泥熟料、水泥组合物、水泥熟料的制造方法和含成份的废弃物的处理方法

申请号 CN01800305.2 申请日 2001-02-07 公开(公告)号 CN1362939A 公开(公告)日 2002-08-07
申请人 住友大阪水泥股份有限公司; 发明人 五十畑达夫; 秋山达志; 狩野和弘;
摘要 本 发明 的课题是在 水 泥中加入 碱 成份时促进主要由C2S制成的斜 硅 灰石等的水和,进一步抑制流动性的降低,由此达到将含碱成份的废弃物有效地作为 水泥 原料进行再利用。本发明的解决方案是以Al2O3/Fe2O3重量比(以下记为IM)为0.05~0.62的比例含有Al2O3和Fe2O3,还含有碱量Y(重量%)和C2S量X(重量%),其比例为0.0025X+0.1≤Y≤0.01X+0.8,优选上述碱为0≤Na2O/K2O≤0.45。
权利要求

1.一种泥熟料,其特征在于以Al2O3/Fe2O3重量比为0.05~ 0.62的比例含有Al2O3和Fe2O3,还含有量Y(重量%)和C2S量X(重 量%),其比例为0.0025X+0.1≤Y≤0.01X+0.8。
2.一种水泥熟料,其特征在于以Al2O3/Fe2O3重量比为0.05~0.5 的比例含有Al2O3和Fe2O3,还含有碱量Y(重量%)和C2S量X(重量 %),其比例在(1)0.05≤Al2O3/Fe2O3≤0.3时,为0.0025X+0.25 ≤Y≤0.01X+0.8,在(2)0.3≤Al2O3/Fe2O3≤0.5时,为0.0025X+ 0.25≤Y≤0.01X+0.65。
3.权利要求1或2记载的水泥熟料,其特征在于上述碱中Na2O和 K2O的重量比为0≤Na2O/K2O≤0.45。
4.一种水泥组合物,其特征在于将权利要求1~3的任意一项所记 载的水泥熟料混合。
5.一种水泥熟料的制造方法,其特征在于以Al2O3/Fe2O3重量比为 0.05~0.62的比例含有Al2O3和Fe2O3,还含有碱量Y(重量%)和C2S量X(重量%),其比例为0.0025X+0.1≤Y≤0.01X+0.8,并进行 烧结
6.权利要求5记载的水泥熟料的制造方法,其特征在于上述碱 中,Na2O和K2O的重量比为0≤Na2O/K2O≤0.45。
7.含碱成份的废弃物的处理方法,其特征在于:通过以含碱成份 的废弃物作为水泥原料,以Al2O3/Fe2O3重量比为0.05~0.62的比例含 有Al2O3和Fe2O3,还含有碱量Y(重量%)和C2S量X(重量%),其比 例为0.0025X+0.1≤Y≤0.01X+0.8,并进行烧结,制成水泥熟料。
8.权利要求7记载的含碱成份的废弃物的处理方法,其特征在于 在上述碱中,Na2O和K2O的重量比为0≤Na2O/K2O≤0.45。

说明书全文

技术领域

发明主要涉及泥熟料及其制造方法,还涉及含有该水泥熟料 的水泥组合物,进一步涉及将含成份的废弃物作为水泥原料进行处 理的方法。

背景技术

近年来,从所谓地球环保的观点来看,废弃物的再循环成为无论 政府还是工业界的重要课题。其中,通过利用灰和高炉炉渣作为 混合水泥和利用各种废弃物作为水泥原料,积极促进了水泥工业的废 弃物再循环,并且在今后更加期待着在废弃物的再循环中起到重要的 作用。
最近,正在进行从例如以城市垃圾为代表的将含氯废弃物作为特 殊水泥原料利用的“环保水泥”“ecocement”的研究,和要构筑只 采用可再循环的材料作为水泥原料制造混凝土、并在使用后作为水泥 原料再使用的循环体系这样“完全再循环混凝土”的研究等。
但是,在日本国内,现状是统计去年内产生的2500万吨所谓“混 凝土废材”,其中,1000万吨用作路基材料,而剩余的1500万吨被 废弃处理了。作为日本国建设省的综合技术开发项目“抑制建设副产 物的产生和开发再生利用技术”(1993~1994)的一部分,对于 “开发再生混凝土的利用技术”实施共同的研究,实际上向循环的行 动正在继续,但是对于混凝土废材作为再生骨材的再利用仍然存在着 许多问题。
存在的一个问题是,在用于制造优良的再生骨材的再生过程中, 从骨材表面摩擦去除的微粉的再利用。作为微粉再利用的方法,在考 虑在水泥原料中利用时,微粉中所含的碱成份会降低水泥的流动性, 并伴随着碱量的JIS规定值在0.75%以下,因此,难以进行作为水泥 原料的再利用。
而且,在玻璃废材和建设工程中使用的膨润土污泥等也存在 将其作为水泥原料时碱成份含量大这样的问题。玻璃废材虽然经粉碎 构成作为碎玻璃再利用的体系,但是,与有色玻璃有关的再利用受到 限制,因此正在寻找作为水泥原料的再利用。但是,这些废弃物与上 述再生骨材制造时产生的微粉的处理同样碱含量也高,因此,作为水 泥原料再利用的途径狭窄。
发明简述
本发明的课题是在水泥中加入碱成份时,达到促进主要是由C2S形成的斜灰石等的水和,并进一步抑制流动性的降低,由此以达到 将含有碱成份的废弃物作为水泥原料有效地再利用的目的。
在考虑将上述含碱成份的废弃物作为水泥原料利用时,(1)在 使用水泥制成灰浆和混凝土时,不使用反应性骨材,(2)在对于水 泥中的碱量符合缓和规格值等的条件时,仍具有可作为水泥原料再利 用的可能性。特别是,通过在大多生成斜硅灰石的水泥原料中加入该 含碱成份的废弃物,提高烧结时碱在斜硅灰石中的固溶量,从而提高 水和反应性低的斜硅灰石的水和反应性,这种方法提高了水泥中长期 的强度显示性,可被认为是合理的解决方法。
但是,如果增加通常的斜硅灰石系水泥中的碱量,在由碱向斜硅 灰石中固溶产生促进水和这一正面效果的同时,还发生了碱还向水和 反应性高的相固溶,进一步增加了铝酸钙相的水和反应性。这 样就产生了水泥浆、灰浆和混凝土等流动性降低这一利用上的新问 题。
