序号 | 专利名 | 申请号 | 申请日 | 公开(公告)号 | 公开(公告)日 | 发明人 |
---|---|---|---|---|---|---|
101 | Method and apparatus for delivering oxygen-enriched air to the passenger airplane | JP2002579309 | 2002-02-01 | JP2004523327A | 2004-08-05 | カゼナベ、ジャン−ミシェル; ザパタ、リシャール; ドゥアイェ、ジャン; バンドルー、オリビエ |
本発明によれば、乗客は、飛行機が通常の巡航高度から中間の代替高度まで下降する下降期間中に、独立した供給手段、特に高圧のシリンダー(16)から酸素富化空気の第1の部分の供給を受ける。 さらに、圧縮空気を飛行機自体の圧縮空気源から取り出し、前記酸素富化空気の第2の部分を生成し(2において)、この酸素を、5500メートルを超える代替高度に近い高度で、少なくとも飛行機の安定飛行期間中、乗客へ配送する。
【選択図】図1 |
||||||
102 | 一种可提高飞行速度的无人机用倾转旋翼 | CN201821222839.X | 2018-07-31 | CN208746245U | 2019-04-16 | 刘浩然 |
本实用新型公开了一种可提高飞行速度的无人机用倾转旋翼,包括旋翼本体,旋翼本体为对称设置在无人机两侧的一对涵道旋翼,涵道旋翼与倾转控制杆连接;涵道旋翼包括一对涵道和用于连接一对所述涵道的第一连接件,一对涵道对称设置在第一连接件两端,涵道为两端口通过向内凸出的弧形过渡面平滑连接而形成的中空圆台结构。本实用新型中的无人机起飞前,一对涵道旋翼相对无人机机身为水平状态,使无人机可垂直起降。到达巡航高度后,舵机控制涵道旋翼旋转,使涵道旋翼相对无人机机身为竖直状态,将推力水平向后方提供。当无人机转弯时,一对涵道旋翼可根据转弯角度及转弯方向由舵机驱动旋转动到合适的角度,产生转向力矩,整体稳定性好。 | ||||||
103 | Situational awareness pilot briefing tool | JP2013023994 | 2013-02-12 | JP2013193731A | 2013-09-30 | COOPER JENNIFER |
PROBLEM TO BE SOLVED: To provide a system and method for better conveying information to a pilot and/or other members of a flight crew present on the flight deck of an aircraft.SOLUTION: A system 10 and method provide a briefing output relevant to the particular phases of a flight in both of a visual form and an audio form, with the briefing output including data 11 most relevant to the particular flight phase. Particularly, the system 10 and method are used in the briefings that precede various phases of the flight operations of an aircraft (such as start-up of the engines, take-off, ascent to cruise altitude, descent from cruise altitude, landing). | ||||||
104 | CONTROL SYSTEM FOR IMPLEMENTING FIXED CABIN PRESSURE RATE OF CHANGE DURING AIRCRAFT CLIMB | PCT/US0337913 | 2003-11-25 | WO2004102636A3 | 2005-03-10 | HORNER DARRELL W |
An aircraft cabin pressure control system that controls cabin altitude during aircraft ascent to a cruise altitude, such that, under most operational circumstances, the cabin altitude rate of change during the ascent is set to fixed value. The system uses a signal representative of the aircraft's expected cruise altitude. If, however, this signal is not available, the cabin pressure control system controls cabin altitude according to a schedule, and the cabin altitude rate of change may not be fixed during the aircraft's ascent. | ||||||
105 | 带可动边条的鸭式飞翼布局飞机 | CN201320212543.0 | 2013-04-24 | CN203666966U | 2014-06-25 | 李军; 代京; 赵锁珠; 王伟; 谢锦睿; 蒲鸽 |
