离子液体

申请号 CN200680005670.6 申请日 2006-01-04 公开(公告)号 CN101137437A 公开(公告)日 2008-03-05
申请人 贝尔法斯特女王大学; 发明人 马丁·约翰·厄尔; 肯尼斯·理查德·塞登; 斯图尔特·福赛思; 乌特·弗勒利希; 尼马尔·古纳拉特尼; 苏哈斯·卡特戴尔;
摘要 离子液体 作为在 碱 催化化学反应中的 溶剂 的应用,其中所述离子液体由至少一种阳离子和至少一种阴离子组成,其特征在于所述离子液体的阳离子包含带正电荷的部分和碱性部分,并且其中可以使用这些离子液体作为用于所述化学反应的促进剂或催化剂。
权利要求

1.一种离子液体作为在催化化学反应中的溶剂的应用,所述离子液 体由至少一种阳离子和至少一种阴离子组成,其特征在于所述离子液体的 阳离子包含(i)带正电荷的部分和(ii)碱性部分。
2.根据权利要求1的应用,其中所述离子液体由下式表示:
[Cat+-Z-Bas][X-]
其中:Cat+=带正电荷的部分;
Bas=碱性部分;并且
Z=连接Cat+和Bas的共价键;或者1、2或3个脂族二价连接 基团,每一个所述脂族二价连接基团均包含1至10个原子并且任选包含 一个、两个或三个原子;
X-=阴离子;并且
条件是Bas不是-OH。
3.根据权利要求2的应用,其中Bas包含至少一个氮、磷、硫、氧或 原子。
4.根据权利要求3的应用,其中Bas包含至少一个伯、仲或叔基。
5.根据权利要求3的应用,其中Bas选自-N(R1)(R2)和-P(R1)(R2)(R3); 并且其中R1、R2和R3可以相同或不同,并且各自独立地选自氢、直链或支 链烷基、环烷基、芳基和取代芳基中。
6.根据权利要求5的应用,其中R1、R2和R3各自选自氢、甲基、乙 基、异丙基、丙基、丁基、仲丁基、异丁基、戊基、己基、环己基、苄基 和苯基中。
7.根据权利要求5或6的应用,其中Bas选自-N(CH3)2和 -N(CH(CH3)2)2中。
8.根据权利要求2至7中任一项的应用,其中Z选自直链或支链C1 至C18亚烷基、取代亚烷基、二烷基醚或二烷基中。
9.根据权利要求8的应用,其中Z选自-(CH2-CH2)-、-(CH2-CH2-CH2)-、 -(CH2-CH2-CH2-CH2)-、-(CH2-CH2-CH2-CH2-CH2)-、 -(CH2-CH2-CH2-CH2-CH2-CH2)-、-(CH2-CH2-O-CH2-CH2)-和 -(CH2-CH2-O-CH2-CH2-CH2)-中。
10.根据权利要求2至9中任一项的应用,其中所述Cat+部分包含杂 环结构或者由杂环结构组成,所述杂环结构选自咪唑鎓、吡啶鎓、吡唑鎓、 噻唑鎓、异噻唑啉鎓、氮杂噻唑鎓、氧代噻唑鎓、噁嗪鎓、噁唑鎓、氧硼 杂环戊烯鎓、二噻唑鎓、三唑鎓、硒唑鎓、氧磷杂环戊烯鎓、吡咯鎓、硼 杂环戊烯鎓、呋喃鎓、噻吩鎓、磷杂环戊烯鎓、五唑鎓、吲哚鎓、二氢吲 哚鎓、噁唑鎓、异噁唑鎓、异三唑鎓、四唑鎓、苯并呋喃鎓、二苯并呋喃 鎓、苯并噻吩鎓、二苯并噻吩鎓、噻二唑鎓、嘧啶鎓、吡嗪鎓、哒嗪鎓、 哌嗪鎓、哌啶鎓、吗啉鎓、吡喃鎓、苯胺正离子、酞嗪鎓、喹唑啉鎓、喹 嗪鎓、喹啉鎓、异喹啉鎓、噻嗪鎓、噁嗪鎓和氮杂轮烯鎓。
11.根据权利要求10的应用,其中Cat+-Z-Bas选自:


其中:Bas和Z是如上述定义;并且
Rb、Rc、Rd、Re、Rf、Rg和Rh可以相同或不同,并且各自独立地选自 氢、C1至C40直链或支链烷基、C3至C8环烷基、或C6至C10芳基中,其中所 述烷基、环烷基或芳基是未取代的或者可以被一至三个基团取代,所述一 至三个基团选自C1至C6烷氧基、C6至C10芳基、CN、OH、NO2、C7至C30 芳烷基和C7至C30烷芳基中,或者连接到相邻碳原子上的Rb、Rc、Rd、Re 和Rf中的任意两个形成其中q为8至20的亚甲基链-(CH2)q-。
12.根据权利要求11的应用,其中所述Cat+-Z-Bas选自:


其中:Bas、Z和Rb如上述定义。
13.根据权利要求11的应用,其中Cat+-Z-Bas选自:

14.根据权利要求10至13中任一项的应用,其中Cat+由前体的烷基 化、质子化和/或酰化得到,所述前体选自咪唑、吡啶、吡唑、噻唑、异噻 唑、氮杂噻唑、氧代噻唑、噁嗪、噁唑啉、氧硼杂环戊烯、二噻唑、三唑、 硒唑、氧磷杂环戊烯、吡咯、硼杂环戊烯、呋喃、噻吩、磷杂环戊烯、五 唑、吲哚、二氢吲哚、噁唑、异噁唑、异三唑、四唑、苯并呋喃、二苯并 呋喃、苯并噻吩、二苯并噻吩、噻二唑、嘧啶、吡嗪、哒嗪、哌嗪、哌啶、 吗啉、吡喃、苯胺、酞嗪、喹唑啉、喹喔啉、喹啉、异喹啉、噻嗪、噁嗪 和氮杂轮烯。
15.根据权利要求2至9中任一项的应用,其中Cat+是无环有机部分。
16.根据权利要求15的应用,其中所述Cat+部分包含选自下列的基团 或由选自下列的基团组成:氨基、脒基、亚氨基、胍基、膦基、胂基、 基、烷氧基烷基、烷硫基、烷硒基和膦亚氨基。
17.根据权利要求16的应用,其中Cat+-Z-Bas选自:
[N(Z-Bas)(Rb)(Rc)(Rd)]+和[P(Z-Bas)(Rb)(Rc)(Rd)]+
其中:Bas、Z、Rb、Rc和Rd如上述定义;条件是Bas不是-OH和-N(Et)2。
18.根据权利要求16的应用,其中Cat+-Z-Bas选自:

其中:Bas、Z和Rb如上述定义。
19.根据权利要求17的应用,其中Cat+-Z-Bas选自:

和。
20.根据权利要求2至4中任一项的应用,其中Cat+-Z-Bas是下式的 化合物:

其中:Rb如上述定义。
21.根据权利要求1至20中任一项的应用,其中X-是IB、IIIA、IVA、 VA、VIA或VIIA族元素的烷基化或卤化盐。
22.根据权利要求21的应用,其中所述阴离子X-是氢氧化物、醇盐、 酚盐、二氰胺、硼酸盐、磷酸盐、硝酸盐、硫酸盐、三氟甲磺酸盐、卤代 酸盐、锑酸盐、亚磷酸盐、取代和未取代的金属硼烷、取代和未取代的 羧酸盐和三氟甲磺酸盐;或它们的混合物。
23.根据权利要求21或22的应用,其中X-选自BF4、PF6、CF3SO3、 CF3COO、SbF6、CuCl2、A5F6、SO4、CF3CH2CH2COO、(CF3SO2)3C、 CF3(CF2)3SO3、[CF3SO2]2N和金属无机阴离子中。
24.根据权利要求1至21中任一项的应用,其中X-选自卤化物、三氟 甲磺酸盐、双三氟甲磺酰氨基[(CF3SO2)2N]和烷基磺酸盐[RSO3]。
25.根据前述权利要求中任一项的应用,其中所述离子液体包含一种 或多种具有碱性部分和带正电荷的部分的阳离子的混合物。
26.根据前述权利要求中任一项的应用,其中所述离子液体包含一种 或多种阴离子的混合物。
27.根据前述权利要求中任一项的应用,其中所述离子液体还包含一 种或多种由阳离子和阴离子构成的离子液体的混合物。
28.根据前述权利要求中任一项的应用,其中所述化学反应被所述碱 性离子液体催化。
29.根据前述权利要求中任一项的应用,其中所述化学反应选自Heck 反应、Suzuki偶联、亲核取代反应、解、酯化、酯交换羟反应、环氧 化、氢化、缩合、氧化还原、水合、脱水、取代、芳族取代、加成(包括羰 基加成)、消除、聚合、解聚、低聚、二聚、偶联、电环化、异构化、卡宾 形成、差向异构作用、反转、重排、光化学反应、微波辅助反应、热反应、 声化学反应和歧化反应。
30.根据权利要求1至29中任一项的应用,其中所述化学反应被所述 碱性离子液体促进。
31.根据权利要求1至21和26至31中任一项的应用,其中X-由下 式表示:
[X-R-Bas]-
其中:X和Bas如上述定义;并且R是连接X和Bas的共价键,或含有1至 10个碳原子并且任选含有一、二或三个氧原子的连接基团。
32.一种下式的碱性离子液体:
[Cat+-Z-Bas][X-]
其中:Cat+部分是包含杂环结构或者由杂环结构组成的带正电荷的部 分,所述杂环结构选自吡啶鎓、吡唑鎓、噻唑鎓、异噻唑啉鎓、氮杂噻唑 鎓、氧代噻唑鎓、噁嗪鎓、噁唑鎓、氧硼杂环戊烯鎓、二噻唑鎓、三唑鎓、 硒唑鎓、氧磷杂环戊烯鎓、吡咯鎓、硼杂环戊烯鎓、呋喃鎓、噻吩鎓、磷 杂环戊烯鎓、五唑鎓、吲哚鎓、二氢吲哚鎓、噁唑鎓、异噁唑鎓、异三唑 鎓、四唑鎓、苯并呋喃鎓、二苯并呋喃鎓、苯并噻吩鎓、二苯并噻吩鎓、 噻二唑鎓、嘧啶鎓、吡嗪鎓、哒嗪鎓、哌嗪鎓、哌啶鎓、吗啉鎓、吡喃鎓、 苯胺正离子、酞嗪鎓、喹唑啉鎓、喹嗪鎓、喹啉鎓、异喹啉鎓、噻嗪鎓、 噁嗪鎓和氮杂轮烯鎓;
Z=连接Cat+和Bas的共价键;或者1、2或3个脂族二价连接基团,每 一个所述脂族二价连接基团均含有1至10个碳原子并且任选含有一个、两 个或三个氧原子;
X-=选自醇盐、酚盐、二氰胺、硼酸盐、硝酸盐、硫酸盐、三氟甲磺 酸盐、卤代铜酸盐、锑酸盐、亚磷酸盐、取代和未取代的金属硼烷、取代 和未取代的羧酸盐和三氟甲磺酸盐,或它们的混合物;并且
Bas=如上述限定的碱性部分。
33.根据权利要求32的碱性离子液体,所述碱性离子液体选自下式的 化合物:


其中:Bas、Z、Rb、Rc、Rd、Re、Rf、Rg、Rh和X-如上述定义。
34.根据权利要求33的碱性离子液体,所述碱性离子液体选自:


其中:Bas、Z、X-和Rb如上述定义。
35.根据权利要求33的碱性离子液体,所述碱性离子液体选自:

36.一种由下式表示的碱性离子液体:
[Cat+-Z-Bas][X-]
其中:Cat+=无环的带正电荷部分;
Z=连接Cat+和Bas的共价键;或者1、2或3个脂族二价连接基团, 每一个所述脂族二价连接基团均含有1至10个碳原子并且任选含有一个、 两个或三个氧原子;
X-=阴离子;
Bas=受阻的碱性部分,选自-N(R1)(R2)、-P(R1)(R2)(R3)、 -PO(OR1)、PO(OR1)(OR2)、-S(R1)、-SO2(OR1)和含硼基团,其中R1、R2和 R3可以相同或不同,并且各自独立地选自氢、直链或支链烷基、环烷基、 芳基和取代芳基中;条件是Bas不是-NH2、-NHMe、N(Et)2或boratrane;并 且
条件是在Cat+包含氨基时,阴离子X-选自二氰胺、硼酸盐、磷酸 盐、硝酸盐、硫酸盐、三氟甲磺酸盐、卤代铜酸盐、锑酸盐、亚磷酸盐、 取代和未取代的金属硼烷和它们的混合物。
37.根据权利要求36的碱性离子液体,所述碱性离子液体选自下式的 化合物:

其中:Bas、Z、X-和Rb如上述定义。
38.根据权利要求36的碱性离子液体,所述碱性离子液体选自下式的 化合物:


其中:X-如上述定义。

说明书全文

发明涉及离子液体,更具体而言,涉及新型性离子液体及其作为 化学反应中的溶剂的应用。另外,所述碱性离子液体能够促进或催化化学 反应。

在US6,552,232中描述了需要碱促进或催化的羟反应,其中使用 1,2,3-三烷基咪唑鎓盐或1,3-二烷基咪唑鎓盐作为用于羟醛反应的溶剂和/ 或催化剂。US6,552,232还描述了咪唑鎓离子液体的合成及其应用。然而, 1,2,3-三烷基咪唑鎓盐或1,3-二烷基咪唑鎓盐在碱性条件下不稳定,并且 BF4和PF6阴离子在酸或碱的存在下分解成氟化物。在US6,774,240和ACS Symposium Series 856,25页中描述了咪唑鎓离子液体在碱性条件下的这种 分解(其中举例说明了氢化咪唑鎓的不稳定性)。此外,由于US6,552,232 的离子盐存在作为阴离子种类的羟基,因而它只是碱性的。

M.J.Earle、K.R.Seddon和P.B.McCormac,Green Chem.,2000,2,261 和M.J.Earle,P.B.McCormac和K.R.Seddon,Chemical Communications, 1998,2245描述了在离子液体中的氢氧化物碱促进亲核取代反应的应用。 然而,与US6,552,232一样,存在的碱性归因于羟基所致。

WO03/062171描述了中性分子1-甲基咪唑用于从例如醇的甲烷基 化的反应混合物中除去酸的应用。可以从反应混合物中容易地除去形成的 1-甲基咪唑/酸配合物。

WO04/029004描述用于Suzuki偶联的碱性离子液体双三氟甲磺酰 基N-(二乙基氨基丁基)-三甲基铵 (N-(diethylaminobutyl)-trimethylammonoim bis triflamide)的合成,在这种反 应中它比普通的碱如差。所公开的碱性离子液体不是用作溶剂,而 是用作液体载体。相反,溶剂是普通的非碱性离子液体。

Davis(Chemistry Letters,2004,33,1072-1077)公开了碱性离子液体1- 丁基-3-氨基丙基四氟酸盐与二氧化碳反应,并且所述氨基可以在化学过 程中被化学结合到反应物上。公开的离子液体不是碱稳定的,因为它包含 碱不稳定的咪唑环以及碱不稳定的四氟硼酸根阴离子。

Mateus,N.M.M.等在Green Chem.2003,347中描述了可以将一些咪唑鎓 离子液体与碱结合使用,但是Aggarwal,V.K.等在Chem.Commun.2002, 1612-1613中教导我们,因为咪唑鎓阳离子在碱性条件下与所使用的试剂反 应,所以咪唑鎓离子液体不适合碱催化反应(特别是Baylis-Hillman反应)。 Earle,M.J.在ACS symposium Washington DC2001(M.J.Earle,Abstracts of Papers of the American Chemical Society,2001,221,161)也表明,因为导致 咪唑鎓阳离子改性的副反应,所以2-烷基化的咪唑鎓离子液体不适合碱催 化反应。

2-烷基咪唑鎓离子液体在碱存在下的反应

如在此所用的术语″离子液体″指能够通过熔化固体制备,并且在如此 制备时,只由离子组成的液体。离子液体可以衍生自有机盐。

离子液体可以由包含一种阳离子和一种阴离子的均相物质形成,或者 可以由多于一种的阳离子和/或阴离子组成。因此,离子液体可以由多于一 种的阳离子和一种阴离子组成。离子液体还可以由一种阳离子和一种或多 种阴离子组成。因此,本发明的混合盐可以包括含有阴离子和阳离子的混 合盐。

因此,总之,如在此所用的术语″离子液体″可以指由单一盐(一种阳离 子种类和一种阴离子种类)组成的均相组合物,或者它可以指含有多于一种 的阳离子和/或多于一种的阴离子的多相组合物。

特别令人感兴趣的一类离子液体是熔点低于100℃的盐组合物的离子 液体。这样的组合物是在低于组分的各个熔点的温度下通常为液体的组分 的混合物。

其中阴离子产生离子液体的碱性的离子液体被Forsyth,S.A.等在 Chem.Commun.2002,714-715中公开用于乙酰化反应,并且被S.Abello等 在Chem.Commun.2004.1096-1097中公开用于羟醛反应。

然而,没有公开这样的离子液体:其中阳离子产生碱性,并且所述离 子液体用作溶剂时,还可以用于促进或催化反应。

术语″碱″指具有与酸反应(中和)形成盐的能的布朗斯台德碱。当溶 解或悬浮于时,碱的pH范围是7.0至14.0。

本发明描述了碱性离子液体作为溶剂和在碱催化或促进的化学反应、 分离或处理中的新应用。通过使用离子液体作为反应介质(即,溶剂)和/或 催化剂,可以实现更高的选择性、提高产率、简化产物的分离或纯化,减 少或者消除挥发性溶剂。

与常规的溶剂体系不同,这些液体具有低的蒸汽压、可调的极性和性 能以及高的热稳定性。根据离子片段的选择,可以将反应环境设计成以最 有效率的方式适应化学过程的催化和分离。通过组合碱催化作用和离子液 体的优点,可以制备相对于现有催化剂体系而表现出选择性和再循环性的 显著优点的催化剂介质。

根据本发明的一个方面,提供离子液体作为在碱催化化学反应中的溶 剂的应用,所述离子液体由至少一种阳离子和至少一种阴离子组成,其特 征在于所述离子液体的阳离子包含(i)带正电荷的部分和(ii)碱性部分。

用于本发明的碱性离子液体可以由下式表示:

[Cat+-Z-Bas][X-]

其中:Cat+=带正电荷的部分;

Bas=碱性部分;并且

Z=连接Cat+和Bas的共价键;或者1、2或3个脂族二价连接基团, 每一个所述二价连接基团均含有1至10个碳原子并且任选含有一个、两个 或三个氧原子。

X-=阴离子

优选地,Bas包含至少一个氮、磷、硫、氧或硼原子,例如,Bas可以包含 至少一个伯、仲或叔氨基。

在此定义的Bas不包含-OH,因为由于难以质子化,所以在本发明的范 围内认为它不是碱性的。更优选地,Bas不包含-OH和-OR1。

优选地,Bas选自-N(R1)(R2)和-P(R1)(R2)(R3);并且其中R1、R2和R3可 以相同或不同,并且各自独立地选自氢、直链或支链烷基、环烷基、芳基 和取代芳基中。

