实施例1、pCAMBIA1300-221-UBC32载体的构建
[0072] 1、提取哥伦比亚生态型拟南芥(Col-0)的总RNA并反转录为cDNA,以cDNA为模板,采用UBC32-FW和UBC32-Rev组成的引物对进行PCR扩增,回收PCR扩增产物。
[0073] UBC32-FW:5’-CTCTAGAATGGCGGATGAGAGGTAT-3’(下划线为Xba I酶切位点);
[0074] UBC32-Rev:5’-TGGTACCGTCAGACTGATCATCC-3’(下划线为Kpn I酶切位点)。
[0075] 2、用限制性内切酶Xba I和Kpn I酶切PCR片段,回收约930bp的片段。
[0076] 3、用限制性内切酶Xba I和Kpn I酶切pCAMBIA1300载体,回收约10000bp的载体骨架。
[0077] 4、将步骤2得到的PCR酶切产物和步骤3得到的载体骨架连接,得到重组质粒pCAMBIA1300-UBC32,通过测序确定序列正确。对重组质粒pCAMBIA1300-UBC32进行结构描述如下:用序列表的序列2第118-1047位所示的双链DNA分子取代pCAMBIA1300载体中Xba I和Kpn I酶切位点间的小片段。
[0078] 实施例2、转基因植株的获得
[0079] 1、将重组质粒pCAMBIA1300-UBC32导入根癌土壤杆菌EHA105株中,得到重组土壤杆菌。
[0080] 2、将步骤1得到的重组土壤杆菌通过植株真空渗入法(方法参照文献:Bent AF,Clough S J.Agrobacterium,Germ-Line Transformation:Transformation of Arabidopsis,without Tissue  Culture[M]//Plant Molecular  Biology Manual.Springer Netherlands,1998:17-30)转化哥伦比亚生态型拟南芥(Col-0),收获种子(T0代的种子,该种子长成的植株为T1代植株)。
[0081] 3、将步骤2收获的种子置于含25μg/mL潮霉素和100μg/mL特美汀的1/2MS培养基平板上,将平板先在4℃黑暗条件下放置2-4天,然后移入22℃的植物培养室(16h光照/8h黑暗)培养10天左右,然后移入22℃的植物温室进行培养并收获种子(T1代的种子,该种子长成的植株为T2代植株)。
[0082] 4、将步骤3收获的种子置于含25μg/mL潮霉素的1/2MS培养基平板上进行抗性筛选,并收获单拷贝的转基因植株得到的T2代抗性植株的种子(该种子长成的植株为T3代植株)。如果某一T1代植株得到的T2植株中抗性植株和非抗性植株的数量比约为3:1,说明该T1代植株为单拷贝的转基因植株。
[0083] 5、将步骤4收获的种子置于含25μg/mL潮霉素的1/2MS培养基平板上进行抗性筛选,得到纯合转基因植物。如果某一T2代植株得到的T3代植株均为抗性植株,说明该T2代植株为纯合的转基因植株,该T2代植株及其后代为纯合过表达株系。
[0084] 实施例3、UBC32基因的表达量
[0085] 从实施例2得到的T2代纯合过表达株系中随机选取一个,命名为OE 2-5。取哥伦比亚生态型拟南芥(Col-0)、突变体ubc32、OE 2-5株系2周龄幼苗,提取总RNA并反转录为cDNA,以cDNA为模板对各个株系的植株中UBC32基因的表达量进行实时荧光定量PCR检测,采用Actin2基因作为内参基因,将哥伦比亚生态型拟南芥中UBC32基因的表达量的表达量设为1,计算其它各个株系中UBC32基因的相对表达量,进行三次重复实验,取平均值。
[0086] 用于鉴定UBC32基因的引物序列如下:
[0087] qRT-UBC32-Fw:5’-CGAGGGCGGGATTTATCATGGG-3’;
[0088] qRT-UBC32-Rev:5’-GTTGCCAATGCTCAGGGTGGTAG-3’。
[0089] 用于鉴定Actin2基因的引物序列如下:
[0090] qRT-Actin2-FW:5’-GGTAACATTGTGCTCAGTGGTGG-3’;
[0091] qRT-Actin2-Rev:5’-AACGACCTTAATCTTCATGCTGC-3’。
[0092] 结果表明,纯合过表达株系OE 2-5植株中UBC32基因的表达水平超出了哥伦比亚生态型拟南芥中UBC32基因的表达水平,突变体ubc32中未检测到UBC32基因的表达,结果见图1。
[0093] 实施例4、UBC32基因过表达植株和突变体植株的耐旱性鉴定
[0094] 1、将哥伦比亚生态型拟南芥(Col-0)、ubc32突变体和OE 2-5的种子用10%漂白剂溶液中进行表面灭菌20分钟,然后用无菌水洗涤3次。
[0095] 2、将无菌种子悬浮在水中并点播到1/2MS板上,4℃黑暗处理3天,然后22℃培养10天,再移植到土中继续培养,每个孔中种植5棵幼苗。
[0096] 3、在穴盘中培养4天后,将整个穴盘剪开,使每个孔独立放置,同时不再浇水(干旱处理),进行耐旱性测试。干旱处理约21天后突变体几乎全部萎蔫,哥伦比亚生态型拟南芥(Col-0)大部分萎蔫,而OE 2-5过表达植株很少有萎蔫现象,仍然有较好生长状态。对所有植株进行复水,并统计植株成活率。哥伦比亚生态型拟南芥(Col-0)成活率大约为57.8%,ubc32突变体的植株成活率仅为12.5%,而OE 2-5的成活率高达95%。植株表型观察结果如图2中A所示,复水统计结果如图2中B所示。
[0097] 4、取步骤2的各植株的平展的莲座叶,撕下叶片下表皮,浸泡在气孔缓冲液(10mM KCl,50μM CaCl2,10mM MES-Tris,pH 6.15)中,置于强光(90μmol.m-2.s-1)下3个小时;将叶片换至含有0μM或10μM的ABA的气孔缓冲液中处理3h;将叶片下表皮平铺在载玻片上,用毛笔刷掉叶肉细胞,盖上盖玻片,在Imager.A1显微镜下观察气孔,Axio软件拍照,并用ImageJ软件统计气孔宽长比。
[0098] 结果如图3中A所示,在没有ABA的情况下,哥伦比亚生态型拟南芥(Col-0),和OE 2-5的气孔开度没有明显区别,在10μM ABA处理下,ubc32突变体的气孔开度明显大于哥伦比亚生态型拟南芥(Col-0),P<0.05,而OE 2-5过表达的气孔开度则明显小于哥伦比亚生态型拟南芥(Col-0),P<0.05。气孔开度小能够有效减少水分丢失,这是UBC32过表达抗旱的重要原因。气孔宽长比的统计结果如图3中B所示。
[0099] 以上结果表明,UBC32基因的高表达能够增强植物对抗逆激素ABA信号的敏感性,使高表达植物在干旱条件下快速响应体内抗逆激素ABA水平的升高,关闭叶片气孔,减少进一步的蒸腾作用,最终赋予植物抗旱的能力。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