本发明者们对上述课题进行了深入研究,结果发现,通过使水泥 熟料中的Al2O3/Fe2O3重量比、碱量和斜硅灰石量的比例以及碱中Na2O和K2O的比例在给定的范围内,可提高斜硅灰石的水和反应性,并抑 制流动性的降低,从而完成本发明。
即,本发明的方案是水泥熟料,其特征在于以Al2O3/Fe2O3重量比 (以下记为IM)为0.05~0.62的比例含有Al2O3和Fe2O3,还含有碱量Y (重量%)和C2S量X(重量%),其比例为
0.0025X+0.1≤Y≤0.01X+0.8。
对于碱量Y和C2S量X,以百分数(%)表示相对于水泥熟料全部 重量的碱和C2S的各自重量。
本发明的方案是水泥熟料,其特征在于以Al2O3/Fe2O3重量比为 0.05~0.5的比例含有Al2O3和Fe2O3,还含有碱量Y(重量%)和C2S量 X(重量%),其比例在
(1)0.05≤Al2O3/Fe2O3≤0.3时为
0.0025X+0.25≤Y≤0.01X+0.8,
(2)0.3<Al2O3/Fe2O3≤0.5时为
0.0025X+0.25≤Y≤0.01X+0.65。
本发明的方案是水泥熟料,其特征在于上述碱中Na2O和K2O的重量 比为0≤Na2O/K2O≤0.45。
本发明的方案是水泥组合物,其特征在于混合这种水泥熟料。
本发明的方案是水泥熟料的制造方法,其特征在于以Al2O3/Fe2O3重量比为0.05~0.62的比例含有Al2O3和Fe2O3,还含有碱量Y(重量 %)和C2S量X(重量%),其比例为
0.0025X+0.1≤Y≤0.01X+0.8, 并进行烧结。
本发明的方案是含碱成份的废弃物的处理方法,其特征在于以 Al2O3/Fe2O3重量比为0.05~0.62的比例含有Al2O3和Fe2O3,还含有碱 量Y(重量%)和C2S量X(重量%),其比例为
0.0025X+0.1≤Y≤0.01X+0.8, 并进行烧结制备水泥熟料。
本发明的方案是一种方法,该方法是上述水泥熟料的制造方法和 含碱成份的废物的处理方法,其特征在于上述碱中Na2O和K2O的重量比 为0≤Na2O/K2O≤0.45。
通过在水泥原料中加入碱成份并进行烧结,可制造含有碱的水泥 熟料。如果认为在水泥熟料中碱主要以C3S、C2S、C3A、C4AF等所谓在 水泥熟料矿物中固溶的状态存在,并且碱在水泥熟料矿物中固溶,该 水泥化合物的构造变得不稳定,水和反应性高。
即,在以Al2O3/Fe2O3的重量比为0.05~0.62的比例含有水泥熟料 中的Al2O3和Fe2O3的水泥熟料中,如果加入碱成份使碱量Y(重量%) 相对于C2S量X(重量%)为0.025X+0.1≤Y,通过上述作用,可提高水 和反应性低的C2S的反应性。
但是,如果加入给定量以上的碱成份,碱对水和反应性高的铝酸 钙相也固溶,由此可进一步提高水和反应性,降低水泥混练时初期的 流动性。
而且,通过使水泥熟料中的Al2O3和Fe2O3为Al2O3/Fe2O3的重量比为 0.05~0.62,抑制铝酸钙相的生成,并通过加入碱成份使碱量Y(重 量%)相对于C2S量X(重量%)为Y≤0.01X+0.8,由碱的固溶达到斜硅 灰石活化的目的,进而,通过抑制碱向斜硅钙石相过剩固溶,可抑制 由斜硅钙石的水和反应性增加引起的水泥混练时初期的流动性降低。
更优选以Al23/Fe2O3的重量比为0.05~0.5的比例含有Al23和 Fe2O3,并且使碱量Y(重量%)和C2S量X(重量%)在(1)0.05≤ Al23/Fe2O3≤0.3时为0.0025X+0.25≤Y≤0.01X+0.8,在(2)0.3< Al23/Fe2O3≤0.5时为0.0025X+0.25≤Y≤0.01X+0.65,由此,进一步 促进C2S的水和反应,并可更有效地抑制初期的流动性降低。
这里,作为废弃物中所含的碱成份可举出Na、K等碱金属元素, 它们通常以Na2O和K2O等碱金属化物的形式含有。而且,作为水泥熟 料中碱的存在形式,并不限于在水泥熟料中固溶的形式。
作为含有碱成份的废弃物,除了上述混凝土废弃物、玻璃废弃 物、污泥块之外,还可举出水库、河流、湖泊等的堆积土壤、精炼矿 渣和各种熔融矿渣等,但并不限于此。
而且,只要含有碱成份,即使不是废弃物也可以使用。
对于这种因碱的种类造成的作用差异作了进一步的研究,结果, 在以Na2O和K2O作比较时,Na2O在斜硅钙石中的固溶量多,K2O在容易 生成硫酸碱相的斜硅钙石相的固溶量少,即,可断定对水泥的流动性 降低有很大影响的成份是Na2O。
因此,通过使水泥熟料中的Na2O和K2O的重量比为0≤Na2O/K2O≤ 0.45,可抑制碱在斜硅钙石相中的固溶并提高水泥的流动性,促进碱 在斜硅灰石相中的固溶并提高该斜硅灰石相的水和反应性。
上述碱成份与水泥原料一起烧结并在水泥熟料矿物中固溶,形成 Na2SO4和K2SO4等碱金属硫酸盐、NaCl和KCl等碱金属氯化物,包含在 水泥熟料中。
水泥熟料中碱量的调整方法可举出,预先测定含碱原料(废弃物 等)中所含的碱量,根据该测定结果调整原料的量并加入到水泥原料 中的方法等。
实施发明的最佳方案
以下对本发明的实施例进行说明
以表1表示的组成比例为目标调制水泥熟料的原料,在电炉内在 1450℃下烧结1个小时后,从电炉取出,在空气中急冷,得到目的组 成的水泥熟料。碱量通过改变调制原料中加入的碱量来改变,在这些 实施例和比较例的水泥熟料中,加入石膏,使SO3的量为2重量%,用 试验磨机混合粉碎,调制实施例和比较例的水泥。实施例1~48、比 较例1~36的水泥的IM和C2S量以及烧结后的水泥熟料中的碱量(Na2O当量)在表2~4表示。
