硫代方法和硫代剂

申请号 CN201280002402.4 申请日 2012-02-03 公开(公告)号 CN103153917B 公开(公告)日 2015-04-01
申请人 维洛诺瓦硫化公司; 发明人 B.彼得森; V.哈辛贝戈维克; P.H.斯文松; J.贝格曼;
摘要 一种通过采用晶状P2S5·2C5H5N作为硫代剂,在生成硫代反应产物的反应中,将化合物中的基团>C=O(I)转化为基团>C=S(II)或转化为基团(II)的互变异构形式的方法。硫代剂是晶状P2S5·2C5H5N。
权利要求

1.一种通过采用晶状P2S5∙2 C5H5N作为硫代剂,在生成硫代反应产物的反应中,将化合物中的基团>C=O (I)转化为基团>C=S (II)或转化为基团(II)的互变异构形式的方法,所述硫代剂已从在其中制备硫代剂的吡啶母液中分离。
2.根据权利要求1的方法,其中允许硫代剂和化合物在化合物和硫代剂的液体溶剂介质中相互反应。
3.根据权利要求2的方法,其中的液体溶剂介质包括吡啶、C1-C3烷基腈、环砜和/或C1-C3二烷基砜。
4.根据权利要求2的方法,其中的液体溶剂介质包括吡啶、环丁砜、二甲砜和/或乙腈。
5.根据权利要求1-4中任一项的方法,其中的反应在60℃-180℃的温度下进行。
6.根据权利要求5的方法,其中的反应在115℃-175℃的温度下进行。
7.根据权利要求1-4中任一项的方法,其中的化合物包括存在于酰胺官能团中的基团(I)。
8.根据权利要求1-4中任一项的方法,其中的化合物包括存在于官能团中的基团(I)。
9.根据权利要求1-4中任一项的方法,其中采用的硫代剂与要被转化的基团(I)的摩尔比为每1-4摩尔基团(I) 1摩尔P2S5∙2 C5H5N。
10.根据权利要求1-4中任一项的方法,其包括从反应物中分离硫代反应产物。
11.根据权利要求10的方法,其中被加至反应物中且通过沉淀或结晶将硫代反应产物分离为固体物质。

说明书全文

硫代方法和硫代剂

发明领域

[0001] 本发明涉及硫代方法(thionation process)。更具体说来,本发明涉及将化合物中的代基团(>C=O)转化为硫代基团(>C=S)或所述硫代基团的互变异构形式的方法。
[0002] 发明背景
[0003] 在1951年,Klingsberg1等描述溶解于吡啶的P4S10用为硫代剂(thionating agent)。吡啶和P4S10反应易于形成两性离子的无气味化合物,早在1967-1968年德国无机2,3 31 4
化学家 研究其组合物P2S5∙2 C5H5N,,通过 P NMR数据 以及与相关分子作比较,他们得到其结构的证据。
[0004] 虽然有Klingsberg等的讲述,但在含有氧代基团的化合物的硫代反应(reaction of thionation)中主要采用的试剂仍是所谓的劳森试剂(Lawesson’s reagent) (IUPAC名称:2,4-双(4-甲氧基苯基)-1,3,2,4-二硫杂二磷杂环丁烷(dithiadiphosphetane)-2,4-二硫),下文称为LR。LR于1968年引入有机化学中的转化,并与很多种反应剂,诸如酰胺和酮一起使用,它们以合理的得率被硫代。然而,LR作为硫5,6
代剂具有多种缺点。例如,其热稳定性不尽人意;甚至据报道,超过110℃ LR开始分解。