本实用新型属于飞机气动布局设计技术领域,特别是涉及一种带可动边条的鸭式飞翼布局飞机。该带可动边条的鸭式飞翼布局飞机针对飞翼布局升阻比高但配平升力系数低、操纵性差等的特点,在飞翼布局的基础上进行机体修形,在机体前端加装远距控制鸭翼,以微小的升阻比损失获得较大的配平升力系数和良好的操控性能;在机翼前缘内侧安装一体化可动边条,可以通过调整边条的上反角获得不同飞行姿态下的涡升力,进一步提高升力特性和升阻特性。飞机同时采用隐身设计原则,适用于高空长航时飞机和无人作战飞机,可明显提高该类飞机的巡航高度、巡航时间、起降性能和机动性能。 | ||||||
106 | 一种新型太阳能无人机 | CN202120377115.8 | 2021-02-19 | CN214267940U | 2021-09-24 | 王川; 杨光; 刘来; 霍光远; 霍光开; 杨朔; 于佳; 封彬; 陈猛 |
本实用新型公开了一种新型太阳能无人机,属于无人机技术领域,其包括机翼和控制仓,机翼的上表面设置有太阳能电池板,前缘设置有动力系统,末端设置有翼稍小翼;机翼包括夹角连接设置的第一机翼和第二机翼,第二机翼与第一机翼的结构相同;控制仓设置在第一机翼和第二机翼的连接处;第一机翼和第二机翼均包括翼梁和多个翼肋,翼梁和翼肋的外侧包覆有蒙皮;翼梁为双梁式框架结构,翼肋用于支撑蒙皮、维持机翼的剖面形。本实用新型与常规无人机相比,巡航高度高,飞行速度低,能实现定点巡查和不间断巡航;相比卫星,太阳能无人机造价低,维护成本低,可实施性高。(ESM)同样的发明创造已同日申请发明专利 | ||||||
107 | 一种二冲程双缸活塞式重油航空发动机 | CN201821776762.0 | 2018-10-31 | CN208950706U | 2019-06-07 | 陈聪明 |
本实用新型公开了一种二冲程双缸活塞式重油航空发动机,包括曲轴箱、加热机构、两个缸体、两个气缸盖、两个电喷机构和两个点火机构,两个缸体水平对置的连接设置在曲轴箱的两侧,两个缸体的进气口均朝上设置,每个缸体的进气口上均连接一电喷机构,所述电喷机构包括进气管、节气门转轴、驱动拐臂、喷油器和进油管。本实用新型适应范围较广,燃油经济性较好。把本实用新型装于飞机上有利于提高飞机的巡航高度;本实用新型直接加热发动机的缸盖,使热量能有效地传递到燃烧室来加热可燃混合气,可在较短的时间内使可燃混合气的温度达到着火温度,有效提高了重油发动机在低温条件下的起动性能。 | ||||||
108 | 具有用于低排放巡航的驱动和动力系统的飞机 | CN202180067960.8 | 2021-09-23 | CN116261546A | 2023-06-13 | C·里迪格; M·纽塞勒 |
本发明涉及一种用于多引擎飞机(20)的混合动力电力驱动系统(10)。所述驱动系统包括至少第一和第二混合动力电力驱动单元(31、32),其分别具有内燃机(41、42)、用于将驱动功率传输到螺旋桨(61、62)的电动发电机单元(71、72)。所述驱动系统(10)具有燃料电池(73)以供应电动发电机单元(71、72)电能。该燃料电池又经由燃料箱(74)被供应氢气。在燃料电池(73)中,氢气转换为电,其然后经由传输装置(80)为功率转换器(81、82)和电动发电机单元(71、72)供应电功率,以便驱动螺旋桨(61、62)。优点:基于具有约40至90位乘客的涡轮螺桨发动机飞机,40%能量在1小时任务期间能够无排放地通过氢气和燃料电池表示。在意味着,在巡航期间更少的CO2并且在巡航高度(FL250)也没有危害气候的废气和凝结尾迹,其代表航空排放的主要比例。 | ||||||
109 | CONTROL SYSTEM AND METHOD FOR IMPLEMENTING FIXED CABIN PRESSURE RATE OF CHANGE DURING AIRCRAFT CLIMB | PCT/US2003/037913 | 2003-11-25 | WO2004102636A2 | 2004-11-25 | HORNER, Darrell, W. |
An aircraft cabin pressure control system that controls cabin altitude during aircraft ascent to a cruise altitude, such that, under most operational circumstances, the cabin altitude rate of change during the ascent is set to fixed value. The system uses a signal representative of the aircraft's expected cruise altitude. If, however, this signal is not available, the cabin pressure control system controls cabin altitude according to a schedule, and the cabin altitude rate of change may not be fixed during the aircraft's ascent. |
||||||
110 | Control system and method for implementing fixed cabin pressure rate of change during aircraft climb | US10304267 | 2002-11-26 | US06761628B2 | 2004-07-13 | Darrell W. Horner |