这里,碱(Na2O当量)量基于水泥熟料中Na2O和K2O的量,由Na2O当量=Na2O+0.658K2O计算出。水泥的粉末度以布莱恩比表面积计为 3200~3400cm2/g。
                                                                                表1    实施例     比较例                            原料比例(%)     IM                 水泥熟料矿物组成(%) SiO2 Al2O3 Fe2O3    CaO    MgO 总合 C3S C2S C3A C4AF C2F     9,10   28.2     3.5     3.9     63.3     1.1   100     0.90     14     70     2.7     11.9     21,22   25.9     3.6     4.0     65.1     1.4   100     0.90     38     45     2.8     12.2     33,34   23.9     3.8     4.2     66.5     1.6   100     0.90     58     25     3.0     12.8    1~3     1,2   28.0     3.0     5.2     62.7     1.1   100     0.58     14     70     14.3   0.9    19~21     13,14   25.4     3.3     5.7     64.2     1.4   100     0.58     37     45     15.7   0.9    35~37     25,26   23.4     3.5     6.0     65.5     1.6   100     0.58     56     25     16.7   0.9    4~9     3,4   28.1     2.3     5.9     62.6     1.1   100     0.39     14     70     11.0   3.9    23~26     15,16   25.5     2.5     6.4     64.2     1.4   100     0.39     38     44     11.9   4.2    38~41     27,28   23.6     2.6     6.7     65.5     1.6   100     0.39     56     25     12.4   4.5    10~15     5,6   28.2     1.5     6.7     62.5     1.1   100     0.22     14     70     7.1   7.4    27~31     17,18   25.7     1.6     7.2     64.1     1.4   100     0.22     38     45     7.6   8.0    42~45     29,30   23.7     1.7     7.6     65.4     1.6   100     0.22     57     25     8.1   8.4    16~18     7,8   28.1     0.8     7.7     62.3     1.1   100     0.10     14     70     3.8   11.0    32~34     19,20   25.7     0.8     8.1     64.0     1.4   100     0.10     38     45     3.8   11.7    46~48     31,32   23.6     0.9     8.7     65.2     1.6   100     0.10     57     25     4.3   12.4     11,12   28.2     0.2     8.3     62.2     1.1   100     0.02     14     70     1.0   13.6     23,24   25.7     0.2     8.9     63.8     1.4   100     0.02     38     45     1.0   14.6     35,36   23.7     0.2     9.4     65.1     1.6   100     0.02     57     25     1.0   15.5