而且,LR具有普遍低的溶解度,其的确常常需要采用六甲基磷酰胺(HMPA)作为溶剂。怀疑HMPA是人的致癌物且在许多国家禁止其使用。LR的其它缺点是化合物本身的强烈的讨厌的气味和反应期间,趋于生成难以从想要的反应产物中分离的有恶臭气味的副产物(往往需要柱层析法)的事实。
[0005] 看来仍然保持对含有氧代基团的化合物的改善的硫代方法以及用于这样方法的改善的硫代剂的需求。
[0006] 发明概述
[0007] 根据第一方面,提供在生成硫代反应产物的反应中,通过采用晶状P2S5∙2 C5H5N作为硫代剂使化合物中的基团>C=O (I)转化为基团>C=S (II)或基团(II)的互变异构形式的方法。
[0008] 根据又一个方面,提供是晶状P2S5∙2 C5H5N的的硫代剂。
[0009] 图的简述
[0010] 图1表示P2S5∙2 C5H5N的(A)分子结构和(B)晶状结构。
[0011] 图2表示一硫代磷酸二氢吡啶鎓的(A)分子结构和(B)晶状结构。
[0012] 发明详述
[0013] 本发明已经通过X-射线分析确定P2S5∙2 C5H5N的晶状结构,在实验章节给出其详情。化合物的分子结构的Ortep图(Ortep representation)显示于图1。分子通过数种范德华(van der Waals)相互作用连在一起。最强的范德华接触(C-H…S)将分子连在一起沿c-轴成无限长链。堆积系数(packing coefficient) (晶胞中填充的Waals空间百分比)为67.7 %,表明呈固态的有效分子构架(molecular framework)。芳族π堆积(π stacking)促进分子堆积(molecular packing)。两个相邻芳族部分的平面之间的距离为约3.5 Å。
[0014] 如上文所述,本发明提供由晶状P2S5∙2 C5H5N组成的硫代剂。非常有利地,该试剂可长时间贮存,而且还无常规硫代剂中的内在杂质,因为这些杂质(来自P4S10)经吡啶母液除去。
[0015] 改善的纯度将产生更加纯的硫代产物和更简易的后处理程序。特别的优点为硫代剂可被转移到溶剂诸如乙腈和二甲砜这一事实。
[0016] 的确,两性离子晶状化合物在热乙腈中有相当大的溶解性和在热吡啶中有良好的溶解性。其在环砜或在低级烷基砜,诸如二甲砜中也有良好的溶解性。
[0017] 在本发明的方法的一个实施方案中,使硫代剂和要被硫代的化合物在化合物和硫代剂的液体溶剂介质中反应。换句话说,采用溶解于液体溶剂介质中的硫代剂。
[0018] 在本发明的方法的一个实施方案中,采用作为熔化物、与要被硫代的化合物混合的硫代剂。在该实施方案中,加热硫代剂至其熔化温度(167-169℃)和加热之前、之后或期间使要被硫代的化合物与硫代剂混合。
[0019] 溶剂介质应选自非质子溶剂。在一个实施方案中,液体溶剂介质是有机溶剂,其在室温下是液体并可被加热至适用的反应温度,例如60-200℃,例如60-100℃的温度,诸如室温下为液体(熔点-42 ℃)和沸点为82℃的乙腈。在这种情况下,使晶状P2S5∙2 C5H5N和要被硫代的化合物二者都溶解于有机溶剂,其任选被加热例如至回流。
[0020] 在一个实施方案中,在低于溶剂介质和晶状P2S5∙2 C5H5N的熔点的温度下,使晶状P2S5∙2 C5H5N与溶剂介质混合,加热混合物,以得到含有溶解于液体溶剂介质的P2S5∙2 C5H5N的液体溶液。
[0021] 可在该过程中的任何点,例如在熔化和/或溶解之前或之后,使要被硫代的化合物与反应混合物的其它组分混合。