An aircraft cabin pressure control system that controls cabin altitude during aircraft ascent to a cruise altitude, such that, under most operational circumstances, the cabin altitude rate of change during the ascent is set to fixed value. The system uses a signal representative of the aircraft's expected cruise altitude. If, however, this signal is not available, the cabin pressure control system controls cabin altitude according to a schedule, and the cabin altitude rate of change may not be fixed during the aircraft's ascent. | ||||||
111 | AIRCRAFT SEAT COVER AND AIRCRAFT DIVAN EQUIPPED WITH SAME | US14323439 | 2014-07-03 | US20160001886A1 | 2016-01-07 | PAM FULLERTON |
A comfort seat cushion cover for installation over a seat cushion of a 16G certified divan when at cruising altitude. The seat cushion cover receives the seat cushion in an opening and retains it securely therein. The cover improves comfort and extends a depth of the divan while maintaining the 16G certification. | ||||||
112 | CONTROL SYSTEM AND METHOD FOR IMPLEMENTING FIXED CABIN PRESSURE RATE OF CHANGE DURING AIRCRAFT CLIMB | US10304267 | 2002-11-26 | US20040102150A1 | 2004-05-27 | Darrell W. Horner |
An aircraft cabin pressure control system that controls cabin altitude during aircraft ascent to a cruise altitude, such that, under most operational circumstances, the cabin altitude rate of change during the ascent is set to fixed value. The system uses a signal representative of the aircraft's expected cruise altitude. If, however, this signal is not available, the cabin pressure control system controls cabin altitude according to a schedule, and the cabin altitude rate of change may not be fixed during the aircraft's ascent. | ||||||
113 | 非線形計画法を使用する飛行経路最適化 | JP2016162309 | 2016-08-23 | JP2017074940A | 2017-04-20 | レザ・ガミー; エリック・リチャード・ウェスターベルト; マーク・ダーネル |
【課題】非線形計画法を使用して飛行経路を最適化する。 【解決手段】航空機とエンジンの組合せに対する性能特性の数学モデル表現を受信し、数学モデル表現に射影ベースのモデル次数低減を行い、数学モデル表現の高速動力学成分を投影したモデルに基づいて排除し、代数方程式が高速動力学に取って代わる微分代数方程式として低減次数モデルを決定し、モデル化した航空機とエンジンの組合せのための燃料消費量を最小限に抑える制御として飛行経路角度およびスロットルレバー角度を設定し、モデル化した航空機とエンジンの組合せに対する運動方程式を離散化して、非線形計画問題として最適化方程式を定式化し、かつモデル化した航空機とエンジンの組合せが規定の巡航高度および対気速度まで上昇するための燃料消費量を最小限に抑える最適開ループ制御を決定する。 【選択図】図1 |
||||||
114 | LOW DRAG PASSENGER-CABIN WINDOW | PCT/US2013/042731 | 2013-05-24 | WO2013184419A1 | 2013-12-12 | HOFFA, Thomas, S.; HSIEH, Kelvin, B. |