                                                 表2              熟料组成     压缩强度(N/mm2)   强度增   进系数   对接   面积   (cm2)    判定      IM    C2S   Na2O当量     2W     8W   实施例1     0.58     70     0.37     15.6     51.8     52     67     ○   实施例2     0.58     70     0.88     16.0     57.6     59     62     ○   实施例3     0.58     70     1.35     16.3     58.2     60     56     ○   实施例4     0.39     70     0.35     14.7     51.0     52     81     ○   实施例5     0.39     70     0.51     15.2     54.7     56     79     ◎   实施例6     0.39     70     0.73     15.5     56.8     59     77     ◎   实施例7     0.39     70     0.99     15.8     59.2     62     74     ◎   实施例8     0.39     70     1.18     16.1     60.6     64     68     ◎   实施例9     0.39     70     1.4     16.6     59.3     61     60     ○   实施例10     0.22     70     0.34     14.4     51.6     53     90     ○   实施例11     0.22     70     0.49     14.8     56.2     59     88     ◎   实施例12     0.22     70     0.68     15.1     58.5     62     85     ◎   实施例13     0.22     70     0.95     15.6     60.3     64     82     ◎   实施例14     0.22     70     1.21     15.9     59.7     63     74     ◎   实施例15     0.22     70     1.43     16.3     59.5     62     65     ◎   实施例16     0.1     70     0.38     14.1     50.3     52     91     ○   实施例17     0.1     70     0.9     14.9     56.5     59     79     ◎   实施例18     0.1     70     1.38     15.4     56.1     58     66     ◎   比较例1     0.58     70     0.23     15.2     48.3     47     71     △   比较例2     0.58     70     1.59     17.4     57.7     58     41     △   比较例3     0.39     70     0.2     14.3     46.5     46     84     △   比较例4     0.39     70     1.61     17.0     58.9     60     44     △   比较例5     0.22     70     0.22     14.1     47.7     48     91     △   比较例6     0.22     70     1.6     16.8     59.1     60     49     △   比较例7     0.1     70     0.22     13.8     46.1     46     93     △   比较例8     0.1     70     1.65     15.8     55.9     57     48     △   比较例9     0.9     70     0.41     16.5     53.4     53     45     △   比较例10     0.9     70     0.92     18.0     58.6     58     41     △   比较例11     0.02     70     0.84     13.5     44.3     44     86     △   比较例12     0.02     70     1.32     14.1     46.1     46     71     △