[0022] 例如,二甲砜的熔点温度为107-109℃。如果熔化的二甲砜被用作反应的液体溶剂介质,就可在例如室温下使晶状P2S5∙2 C5H5N和固体二甲砜混合并加热到至少约109℃的温度,此时,得到P2S5∙2 C5H5N在液体二甲砜中的溶液。在该反应介质中,可进行含有氧代基团的化合物的硫代。
[0023] P2S5∙2 C5H5N的有利特点是其热稳定性,这允许在完全超过100℃的温度下,例如在100-200℃或115-180℃的温度下,或在150-175℃的温度下,特别是165-175℃的温度下,进行硫代反应,尽管也可采用较低的温度,例如60-100℃。在某些实施方案中,在液体溶剂介质的沸点温度下进行反应。
[0024] 目前仍不清楚,在溶解于液体溶剂介质后,是否P2S5∙2 C5H5N本身硫代化合物,或者反应是否经离解为其它某些中间的反应性物质而进行。然而,为本发明的目的,准确的反应机理并不重要,而是表明允许溶解的P2S5∙2 C5H5N与溶解的化合物反应,其欲包括经生成想要的硫代产物的任何可能的中间体进行的反应。
[0025] 在和质子溶剂,诸如低级醇,例如甲醇或乙醇的存在下,P2S5∙2 C5H5N快速经历全面降解。例如,将水加至P2S5∙2 C5H5N在乙腈中的热溶液/悬液会快速生成吡啶和硫代磷酸(phosphorothioic acid)的盐的透明溶液,即,下式的二氢一硫代磷酸二氢吡啶鎓[0026]
[0027] 该盐易溶于水,其迅速的形成和高的溶解性可有利地用于本发明的硫代反应产物,例如硫代酰胺的后处理期间。因此,在代表性的本发明反应中,4当量的酰胺与1.1当量的晶状P2S5∙2 C5H5N在无水乙腈中一起加热并在后处理方面,任何残余的硫代剂通过加水而容易地除去。
[0028] 当用醇处理时P2S5∙2 C5H5N也会分解;例如用乙醇处理P2S5∙2 C5H5N生成下式的O,O-二乙基二硫代膦酸吡啶鎓
[0029]
[0030] 因此,本发明的一个优点是通过用质子溶剂,诸如水或低级醇,例如乙醇处理,想要的硫代产物易于从任何残余的硫代剂P2S5∙2 C5H5N中分离。
[0031] 因此,在本发明的一个实施方案中,提供通过使化合物接触P2S5∙2 C5H5N,以得到硫代反应产物,将化合物中的基团>C=O (I)转化为基团>C=S (II)或基团(II)的互变异构形式的方法;其包括使晶状P2S5∙2 C5H5N与所述化合物在化合物和晶状P2S5∙2 C5H5N的液体溶剂介质中混合,以得到化合物和P2S5∙2 C5H5N的液体溶液,并允许P2S5∙2 C5H5N和化合物在该溶液中相互反应,随后向该溶液加入质子溶剂。
[0032] 在向溶液加入质子溶剂后,例如通过用水溶液或用水萃取,自任何残余的P2S5∙2 C5H5N的分解中生成的盐将易于自硫代化合物中分离。在某些实施方案中,加入质子溶剂,诸如水会生成硫代反应产物的沉淀,然后,例如通过简单过滤,将其自含水相中分离。可任选例如通过再结晶,进一步纯化反应产物。
[0033] 要被转化为基团>C=S (II)的基团>C=O (I)可存在于,例如酮或酰胺官能团中,并可存在于含有一个或数个官能团的化合物中,在这种情况下,可实现如将显示于下文的实施例中的选择性硫代反应。
[0034] 在一个实施方案中,基团(I)存在于例如在化合物 中的酰胺官能团-C(O)-N<中,