优选地,R1、R2和R3各自选自氢、甲基、乙基、异丙基、丙基、丁 基、仲丁基、异丁基、戊基、己基、环己基、苄基和苯基中。

还更优选地,Bas是-N(CH3)2或-N(CH(CH3)2)2。

本发明的另一个方面涉及是碱性离子液体并且其中Bas是受阻碱性部 分的化合物的应用。

术语″受阻碱性部分″指作为碱,但是因为位阻而不与反应物或产物化 学结合的官能团。

对于受阻的碱性离子液体,基团R应该具有低亲核性,如对Hunig碱 (双(二异丙基)乙胺)(参见Tetrahedron Letters 1981,31,1483)描述的那样。 同样在这个方面,参考论文″Hindered non-nuclepohilic base with high protein affinity″,Chem.Ber.1958,91,380页ad Chem.Ber.,1993,29,1042 页。这表明碱性基团R能够与游离的氢离子形成化学键,但是在化学过程 中不与反应物或产物形成化学键。

如WO04/029004所公开的那样,与连接到氮上的三个乙基相比,所 述Bas部分应该具有更低的亲核性或更大的位阻。

根据本发明,Z可以选自直链或支链C1至C18、优选为C1至C8,并 且更优选为C2至C6的亚烷基(alkanediyl)、取代亚烷基、二烷基醚 (dialkanylether)或二烷基(dialkanylketone)。

优选地,Z选自-(CH2-CH2)-、(CH2-CH2-CH2)-、-(CH2-CH2-CH2-CH2)-、 -(CH2-CH2-CH2-CH2-CH2)-、-(CH2-CH2-CH2-CH2-CH2-CH2)-、 -(CH2-CH2-O-CH2-CH2)-和-(CH2-CH2-O-CH2-CH2-CH2)-。

Cat+部分可以包含杂环结构或者由杂环结构组成,所述杂环结构选自 咪唑鎓、吡啶鎓、吡唑鎓、噻唑鎓、异噻唑啉鎓、氮杂噻唑鎓(azathiozolium)、 氧代噻唑鎓(oxothiazolium)、噁嗪鎓、噁唑鎓、氧硼杂环戊烯鎓 (oxaborolium)、二噻唑鎓、三唑鎓、硒唑鎓、氧磷杂环戊烯鎓、吡咯鎓、 硼杂环戊烯鎓(borolium)、呋喃鎓、噻吩鎓、磷杂环戊烯鎓、五唑鎓、吲哚 鎓、二氢吲哚鎓、噁唑鎓、异噁唑鎓、异三唑鎓、四唑鎓、苯并呋喃鎓、 二苯并呋喃鎓、苯并噻吩鎓、二苯并噻吩鎓、噻二唑鎓、嘧啶鎓、吡嗪鎓、 哒嗪鎓、哌嗪鎓、哌啶鎓、吗啉鎓、吡喃鎓、苯胺正离子(annolinium)、酞 嗪鎓、喹唑啉鎓、喹嗪鎓(quinazalinium)、喹啉鎓、异喹啉鎓、噻嗪鎓 (thazinium)、噁嗪鎓和氮杂轮烯鎓。

根据本发明的优选Cat+-Z-Bas可以选自:

其中:Bas和Z是如上述定义;并且

Rb、Rc、Rd、Re、Rf、Rg和Rh可以相同或不同,并且各自独立地选自 氢、C1至C40直链或支链烷基、C3至C8环烷基、或C6至C10芳基,其中所述 烷基、环烷基或芳基是未取代的或者可以被一至三个基团取代,所述一至 三个基团选自C1至C6烷氧基、C6至C10芳基、CN、OH、NO2、C7至C30 芳烷基和C7至C30烷芳基,或者连接到相邻碳原子上的Rb、Rc、Rd、Re和Rf 中的任何两个形成其中q为8至20的亚甲基链-(CH2)q-。

更优选Cat+-Z-Bas选自:

其中:Bas、Z和Rb是如上述定义。还更优选地,Cat+-Z-Bas可以选自:

(上述所有化合物都被认为是″受阻的″)

可以通过前体的烷基化、质子化和/或酰化得到用于本发明的Cat+部 分,所述前体选自咪唑、吡啶、吡唑、噻唑、异噻唑、氮杂噻唑(azathiozoles)、 氧代噻唑(oxothiazoles)、噁嗪、噁唑啉、氧硼杂环戊烯(oxazoboroles)、二 噻唑(dithiozoles)、三唑、硒唑、氧磷杂环戊烯、毗咯、硼杂环戊烯(boroles)、 呋喃、噻吩、磷杂环戊烯、五唑、吲哚、二氢吲哚、噁唑、异噁唑、异三 唑、四唑、苯并呋喃、二苯并呋喃、苯并噻吩、二苯并噻吩、噻二唑、嘧 啶、吡嗪、哒嗪、哌嗪、哌啶、吗啉、毗喃、苯胺(annolines)、酞嗪、喹 唑啉、喹嗪(quinazalines)、喹啉、异喹啉、噻嗪(thazines)、噁嗪和氮杂轮 烯。

根据本发明,Cat+部分还可以是无环有机离子。

在Cat+部分是无环的时,它优选包含选自下列的基团或由选自下列的 基团组成:氨基脒基、亚氨基、胍基、膦基、胂基、???基、烷氧基烷基、 烷硫基、烷硒基和膦亚氨基。

在Cat+部分为无环时,Cat+-Z-Bas优选选自:

[N(Z-Bas)(Rb)(Rc)(Rd)]+和[P(Z-Bas)(Rb)(Rc)(Rd)]+

其中:Bas、Z、Rb、Rc和Rd是如上定义的那样。

在Cat+是无环部分时,Bas优选不是-OH,因为该基团在本发明的离子 液体的上下文中被认为不是碱性的。

更优选地,Cat+-Z-Bas选自:

其中:Bas、Z和Rb是如上定义的那样。

还更优选地,Cat+-Z-Bas选自:

(上述化合物全部被认为是″受阻的″碱性离子液体)

根据本发明,Cat+-Z-Bas还可以是:

其中:Rb是如上定义的那样。

根据本发明的任一个方面,阴离子X-可以是IB、IIIA、IVA、VA、VIA 或VIIA族元素的烷基化或卤化盐。

X-优选选自氢氧化物、醇盐、酚盐、二氰胺、硼酸盐、磷酸盐、硝酸 盐、硫酸盐、三氟甲磺酸盐、卤代酸盐(halogenated copperate)、锑酸盐、 亚磷酸盐、取代和未取代的金属硼烷、取代和未取代的羧酸盐和三氟甲磺 酸盐;或它们的混合物。