                                                表3             熟料组成     压缩强度(N/mm2)   强度增   进系数   对接   面积   (cm2)    判定      IM    C2S   Na2O当量     2W     8W 实施例19     0.58     45     0.28     35.0     58.3     52     70     ○ 实施例20     0.58     45     0.71     35.6     63.1     61     60     ○ 实施例21     0.58     45     1.18     36.1     62.9     60     55     ○ 实施例22     0.39     44     0.3     34.1     57.3     53     79     ○ 实施例23     0.39     44     0.49     34.4     59.9     58     77     ◎ 实施例24     0.39     44     0.71     34.9     62.2     62     75     ◎ 实施例25     0.39     44     0.95     35.3     62.6     62     68     ◎ 实施例26     0.39     44     1.17     35.7     62.1     60     61     ○ 实施例27     0.22     45     0.29     33.5     57.5     53     84     ○ 实施例28     0.22     45     0.51     33.9     60.4     59     82     ◎ 实施例29     0.22     45     0.73     34.2     62.5     63     79     ◎ 实施例30     0.22     45     0.96     34.7     62.4     62     71     ◎ 实施例31     0.22     45     1.15     35.0     62.0     60     65     ◎ 实施例32     0.1     45     0.3     31.6     55.2     52     86     ○ 实施例33     0.1     45     0.68     32.5     59.8     61     78     ◎ 实施例34     0.1     45     1.14     33.2     59.4     58     67     ◎ 比较例13     0.58     45     0.13     34.4     55.8     48     72     △ 比较例14     0.58     45     1.37     36.5     62.4     58     42     △ 比较例15     0.39     44     0.13     33.8     54.4     47     81     △ 比较例16     0.39     44     1.38     36.0     61.3     58     45     △ 比较例17     0.22     45     0.12     33.0     54.6     48     87     △ 比较例18     0.22     45     1.36     35.2     61.5     58     47     △ 比较例19     0.1     45     0.15     31.1     52.8     48     89     △ 比较例20     0.1     45     1.39     33.7     58.9     56     49     △ 比较例21     0.9     45     0.31     36.2     60.1     53     48     △ 比较例22     0.9     45     0.74     36.8     64.7     62     42     △ 比较例23     0.02     45     0.65     29.1     47.8     42     83     △ 比较例24     0.02     45     1.08     29.6     49.3     44     74     △
                                                表4             熟料组成     压缩强度(N/mm2)   强度增   进系数   对接   面积   (cm2)    判定     IM   C2S   Na2O当量     2W     8W 实施例35     0.58     25     0.22     50.8     63.7     52     66     ○ 实施例36     0.58     25     0.6     51.3     65.8     58     61     ○ 实施例37     0.58     25     0.97     51.9     66.1     57     55     ○ 实施例38     0.39     25     0.21     49.1     62.6     54     78     ○ 实施例39     0.39     25     0.39     49.5     64.5     60     76     ◎ 实施例40     0.39     25     0.68     49.8     65.3     62     70     ◎ 实施例41     