[0035] 其中R例如可选自C1-C12基,及R´和R´´可独立地选自H和C1-C12烃基,或者其中R和R´和/或R´和R´´可相互结合,与它们所连接的酰胺和/或氮一起形成单环或多环,例如任选含有一个或数个其它杂原子,例如一个或数个选自O、N和S的杂原子的单环或多环5-20元环,该环可为饱和或不饱和的和芳族或非芳族的。
[0036] 在一个实施方案中,所述化合物是肽、寡肽或多肽,例如在主链上含有1-10个基团(I)或1-5个氧代基团(I)的肽。
[0037] 在一个实施方案中,基团(I)存在于酮官能团,诸如存在于化合物[0038] 中,
[0039] 其中的R和R´例如可独立地选自H和C1-C12烃基,或者可相互结合,与酮碳一起形成单环或多环,例如任选含有一个或数个杂原子,例如一个或数个选自O、N和S的杂原子的单环或多环的5-20元环,该环可为饱和或不饱和的和芳族或非芳族的。
[0040] 基团R、R´和R´´可任选和独立地被一个或多个取代基,例如一个或更多个另外的氧代基或一个或多个其它官能团取代。
[0041] 当基团(I)存在于酮官能团时,优选在化合物中应存在至少一个给电子基团,导致基团(I)的电子密度增加。这样的给电子基团(EDG)例如可为具有单一电子对的基团,其可通过所述电子对经位于EDG和酮基团之间的一个或数个双键的移位作用提高酮基团的电子密度。也可通过诱导作用提高酮基团的电子密度。
[0042] 本发明的硫代反应产物是含有基团>C=S (II)或其互变异构体例如基团>C=C(SH)-的硫代化合物。
[0043] 优选以每1-4摩尔基团(I)对1摩尔P2S5∙2 C5H5N,例如每2-4摩尔基团(I)对1摩尔P2S5∙2 C5H5N,特别是每3-4摩尔基团(I)对1摩尔P2S5∙2 C5H5N的要转化的基团(I)的摩尔比,与晶状P2S5∙2 C5H5N混合。
[0044] 因此,在化合物含有不止一个要转化为基团(II)的基团(I)的情况下,P2S5∙2 C5H5N对化合物的摩尔比将会相应地较高。例如,在化合物含有要转化为2个基团(II)的2个基团(I)的情况下,晶状P2S5∙2 C5H5N优选以每0.5-2摩尔化合物对1摩尔P2S5∙2 C5H5N,例如每1-2摩尔化合物对1摩尔P2S5∙2 C5H5N或每1.5-2摩尔化合物对1摩尔P2S5∙2 C5H5N的摩尔比,与要被硫代的化合物混合。
[0045] 通常,对于含有选自例如酮官能团和酰胺官能团的n个官能团,例如n个酰胺官能团的化合物,P2S5∙2 C5H5N和化合物之间的摩尔比可从n/4至n,或者从n/4至n/2,例如从n/4至n/3。
[0046] P2S5∙2 C5H5N作为硫代剂的有利特征是其选择性。因此,例如羧酸酯官能团通常不与P2S5∙2 C5H5N反应,因此,本发明还提供选择性硫代例如还含有羧酸酯官能团的化合物中的酰胺官能团或酮官能团的方法。
[0047] 在以下非限制性实施例中进一步描述本发明。
[0048] 实施例1
[0049] 晶状P2S5∙2 C5H5N
[0050] 80 ˚C下,采用搅拌装置,将十硫化四磷(P4S10, 44.5 g, 0.1 mol)分批加至无水吡啶(560 mL)中。回流时段(1h)后,得到透明黄色溶液,当溶液被冷却时,其沉积出浅黄色晶体。2h后,收集晶体,用无水乙腈洗涤,最终移至干燥器(含有装有浓硫酸的烧杯)中,以除去任何过量的吡啶,生成62.3 g (84%),mp: 167-169 ˚C, IR νmax: 3088, 3040, 1608, -11451, 1197, 1044, 723, 668 cm ;参见图1。