更优选地,X-选自BF4、PF6、CF3SO3、CF3COO、SbF6、CuCl2、A5F6、 SO4、CF3CH2CH2COO、(CF3SO2)3C、CF3(CF2)3SO3、[CF3SO2]2N和金属无 机阴离子。

还更优选地,X-选自卤化物、三氟甲磺酸盐、双三氟甲磺酰氨基 [(CF3SO2)2N]和烷基磺酸盐[RSO3]。

如上所述,离子液体可以包含一种或多种具有碱性部分和带正电荷部 分的阳离子的混合物。

所述离子液体还可以包含一种或多种阴离子的混合物。

所述离子液体还可以包含一种或多种由阳离子和阴离子组成的离子 液体的混合物。

在本发明的另一个方面中,所述离子液体还可以包含一种或多种碱性 阴离子。

所述碱性阴离子可以由下式表示:

[X-R-Bas]-

其中:X和Bas是如上述定义;并且

R是连接X和Bas的共价键,或是含有1至10个碳原子以及任选一、二 或三个氧原子的连接基团。

优选地,R选自-(CH2-CH2)-、(CH2-CH2-CH2-)、-(CH2-CH2-CH2-CH2)-、 -(CH2-CH2-CH2-CH2-CH2)-、-(CH2-CH2-CH2-CH2-CH2-CH2)-、 -(CH2-CH2-O-CH2-CH2)-和-(CH2-CH2-O-CH2-CH2-CH2)-。

根据本发明的又一个方面,Cat+部分可以选自上面公开的那些并且阴 离子种类X-还可以是碱性离子。

如本领域技术人员已知,典型地通过使离子液体前体与碱金属氢氧化 物或碱土金属氢氧化物在溶剂介质中反应,失去盐而形成这种碱性离子液 体。最优选的阴离子种类是由氢氧化钾或氢氧化钠制备的那些阴离子。

可以在一系列化学反应中使用本发明的碱性离子液体。所述化学反应 包括Heck反应、Suzuki偶联、亲核取代反应、水解、酯化、酯交换羟醛反 应、环氧化、氢化、缩合、氧化、还原、水合、脱水、取代、芳族取代、 加成(包括羰基加成)、消除、聚合、解聚、低聚、二聚、偶联、电环化、 异构化、卡宾形成、差向异构作用、转化、重排、光化学反应、微波辅助 反应、热反应、声化学反应和歧化反应。

本发明的碱性离子液体还可以用于催化和/或促进如在上面列举的那 些反应。

术语″催化剂″在此用以包括所有催化形式,包括经典引发剂、共引发 剂、共催化剂、活化技术等。

上面提及的方法通常可以在约latm(大气压)至约1000atm(高压)的压力 下进行。所述反应可以在宽的温度范围内进行,并且不受特别限制。通常 反应温度在约-50℃至400℃的范围内,更典型地在0℃至250℃的范围内, 如20℃至150℃。

本方案(instant case)的羟醛缩合反应可以进行约0.01至1000小时,优选 约0.1至100小时,并且最优选约1至10小时。

本发明的另一个方面涉及下式的碱性离子液体:

[Cat+-Z-Bas][X-]

其中:Cat+=包含杂环结构或由杂环结构组成的带正电荷部分,所述 杂环结构选自吡啶鎓、吡唑鎓、噻唑鎓、异噻唑啉鎓、氮杂噻唑鎓、氧代 噻唑鎓、噁嗪鎓、噁唑鎓、氧硼杂环戊烯鎓、二噻唑鎓、三唑鎓、硒唑鎓、 氧磷杂环戊烯鎓、吡咯鎓、硼杂环戊烯鎓、呋喃鎓、噻吩鎓、磷杂环戊烯 鎓、五唑鎓、吲哚鎓、二氢吲哚鎓、噁唑鎓、异噁唑鎓、异三唑鎓、四唑 鎓、苯并呋喃鎓、二苯并呋喃鎓、苯并噻吩鎓、二苯并噻吩鎓、噻二唑鎓、 嘧啶鎓、吡嗪鎓、哒嗪鎓、哌嗪鎓、哌啶鎓、吗啉鎓、吡喃鎓、苯胺正离 子、酞嗪鎓、喹唑啉鎓、喹嗪鎓、喹啉鎓、异喹啉鎓、噻嗪鎓、噁嗪鎓和 氮杂轮烯鎓;

Z=连接Cat+和Bas的共价键;或者1、2或3个脂族二价连接基团, 每一个所述二价连接基团均含有1至10个碳原子并且任选含有一个、两个 或三个氧原子;

X-=选自醇盐、酚盐、二氰胺、硼酸盐、硝酸盐、硫酸盐、三氟 甲磺酸盐、卤代铜酸盐、锑酸盐、亚磷酸盐、取代和未取代的金属硼烷、 取代和未取代的羧酸盐和三氟甲磺酸盐中,或它们的混合物;并且

Bas=如上定义的碱性部分。

Z可以选自直链或支链C1至C6亚烷基、取代亚烷基、二烷基醚 或二烷基酮。优选地,Z选自-(CH2-CH2)-、(CH2-CH2-CH2)-、 -(CH2-CH2-CH2-CH2)-、-(CH2-CH2-CH2-CH2-CH2)-、 -(CH2-CH2-CH2-CH2-CH2-CH2)-、-(CH2-CH2-O-CH2-CH2)-和 -(CH2-CH2-O-CH2-CH2-CH2)-。

所述碱性离子液体优选选自下式的化合物:

其中:Bas、Z和X-是如上述定义;并且

Rb、Rc、Rd、Re、Rf、Rg和Rh可以相同或不同,并且各自独立地选自 氢、C1至C40直链或支链烷基、C3至C8环烷基、或C6至C10芳基,其中所述 烷基、环烷基或芳基是未取代的或者可以被一至三个基团取代,所述一至 三个基团选自C1至C6烷氧基、C6至C10芳基、CN、OH、NO2、C7至C30 芳烷基和C7至C30烷芳基,或者连接到相邻碳原子上的Rb、Rc、Rd、Re和Rf 中的任两个形成其中q为8至20的亚甲基链-(CH2)q-。

优选地,所述碱性离子液体选自:

其中:Bas、X-和Rb是如上定义的那样。

更优选地,所述碱性离子液体选自下式的化合物:

在本发明的又一个方面中,所述碱性离子液体选自下式的化合物:

[Cat+-Z-Bas][X-]

其中:Cat+=无环的带正电荷部分;