0.39     25     0.93     50.4     65.7     61     62     ○ 实施例42     0.22     25     0.19     47.2     60.8     54     83     ○ 实施例43     0.22     25     0.41     48.7     63.9     61     80     ◎ 实施例44     0.22     25     0.7     49.1     65.2     64     73     ◎ 实施例45     0.22     25     0.96     49.6     65.0     62     65     ◎ 实施例46     0.1     25     0.21     46.0     59.6     54     83     ○ 实施例47     0.1     25     0.56     47.4     61.7     57     74     ◎ 实施例48     0.1     25     0.93     48.2     62.4     57     66     ◎ 比较例25     0.58     25     0.09     50.5     60.9     42     70     △ 比较例26     0.58     25     1.16     52.5     65.9     54     44     △ 比较例27     0.39     25     0.07     48.8     60.1     45     80     △ 比较例28     0.39     25     1.15     51.2     65.0     55     48     △ 比较例29     0.22     25     0.09     46.6     58.2     46     85     △ 比较例30     0.22     25     1.16     50.3     64.8     58     49     △ 比较例31     0.1     25     0.07     45.3     57.1     47     87     △ 比较例32     0.1     25     1.21     48.9     62.3     54     48     △ 比较例33     0.9     25     0.29     52.4     65.3     52     46     △ 比较例34     0.9     25     0.63     53.6     67.2     54     40     △ 比较例35     0.02     25     0.59     41.1     51.3     41     77     △ 比较例36     0.02     25     0.86     41.8     52.2     42     71     △
                                                       表5                    熟料组成      压缩强度       (N/mm2)  强度增  进系数   对接   面积   (cm2)  判定      IM    C2S   Na2O当量  Na2O/K2O     2W     8W     实施例49     0.39     70     1.39     3.31   17.3   61.3     63     58   ○     实施例50     0.39     70     1.40     1.02   16.9   60.8     63     59   ○     实施例9     0.39     70     1.40     0.55   16.6   59.3     61     60   ○     实施例51     0.39     70     1.39     0.38   16.4   59.2     61     66   ◎     实施例52     0.39     70     1.38     0.22   16.2   58.5     60     73   ◎     实施例53     0.39     70     1.39     0.12   16.3   58.1     60     75   ◎     实施例54     0.39     44     1.17     3.00   35.2   62.4     62     58   ○     实施例55     0.39     44     1.18     1.06   35.4   62.3     61     60   ○     实施例26     0.39     44     1.17     0.53   35.7   62.1     60     61   ○     实施例56     0.39     44     1.17     0.37   35.8   61.9     59     68   ◎     实施例57     0.39     44     1.16     0.23   36.0   