[0051] 一硫代磷酸二氢吡啶鎓
[0052] 回流温度下加热在含水(1.0 mL)的乙腈(35 mL)中的晶状P2S5∙2 C5H5N (3.80 g, 10 mmol)。浓缩透明溶液(3 min内得到的),使产物结晶,3.15 g (79%)。晶体适用于X-射线结晶学,mp: 110-120˚C,随H2S的排放分解;
[0053]。
[0054] O,O-二乙基二硫代磷酸吡啶鎓
[0055] 回流加热乙醇(5 mL)中的晶状P2S5∙2 C5H5N (1.0 g) 5 min,蒸发透明溶液,生成固化的油(100%)。
[0056]
[0057] 实施例2
[0058] (S)-11-硫代-2,3,11,11a-四氢-1H-苯并[e]吡咯并[1,2-a][1,4]二氮杂䓬-5- (10H)-酮(表1,条目17)。
[0059] 向2,3-二氢-1H-苯并[e]吡咯并[1,2-a][1,4]二氮杂䓬-5,11(10H,11aH)-二酮(4.0 g, 20 mmol)的MeCN-溶液(200 mL)加入晶状P2S5∙2 C5H5N (2.3 g, 6 mmol)并加热至60˚C经3 h,在此期间生成黄色沉淀。室温下放置反应混合物过夜,以充分沉淀。真空过滤产物并用少量冷MeCN洗涤,得到呈浅黄色固体的标题化合物(3.9 g, 85 %),[0060]。
[0061] 实施例3
[0062] 得自甘酸的2,5-哌嗪二硫酮(表2,条目1)。
[0063] 于165-170℃下加热甘氨酸(1.50 g, 20 mmol)、晶状P2S5∙2 C5H5N (9.12g, 28 mmol)和二甲砜 (8.0 g) 1h,其时用沸水处理反应混合物(冷却后) 30 min。使得到的浅褐色固体自乙醇/DMF中再结晶,1.85 g (63 %) mp 284℃;
[0064]
[0065] 实施例4
[0066] 得自自2,5-哌嗪二酮的2,5-哌嗪二硫酮(表2,条目2)。
[0067] 回流下加热乙腈(50 mL)中的2,5-哌嗪二酮(2.28 g, 20 mmol)和晶状P2S5∙2 C5H5N ( 2.28 g, 8 mmol) 2h,然后浓缩混合物,加水。搅拌1h时间后收集形成的固体,2.63 g (90 %)。熔点和NMR数据与上述对来自甘氨酸的2,5-哌嗪二硫酮(表2, 条目1)的数据相同。
[0068] S,S´-1,4-二乙酰基-2,5-双-乙酰基硫醇代(acetylthiolo)-1,4-二氢吡嗪,35。
[0069] 回流温度下加热在乙酸酐(20 mL)中的上述2,5-哌嗪二硫酮(1.46 g, 10 mmol)2h,其时浓缩反应混合物并用二异丙醚处理,2.06 g (93 %), mp 190-192℃;
[0070]
[0071] 四硫化物25的还原裂解。
[0072] 使3,3’-二吲哚基-2,2’-四硫化物25 (3.58 g, 10 mmol)溶解于THF(50 mL) 并加至NaBH4 (1.50 g, 40 mmol)在THF (75 mL)中的混合物中。排放含有随后生成的H2S的气体,并于40-45 ˚C,氩气覆盖下搅拌反应混合物3 h。并不贮存含有二阶阴离子26的该空气敏感溶液而是直接经下述操作转化。