Z=连接Cat+和Bas的共价键;或者1、2或3个脂族二价连接基 团,每一个所述脂族二价连接基团均含有1至10个碳原子并且任选含有一 个、两个或三个氧原子;

X-=阴离子;

Bas=-N(R1)(R2)、-P(R1)(R2)(R3)、-PO(OR1)、PO(OR1)(OR2)、 -S(R1)、-SO2(OR1)和含硼基团,其中R1、R2和R3可以相同或不同,并且各 自独立地选自氢、直链或支链烷基、环烷基、芳基和取代芳基;条件是Bas 不是-NH2、-NHMe、N(Et)2或boratrane;并且条件是在Cat+包含氨基时,阴 离子X-选自二氰胺、硼酸盐、磷酸盐、硝酸盐、硫酸盐、三氟甲磺酸盐、 卤代铜酸盐、锑酸盐、亚磷酸盐、取代和未取代的金属硼烷和它们的混合 物。

优选所述无环离子液体选自下式的化合物:

其中:Bas、Z、X-和Rb是如上定义那样。

更优选地,所述离子液体选自:

(上述两种化合物都被认为是″受阻的″碱性离子液体)。

本发明的另一个方面涉及下式的碱性离子液体:

其中:X-和Rb如上述定义。

根据本发明的任一个方面,可以通过调节阳离子中心和碱性基团之间 的距离改变碱性离子液体的碱性(或碱强度)。对应(约)2个亚甲基的距离间 隔产生弱碱性离子液体。6个亚甲基的间隔(或与6个亚甲基的间隔类似的距 离)产生更强的碱性离子液体。因此在本发明中,可以调节离子液体的碱强 度。

在本发明中,可以通过本领域中已知的方法将离子液体相再循环并且 将其用作形成产物的反应介质。还可以将所述离子液体介质再循环用于其 它反应。

现在通过下列实施例描述并且讨论本发明:

实施例1-DABCO离子液体

烷基卤与过量二氮杂双环[2,2,2]辛烷的反应得到碱性系列的离子液 体。

虽然一烷基DABCO溴化物具有相当高的熔点,但是己基、辛基和癸 基DABCO溴化物是离子液体(熔点<100℃)。依据DSC测定的分解温度全部 在220-250℃的范围内。C6DABCO溴化物离子液体的熔点(95℃)下降到 [C6DABCO][N(SO2CF3)2]的25℃,而[C6DABCO][N(SO2CF3)2]在此温度形成 凝胶(参见图1)。

还由DABCO和甲磺酸乙酯或甲磺酸己酯的反应合成乙基DABCO甲 磺酸盐[C2DABCO][OSO2CH3](熔点81℃)和己基DABCO甲磺酸盐。

典型的实验方法

[CnDABCO]Br

将二氮杂双环-[2,2,0]-辛烯(1.13g,12.5mmol)和烷基溴(10mmol)在回 流(或在150℃,始终在这两者中较低的那个温度)下加热1至24小时。在冷 却时,形成沉淀物。对于C2至C10DABCD溴化物,将其溶解于极少量沸 腾的乙酸乙酯/异丙醇中,而对于C12至C18DABCO溴化物,将其溶解于 沸腾甲苯/乙酸乙酯中。将在冷却时形成的晶体滤出并且通过在真空(1 mmHg)下于80℃加热4小时进行干燥。通过NMR和DSC分析所述化合物。

产率典型为60-80%。

[CnDABCO][OSO2CH3]

将二氮杂双环-[2,2,0]-辛烯(1.13g,12.5mmol)和甲磺酸烷基酯(10mmol) 在100℃下加热1小时。在冷却时,形成沉淀物。将这种沉淀物溶解于极少 量的沸腾乙酸乙酯/异丙醇中。将在冷却时形成的晶体滤出并且通过在真空 (1mmHg)下于80℃加热4小时进行干燥。通过NMR和DSC分析所述化合 物。产率典型为70-80%。

[CnDABCO][N(SO2CF3)2]

将[C6DABCO]Br(2.75g,10.0mmol)和双三氟甲磺酰亚氨基锂(lithium bisftifluoromethanesulfinimide)(3.15g,11mmol)各自溶解于水(10cm3)中。将 两种溶液混合,形成致密的离子液体相。用二氯甲烷(3×10cm3)萃取这种离 子液体相,通过Na2SO4干燥,过滤并且蒸发溶剂,以得到在25℃变成液体 的无色糊状物。通过在真空(1mmHg)下于80℃加热,对这种糊状物干燥4 小时。通过NMR和DSC分析所述化合物。

实施例2-TMEDA盐

如下由TMEDA和烷基溴合成四甲基乙二胺(TMEDA)离子液体。C2、 C5、C6、C8、C12和C18烷基溴已经被制备,并且其中n=5、6、8、10的 [CnTMEDA]Br是室温离子液体。

TMEDA离子液体的合成

[CnTMEDA]Br

将四甲基乙二胺(TMEDA)(2.32g,20mmol)和烷基溴(25mmol)在回流 (或在130℃,始终在这两者中较低的那个温度下进行)下加热1小时,从而 导致形成致密相。将这种致密相冷却至室温。对于[C2TMEDA]Br和 [C4TMEDA]Br,形成结晶固体,而对于[C18TMEDA]Br,形成液体结晶材 料。将这些产物用环己烷洗涤并且在真空下干燥(在80℃,1mmHg下进行 24小时)。产率典型为60-80%。

实施例3-DMAP盐

如下由DMAP和甲磺酸烷基酯合成N,N-二甲基氨基吡啶(DMAP)离子 液体。

新型DMAP离子液体的合成

将二甲基氨基吡啶(DMAP)(2.443g,20mmol)和乙基溴或己基溴 (25mmol)在回流(或在130℃,始终在这两者中较低的那个温度下进行)下加 热1小时。在冷却时形成沉淀物。对于C2至C6DMAP溴化物而言,将其溶 解于极少量的沸腾乙酸乙酯/异丙醇中。将在冷却时形成的晶体滤出并且通 过在真空(1mmHg)下于80℃加热4小时进行干燥。通过NMR和DSC分析所 述化合物。产率典型为60-80%。

将二甲基氨基吡啶(DMAP)(2.443g,20mmol)和甲磺酸乙酯或甲磺酸己 酯(25mmol)在100℃下加热1小时。在冷却时,形成沉淀物。对于C2至C6 DMAP甲磺酸盐,将其溶解于极少量的沸腾乙酸乙酯/异丙醇中。将在冷却 时形成的晶体滤出并且通过在真空(1mmHg)下于80℃加热4小时进行干 燥。通过NMR和DSC分析所述化合物。产率典型为80-85%。