A low drag passenger-cabin window (12) for use on an aircraft fuselage having a generally cylindrical shape, in which the as- manufactured geometry of the window is modified so that the shape of the window at cruise altitudes is aerodynamically optimized. The window comprises a pane of transparent material. The inner and outer surfaces of the peripheral portion of the pane as manufactured conform to a generally cylindrical shape, while the inner and outer surfaces of the medial portion of the pane as manufactured are depressed inwardly in a prescribed manner relative to the peripheral portion. The surfaces of the medial portion are adapted to deflect outwardly to conform to a generally cylindrical shape in response to a predetermined air pressure differential and/or a predetermined temperature gradient experienced at cruise altitude. |
||||||
115 | 氢优化飞行器架构和操作 | CN202380031585.0 | 2023-04-14 | CN119013190A | 2024-11-22 | 马丁·努塞勒 |
本发明涉及一种具有双燃料推进系统的运输飞行器。该飞行器20能够执行飞行任务,该飞行任务包括至少起飞、爬升、巡航、下降、进近和着陆的节段,在此期间可选择性地使用第一燃料或第二燃料。该飞行器20包括:‑至少一个内燃机31、32,该至少一个内燃机能够选择性地使用第一煤油基喷气燃料和第二液态氢燃料来生成推进推力,‑两组独立的燃料系统50、55,该两组独立的燃料系统包括将该第一燃料从第一组燃料储罐41进料到该内燃机31、32的第一燃料系统55和将该第二燃料从第二组燃料储罐51进料到该内燃机的第二燃料系统50,‑至少两组分开的燃料储罐41、51,其中第一组燃料储罐41储存该第一燃料并且第二组燃料储罐51储存该第二燃料,其中两组燃料储罐41、51都容纳用于该飞行任务的所需燃料加上储备燃料;‑机身22,该机身具有用于容纳乘客和/或货物的向前座舱节段23以及位于该机身22的尾部节段中的容纳该第二组燃料储罐51的座舱节段;‑机翼(26),该机翼附接到该机身22以生成升力并且容纳内部组燃料储罐4。优点:基于具有约40位至90位乘客的涡轮螺旋桨飞行器20,在1小时任务期间,约40%的能量可经由氢无排放地表示。这意味着在巡航飞行期间没有CO2排放,并且在巡航高度(FL 250)处也没有损害气候的废气和凝结尾迹效应,而这在航空排放中占显著比例。 | ||||||
116 | METHOD AND ELECTRONIC DEVICE FOR OPTIMIZING A FLIGHT TRAJECTORY OF AN AIRCRAFT SUBJECT TO TIME OF ARRIVAL CONTROL CONSTRAINTS | EP16382085.5 | 2016-02-29 | EP3211621A1 | 2017-08-30 | DE PRINS, JOHAN; FIGLAR, BASTIAN; RAVESTEIJN, COEN |
A method and electronic device for optimizing a flight trajectory of an aircraft subject to time of arrival control constraints. The electronic device comprises a communications unit (510) an optimization module (520) and an alert generation module (530). The communications unit (510) receives atmospheric conditions about an aircraft route, aircraft operational constraints and real-time aircraft state and performance. The optimization module (520) receives time of arrival control constraints for the aircraft route and flight trajectory optimization parameters at least including flight cruise altitude. The optimization module (520) comprises a flight trajectory generator (522) that generates sets of values for flight trajectory optimization parameters, computes flight trajectories of the aircraft and selects, based on optimization criteria (e.g. fuel saving, speed control margin), one optimal flight cruise altitude with a computed flight trajectory complying with the time of arrival control constraints. The alert generation module (530) generates trajectory change alerts (532) including the selected optimal flight cruise altitude.