[0073] 2,2'-双(甲硫基)-1H,1'H-3,3'-二吲哚。
[0074] 25 ˚C下,将溶解于MeOH (15 mL)的硫酸二甲酯(1.51 g, 12 mmol)逐滴加至经还原裂解四硫化物25 (5 mmol)得到的溶液中。在搅拌一段时间(1h)后,蒸发溶液并用水处理。使粗固体从MeOH-水中结晶,生成黄色固体(0.45 g, 57%)
[0075]
[0076] 环二硫化合物(cyclodisulfide) 23的合成。
[0077] 在加入水(50 mL)中后,搅拌还原裂解四硫化物25得到的与空气接触的溶液24 h。收集生成的黄色固体,并从乙腈-DMF 4:1中结晶,生成仍含有DMF 的2.20 g (77%)固体,在减压下经干燥去除DMF,mp >227-228 ˚C。
[0078]
[0079] 实施例5
[0080] 160˚C下经羟吲哚硫化的环二硫化物23 (表3, 条目13)。
[0081] 将羟吲哚(1.33 g, 10 mmol)和晶状P2S5∙2 C5H5N (1.52 g, 4 mmol)与二甲砜(4.0 g)一起升温,然后于160 ˚C下加热5 min。使熔化物冷却,然后与水一起加热。使生成的固体从乙腈-DMF 4:1中结晶,生成1.37 g (92 % ) mp > 227-228 ˚C。该物质与经四硫化物25的还原裂解得到的物质相同。
[0082] 3,3’-二硫代-羟吲哚,27。
[0083] 用AcOH酸化由四硫化物25的还原裂解得到的溶液,这导致快速生成呈黄色沉淀的标题化合物,2.52 g (85 %)。使其从乙腈再结晶,mp 180 ºC分解。该分子对大气氧化敏感。
[0084]
[0085] 对C16 H12N2S2的元素分析;C, 64.60, H, 4.08, N, 9.43 实测值C, 64.26, H,3.99, N, 9.31。
[0086] 实施例6
[0087] 5-巯基-4-(2-甲氧基-2-氧代乙基)-2-甲基-1H-吡咯-3-羧酸甲酯,34b。
[0088] 回流温度下加热乙腈(50 mL)中的二酯33a (2.13g, 10 mmol)和晶状P2S5∙2 C5H5N (1.14g, 4 mmol) 1h。在浓缩至25 mL后,加水,并收集生成的固体,并从2-丙醇中结晶,1.85g (81%) mp. 185-187˚C;
[0089]
[0090] 对C10 H13NO4S的元素分析;C, 49.37, H, 5.38, N 5.75 实测值C, 49.25, H,5.46, N, 5.61。
[0091] 实施例7
[0092] 3-(1H-吲哚-3-基)-3,3'-双二氢吲哚-2-硫酮(表3, 条目9)。
[0093] 加热(165-170 ˚C) 3-(1H-吲哚-3-基)-3,3'-双二氢吲哚-2-酮(728 mg, 2 mmol)、晶状P2S5∙2 C5H5N (228 mg, 0.6 mmol)和二甲砜(3.05 g) 20 min。冷却熔化物,然后在水中加热10 min。收集生成的固体,766 mg (94 %),
[0094]
[0095] 对C24H17N3S的元素分析;C, 75.96, H, 4.51, N, 11.07;实测值C, 76.10, H,4.46, N, 11.00.