实施例4

将氢氧化钠(在油中的60%分散体)(45mmol,1.80g)分批加入到N,N-二 甲基乙醇胺(20mmol,1.78g)的THF(100cm3)溶液中。将得到的浆液在60℃ 下加热1小时,然后冷却。分批加入1-(N-吗啉代)-2-氯乙烷盐酸盐(20mmol, 3.72g),并且将浆液在25℃搅拌18小时。加入乙醇(10cm3),随后加入水 (100cm3),并且用二氯甲烷(3×50cm3)萃取产物。将二氯甲烷萃取物通过 Na2SO4干燥,过滤并且通过旋转式蒸发器浓缩。将所述产物在110-120℃、 1mmHg下进行库格尔若(Kugelrorh)蒸馏,以得到2.3g无色油(N-吗啉代乙基 二甲基氨基乙基醚)。

实施例5

使用DABCO-基碱性离子液体作为碱对查酮(上面)的环氧化显示为 很慢的反应。据认为离子液体的三烷基胺基是亲核性的并且在过氧化氢的 存在下形成N-氧化物,而不是作为布朗斯台德碱。已知二异丙基乙胺(许 尼希碱)是非亲核性碱,这种官能团被结合到离子液体中。1-氯-2-(二异丙 基氨基)乙烷盐酸盐是可商购的,并且用于使甲基咪唑季铵化,从而生成在 侧链中具有二异丙基氨基的咪唑鎓阳离子(下面)。

氯化甲基-(2-二异丙基氨基)-咪唑鎓的合成和结构

与双三氟甲磺酰亚氨基锂(lithium bistriflimide)的置换反应生成不溶于 水的室温离子液体。这种离子液体作为弱碱。

实施例6

在阳离子中心和受阻碱之间的距离增加,离子液体的碱性增加。这可 以通过下述反应程序得到实现。

在阳离子和碱性基团之间具有较长距离的离子液体的合成

使用1-氯-2-(二异丙基氨基)乙烷盐酸盐将二甲基氨基乙醇烷基化,用 丙基溴将得到的二胺烷基化。季铵化反应本身是区域专一的,二异丙基氨 基是非亲核性的并且不能在所使用条件下被季铵化。得到的盐显示,在阳 离子和碱性二异丙基氨基之间具有五个原子的链。与双三氟甲磺酰亚氨基 锂的置换反应得到室温离子液体。它的结构如下所示。

在这种离子液体中进行查耳酮的环氧化反应并且得到100%的转化率。 将底物溶解于离子液体相中并且加入含有过氧化氢的水相。

实施例7

因为布朗斯台德碱性标度基于水作为介质,所以测定离子液体的绝对 碱性不是通常那样的。干离子液体不包含任何水,但是它可以作为酸或碱。 为了评估相对碱性以比较离子液体,使用颜色指示剂。用于pH试纸的通用 指示剂TM还可以溶液得到。它包括根据它们是否被质子化而改变颜色, 以特定的颜色覆盖水中的整个pH范围的一系列指示剂分子。当溶解于无水 离子液体中时,这些指示剂也改变颜色,但是它们的颜色不对应通常的pH 值。但是显示蓝色的离子液体仍旧表示碱性高于显示黄色或橙色的离子液 体。图2显示了三种不同的双三氟甲磺酰亚胺离子液体在加入限定量的指 示剂之后使溶剂蒸发之后的照片。在左边的样品表示[bmim][NTf2],中间 是甲基-(2-二异丙基氨基)-咪唑鎓[NTf2],两者均含有相同浓度的指示剂。 根据它们的颜色,它们看起来具有相似的碱性。

图2显示在碱和阳离子之间具有五个原子的链的离子液体中的指示 剂,它的颜色蓝移,从而表示更强的碱性。这种离子液体在查耳酮环氧化 反应中确实充当了良好的碱催化剂(和溶剂)。

实施例8

如下所示为基于甲基吡咯烷的碱性离子液体的合成。

受阻的碱性离子液体N-甲基-N-(双二异丙基)氨基乙基吡咯烷鎓双三氟甲 磺酰氨基的合成

上述方案显示在季氮和碱性氮之间含有两个碳间隔的离子液体的合 成。碱性离子液体的DSC表明该离子液体的熔点是-27℃。

实施例9

上述方案显示了一系列碱性离子液体例如在季氮和碱性氮之间含有 5-原子间隔的离子液体的合成。用于制备BIL1-4的总合成策略是简单和通 用的并且由上述方案表示。合成碱系(base-tethered)离子液体至关重要的部 分涉及与所选择的亲核试剂反应的2-二异丙基氨基乙基氯的使用,并且是 通过来自二异丙基氨基部分的相邻基团的参与推动的。用于制备BIL1、2 和4的合成策略考虑使侧氨基、咪唑基或吡啶基相对于本质上具有非亲核 性的二异丙基烷基氨基的选择性季铵化的能力。用于制备BIL3的合成策略 利用单季铵化的二胺从甲苯(溶剂)中析出的不溶性,从而防止它与烷基卤 进一步反应。在所有情况下,将与季铵盐结合的卤化物阴离子与双三氟甲 磺酰亚胺基锂进行置换反应,以生成碱系离子液体BIL1-4。

实施例10

如下所示为与在实施例9中给出的那些离子液体类似的一组离子液 体:

在下表中给出了这些离子液体的物理性能。它们全部是粘性室温离子 液体并且颜色是浅黄色的。

离子液体 BIL1 BIL1a BIL1b BIL2 BIL2a BIL2b BIL3 BIL4 熔点 -73℃ 33℃* -28℃ -77℃ -77℃ -73℃ -59℃ -82℃ 粘度/cP 540 417 313 398 330 310 475 195 密度/g cm-3 1.300 1.354 1.311 1.277 1.245 1.242 1.319 1.247

*离子液体BIL1a是过冷的,并且凝固点为-10℃

在碱系离子液体BIL1-4中,粘度和密度数据是在25℃的。

借助于通用指示剂测量这些离子液体的相对碱强度。在评价二氰胺离 子液体的碱性之前,使用一系列类似的指示剂。图3显示了通用指示剂的 紫外/可见光谱性能随碱性离子液体的性质变化的方式。