62.1     59     73   ◎     实施例58     0.39     44     1.17     0.13   36.3   62.4     59     75   ◎     实施例59     0.39     25     0.93     3.08   50.0   64.8     59     59   ○     实施例60     0.39     25     0.91     1.06   50.3   65.3     60     60   ○     实施例41     0.39     25     0.93     0.59   50.4   65.7     61     62   ○     实施例61     0.39     25     0.92     0.37   50.8   66.1     61     67   ◎     实施例62     0.39     25     0.91     0.20   51.2   66.3     60     64   ◎     实施例63     0.39     25     0.93     0.13   51.7   66.5     59     76   ◎
对表1的水泥熟料的矿物组成通过以下的式子计算。 
IM≥0.64时,
C3S=4.071×CaO(%)-7.6×SiO2(%)-6.718×Al2O3(%)-1.43×Fe2O3(%)
C2S=2.867×SiO2(%)-0.7544×C3S(%)
C3A=2.65×Al2O3(%)-1.692×Fe2O3(%)
C4AF=3.043×Fe2O3(%)
IM<0.64时,
C3S=4.071×CaO(%)-7.6×SiO2(%)-4.479×Al2O3(%)-2.86×Fe2O3(%)
C2S=2.867×SiO2(%)-0.7544×C3S(%)
C4AF=4.766×Al2O3(%)
C2F=1.702×Fe2O3(%)-2.666×Al2O3(%)
<评价方法>
对上述各实施例和比较例测定“对接面积”作为水泥流动性的指 标,而且,通过求出“强度增进系数”作为斜硅灰石水和反应性的指 标来评价。
对接面积的测定方法
在加入了含有减水剂的混练水70毫升的200毫升烧杯中,用约10 秒种的时间加入水泥200克,采用手动混合机激烈搅拌1分50秒,制成 糊状物。将该糊状物用勺子流入放置在塑料板上的微型坍落度截头圆 锥筒中,用微型抹刀把微型坍落度截头圆锥筒内的糊状物良好混合之 后,把上面弄平,在从加入水泥开始3分钟后提升微型坍落度截头圆 锥筒。测定这时在塑料板上扩大的糊状物的短径和长径,计算对接面 积(cm2)。
强度增进系数
根据JIS R 5201-1997水泥的物理试验方法,测定水泥的灰浆 压缩强度。在水泥的水和过程中,斜硅灰石的水和在材料使用年龄2 周以后变得活波,测定材料使用年龄2周和8周的灰浆压缩强度,根据 式(1)计算出强度增进系数。
强度增进系数=100(第8周的强度-第2周的强度)/C2S量
                                      ………式(1)
根据上述评价方法,在测定对接面积的同时,测定灰浆压缩强 度,求出强度增进系数。作为判定基准,只要对接面积在55cm2以 上、强度增进系数在50以上,分别为合格,两者都合格时为良好 “○”。
对接面积为65cm2以上并且强度增进系数为55以上为“◎”。
判断结果在表2~5以及图1~8表示。
由图1~3可见,不论C2S的量为多少,只要Al2O3/Fe2O3重量比在 0.05~0.62的范围内,相对于给定的碱量,流动性和水和反应性良 好。
对于上述碱量,由图4~7可见,在碱量Y(重量%)和C2S量X (重量%)的关系中,只要满足0.0025X+0.25≤Y≤0.01X+0.8就 可以。
并可见,只要Al2O3/Fe2O3重量比在0.05~0.5的范围内,并且在 碱量Y(重量%)和C2S量X(重量%)的关系中,碱量在(1)0.05≤ Al2O3/Fe2O3≤0.3时,为0.0025X+0.25≤Y≤0.01X+0.8,在(2) 0.3<Al2O3/Fe2O3≤0.5时,为0.0025X+0.25≤Y≤0.01X+0.65,流 动性和水和反应性更好。
另外,对于碱成份中的Na2O和K2O,如图5到图8所示,通过使0≤ Na2O/K2O≤0.45,可改善流动性。
如上所述,根据本发明,可以提高斜硅灰石(C2S)等的水和反 应性,提高水泥中长期的强度显示性,并抑制混练时初期的流动性降 低。
通过调整碱成份的比例,可维持压缩强度并改善流动性。
由此可以有效地再利用含有碱成份的废弃物作为水泥原料。
附图的简单说明
图1是表示在C2S量为70重量%时在碱量相对于IM的坐标中试验的 判断结果图。
图2是表示在C2S量为45重量%时在浆料相对于IM的坐标中试验的 判断结果图。
图3是表示在C2S量为25重量%时在碱量相对于IM的坐标中试验的 判断结果图。
图4是表示在IM为0.58时在碱量相对于C2S量的坐标中试验的判断 结果图。
图5是表示在IM为0.39时在碱量相对于C2S量的坐标中试验的判断 结果图。
图6是表示在IM为0.22时在碱量相对于C2S量的坐标中试验的判断 结果图。
图7是表示在IM为0.10时在碱量相对于C2S量的坐标中试验的判断 结果图。
图8是表示在IM为0.39时在碱成份比(Na2O/K2O)相对于C2S量的 坐标中试验的判断结果图。
QQ群二维码
意见反馈