[0096] 根据本发明,采用溶解于热乙腈中的晶状P2S5∙2 C5H5N的多种硫代反应的结果列于表1中。在示例性反应中,晶状P2S5∙2 C5H5N对要被硫代的化合物之比为1.1:4。在某些情况下,已经进行与LR的直接比较。例如ε–己内酰胺和P2S5∙2 C5H5N在5 min内生成相应的硫代酰胺,但LR硫化甚至更快。事实上,可通过加入ε–己内酰胺,滴定LR在热乙腈中的悬液。本发明的硫代剂超过LR的优点主要在于本发明的硫代剂易于制备、无味(当足够纯时)和硫代产物非常纯。在本文描述的各实施例中,从伯酰胺生成腈从来不是问题。7,8
当采用硫代剂LR时,这类副反应有时可成问题 。用P2S5∙2 C5H5N硫代示例性酮运行良好(表2,条目3和4)。当采用在热吡啶中或作为熔化物或甚至更好地-与二甲砜一起加热时的本发明硫代剂时,酮衍生物20a和21a可分别被转化为20b和21b (表1,条目20和表3,条目3)。
[0097] 然而3,3-二甲基羟吲哚的硫化(条目7,表1)产生优良的得率,母体化合物,羟吲哚(条目6,表1)给出不能接受的低得率(约10 %)。在此,低溶解性的络合物的形成似乎是问题的根源。3,3-二吲哚基二氢吲哚-2-硫酮的合成也不成功,但用二甲砜作溶剂就能实现(参见表3)。3-羟基-2-吡啶酮的硫代并不复杂地运行良好,生成感兴趣的一类3-羟2+
基-2-(1H)-吡啶硫酮,已经报道数种类型的其金属络合物(例如Zn )表现出某些抗糖尿病的前景。
[0098] 在不止一个羰基出现在原料中的情况下,可实现选择性。因此,可以良好的得率得到单硫代分子(monothionated molecules) (表1, 条目12、16和17)。哌啶-2,6-二酮在热乙腈中的硫代反应得到单硫代产物,而用热吡啶中的过量硫代剂可得到完全硫代产物。
[0099] 表1. 用热MeCN中的本发明硫代剂硫代酰胺
[0100]
[0101]
[0102]a
[0103] 含有两种旋转异构体的分离产物
[0104] Gly-Gly以及哌嗪-2,5-二酮的硫代都产生预期的二硫代产物的良好得率 (表2,条目1和2)。为进一步表征相当不溶的产物,在热乙酸酐中使其乙酰化,生成易于给出精密的NMR谱图的四乙酰化产物35。
[0105] 表2.用在热吡啶中的本发明的硫代剂进行硫代反应
[0106]a
[0107] 从DMF-H2O得到
[0108] 可用例如溶解于二甲砜(mp 107-109℃, bp 238℃)的P2S5∙2 C5H5N在相当高的温度(165-175℃)下进行硫代反应。将本发明的某些示例性反应的结果列于表3。在一种9
情况下(表3,条目6),将产物部分转化为高度不溶的二硫化物22。例如Stoyanov 和Hino
10
等 已经报道类似的观察。后来工作人员发现,多种3-取代的吲哚-2-硫酮可易于被氧化成相应的二硫化物。通过在氩气下进行反应,可避免氧化产物的形成。
[0109] 在过去已经多次硫化苯甲11-16,并总是将产物分离为不稳定的主要产物30的三聚体(29),当苯甲醛与在二甲砜中的本发明硫代剂反应时,三聚体29事实上是产物。
[0110]
[0111] 酯羰基通常不被P2S5∙2 C5H5N进攻,这可经曲酸(31)的单乙酸酯的硫代(表3, 条目10)示例,其选择性地生成硫酮32 (表1, 条目17)。二酯33a的硫代提供另一个实例,即吡咯-2-硫醇衍生物34b
[0112]
[0113] 原料完全(NMR证据)作为互变异构体33a存在,而产物完全作为硫醇互变异构体34b存在。但更重要的是,两个酯官能团是完整的。
[0114] 由于低溶解度和高熔点,2,5-哌嗪二硫酮(表3,条目12)难以表征,从而制备易于溶解的四乙酸酯35。
[0115] 表3.用在二甲砜中的本发明硫代剂于165-175℃下硫代
[0116]
[0117]a
[0118] 始于甘氨酸b
[0119] 在氩气下进行的实验
[0120] 鉴于以上一般性描述和伴随来自示例性实施例的进一步引导,本领域的普通技术人员将完全能够例如根据存在于要被硫代的化合物中的官能团,采用常规实验,如果必要选择适用的反应条件,在权利要求的整个范围内实施本发明。例如,可在标准环境气压下或在惰性气体例如氩或氮气氛围下进行反应。可被优化或改变的其它参数有例如溶剂介质、反应温度和反应时间,预期所有的这类修饰和变化均落在本发明范围内。
[0121] 参考文献
[0122]。
QQ群二维码
意见反馈