|
||||||
117 | METHOD AND ELECTRONIC DEVICE FOR OPTIMIZING A FLIGHT TRAJECTORY OF AN AIRCRAFT SUBJECT TO TIME OF ARRIVAL CONTROL CONSTRAINTS | US15422389 | 2017-02-01 | US20170249849A1 | 2017-08-31 | Johan De Prins; Bastian Figlar; Coen Ravesteijn |
A method and electronic device for optimizing a flight trajectory of an aircraft subject to time of arrival control constraints. The electronic device comprises a communications unit, an optimization module, and an alert generation module. The communications unit receives atmospheric conditions about an aircraft route, aircraft operational constraints and real-time aircraft state and performance. The optimization module receives time of arrival control constraints for the aircraft route and flight trajectory optimization parameters at least including flight cruise altitude. The optimization module comprises a flight trajectory generator that generates sets of values for flight trajectory optimization parameters, computes flight trajectories of the aircraft and selects, based on optimization criteria (e.g. fuel saving, speed control margin), one optimal flight cruise altitude with a computed flight trajectory complying with the time of arrival control constraints. The alert generation module generates trajectory change alerts including the selected optimal flight cruise altitude. | ||||||
118 | Feedback system for a flying control member | EP14177141.0 | 2014-07-15 | EP2826707A1 | 2015-01-21 | McCulloch, Norman L |
An aircraft has servo mechanisms for adjusting the flying control surfaces in accordance with movement by the pilot of the flying control member in the cockpit of the aircraft. A feedback feel device controlled by a computer monitors the power transmitted through the servo mechanism for one or more of the flying control surfaces which initiates an aerobatic manoeuvre, and applies to the flying control member a tactile response representative of the variation in power during the aerobatic manoeuvre. The computer is programmed so that the tactile response is weak when the aerobatic manoeuvre is performed at an airspeed close to the stalling speed at a cruising altitude, and the tactile response is strong when the aerobatic manoeuvre is performed at an airspeed close to the maximum at the same cruising altitude, whereby the nature of the response provides the pilot with a measure of the airspeed of the aircraft.
|
||||||
119 | LOW DRAG PASSENGER-CABIN WINDOW | PCT/US2013042731 | 2013-05-24 | WO2013184419A9 | 2014-02-27 | HOFFA THOMAS S; HSIEH KELVIN B |
A low drag passenger-cabin window (12) for use on an aircraft fuselage having a generally cylindrical shape, in which the as- manufactured geometry of the window is modified so that the shape of the window at cruise altitudes is aerodynamically optimized. The window comprises a pane of transparent material. The inner and outer surfaces of the peripheral portion of the pane as manufactured conform to a generally cylindrical shape, while the inner and outer surfaces of the medial portion of the pane as manufactured are depressed inwardly in a prescribed manner relative to the peripheral portion. The surfaces of the medial portion are adapted to deflect outwardly to conform to a generally cylindrical shape in response to a predetermined air pressure differential and/or a predetermined temperature gradient experienced at cruise altitude. | ||||||
120 | PROCEDE ET INSTALLATION DE DISTRIBUTION D'AIR ENRICHI EN OXYGENE AUX PASSAGERS D'UN AERONEF | PCT/FR2002/000389 | 2002-02-01 | WO2002081306A1 | 2002-10-17 | CAZENAVE, Jean-Michel; DEHAYES, Jean; VANDROUX, Olivier; ZAPATA, Richard |
Selon ce procédé, on fournit aux passagers une première fraction d'air enrichi en oxygène, à partir de moyens de fourniture inépendants, en particulier de bouteilles haute pression (16), pendant une phase de descente de l'aéronef entre une altitude normale de croisière et une altitude de déroutement intermédiaire. On prélève par ailleurs de l'air comprimé à partir d'une source d'air comprimé propre à l'aéronef pour produire (en 2) une seconde fraction dudit air enrichi en oxygène qu'on délivre aux passagers, au moins lors d'une phase de vol stabilisé de l'aéronef, au voisinage de l'altitude de déroutement, supérieure à 5 500 mètres. |