这些紫外/可见光谱显示了侧氨基的碱强度如何随链长和/或链中原子 的性质而变化。这可以通过下列事实得到解释:在两个阳离子(处于质子化 状态下)之间的电子排斥随着链长的增加而降低,从而导致更高的碱性。短 波长谱带(~400-460nm)表示指示剂的染料的′质子连接形式′,而长波长谱带 (~620-640nm)表示染料的′去质子化形式′。长波长谱带的增长随两个氮原子 之间的链长而增加。此外,长波长谱带还与小的红移有关。在此我们定性 显示如何在不改变二烷基氨基的性质的情况下,通过简单地改变在两个氮 原子之间的距离,可以使离子液体的碱性调节到某一程度。

将在通用指示剂与碱性离子液体相互作用时可以观察到的视觉颜色 变化示出于图4中。

碱催化或促进的反应

实施例11

在反胺苯环醇(Tramadol,止痛药)的合成中,应用乐在离子液体中的 Mannich反应。

实施例12

另一个经典反应是罗宾逊成环反应。这种反应涉及不饱和酮与酮的迈 克尔反应,随后的内羟醛缩合。所述反应典型地在溶剂如醇中进行,并且 在某些情况下,偶极非质子溶剂如DMF或DMSO是必需的。罗宾逊成环反 应是两步反应,并且通常不分离中间体迈克尔产物。

使用碱离子液体进行上述罗宾逊成环反应。在室温下,迈克尔产物是 在5分钟内以高产率得到的。这个反应显著快于在乙醇中进行的类似反应。 在温度上升至80℃时,在离子液体中只发生羟醛缩合。还可以使用包括但 不限于实施例1-4中的那些离子液体的碱性离子液体进行这种反应。

实施例13

已知脯氨酸催化2-甲基环己1,3-二酮与MVK的反应,并且据报导在 35℃的DMSO中得到产率为49%的成环产物(70%ee)。在碱性离子液体中尝 试这种反应,并且迈克尔反应有效率地进行。还可以使用包括但不限于实 施例1-4中的那些的碱性离子液体进行这种反应。

实施例14

丙酮与异佛尔酮的缩合可以在碱性离子液体中进行。

环己酮的缩合更复杂。

碱性离子液体不但作为催化剂而且还作为溶剂。

实施例15

碱性离子液体的合成基于根据上述方法合成的四甲基己-1,6-二胺。由于在 阳离子中心和碱性官能团之间更大的间隔,这些离子液体DABCO或 DMAP离子液体是更强的碱。

实施例16

在典型的方法中,将环戊酮(10mmol)、离子液体1g和催化剂(碱或酸) 在需要的温度下一起搅拌,在达到所述温度之后,滴加已知量的戊醛以避 免反应性醛的自缩合。提取小的样品等分试样,并且将它们用水-己烷混合 物萃取。然后使有机层通过MgSO4填塞物,然后通过气相色谱法分析。使 用标准样品或通过GC-MS确定化合物。分别按照报导的方法[Tichit等,J. Catal,219(2003)167][Darbre等,Chem.Commun.,2003,1090]制备多相 碱性催化剂HT[水滑石(Mg/Al原子比=2)]和Zn(脯氨酸)2。

实验 离子液体 酮/醛, mol 催化剂 反应 重量% 温度 。C 时间 小时 转化 率 率 选择 性 SA4 - 1 2MNaOH 80 3 85 85 SA23 - 4 Ca(OH)2 80 3 80 70 SA1 [C4DABCO]Br 1 - 80 3 99 90 SA5 [C2DABCO]Br 1 - 80 18 85 85 SA6 [C2DMAP][OMs] 1 - 80 3 30 60

在上述实验中使用的离子液体本质上是亲水性的,并且由于亲核氮的 存在,它们还能够催化羟醛缩合。NMR光谱显示在反应之后离子液体保持 完好,使得如果通过蒸馏分离产物,则还可以将这些离子液体用于下一循 环。还可以通过取代阴离子,即通过[NTf2]-阴离子取代Br-或[OMs]-制备这 些离子液体。所述碱性离子液体在交叉羟醛反应中给予优良的产率和选择 性。

因此,在离子液体中通过脯氨酸催化合成二氢茉莉酮的羟醛化学反应 路线提供MDJ-1的优异产率。还可以通过催化蒸馏得到MDJ-2并且可以被 视为一锅煮合成。

实施例17

生成铃兰醛的Heck偶联是很成功的。

Heck反应

使用乙酸钯作为催化剂,在95℃检验b-甲代烯丙醇与4-叔丁基碘苯的 反应。将4-叔丁基碘苯(5mM)和b-甲代烯丙醇(5.1mM)以及 Pd(OAc)2(0.05mM)加入到Schlenk管内的BIL2(10mM)离子液体中。在搅拌 下,将密封的反应容器在95℃加热10小时。用环己烷(4×5ml)萃取冷却的反 应混合物,以从离子液体中移出产物。使溶剂从合并的环己烷萃取物中蒸 发,生成产物。

在使用BIL1作为反应介质时,向铃兰醛的转化率为~32%。这可能是 由于侧二异丙基氨基的碱性因它邻近季氮原子而降低。然而当Heck偶联在 BIL2中的相同条件下进行时,向铃兰醛的转化率急剧增加至84%。在季氮 和碱性氮之间延长的长度以及在链中的氧原子对侧氨基的总碱性的贡献 是这种观察结果的原因(参见下文)。

质子化的碱被链中的氧原子稳定

类似地,将如上所示的Knoevenagel反应在BIL1中进行,得到接近等 量的产率。将苯甲醛(4mM)和乙氰基乙酸酯(4.1mM)加入到Schlenk管内的 BIL1(1ml)中,然后塞住并且在室温下搅拌一晚上。将产物萃取到环己烷 (4×4ml)中,并且将溶剂从合并的环己烷萃取物中蒸发,生成产物。

反应的选择性也是优异的,对于两种可能的产物均具有99∶1的比率。 即使两个氮只被两个碳原子链隔开,BIL1的碱性也足以进行Knoevenagel 反应。还注意到BIL1没有将存在于通用指示剂中的染料去质子化。

实施例18

双三氟甲磺酰氨基N-丁基-N-((N′,N′-二异丙基氨基乙氧基)-乙基)-吡咯 鎓

实施例19

对氢化反应的改进

氢化(使用BIL)

在[mbpyrr][NTf2]中使用常规碱

碱 产率% 没有碱 62 Et3N 55 Hunig’s 97 2,6-二甲基吗啉 85*

*所有铃兰醛均被转化为丁苯吗啉(Fenpropimorph)

使用碱性离子液体

BIL 碘化物 IL 产率% 100% - - 52 50% - 50% 93 - 50% 50% 28 1% - 99% 89

使用碱性离子液体使产率提高。

QQ群二维码
意见反馈