晶须增强陶瓷及其包覆/热等静压制方法

申请号 CN88106365 申请日 1988-09-02 公开(公告)号 CN1031996A 公开(公告)日 1989-03-29
申请人 钴碳化钨硬质合金公司; 发明人 潘凯杰·K·梅霍特雷; 乔伊斯·L·斯奥克劳; 伊丽莎白·R·比尔曼;
摘要 用热 等静压 制陶瓷制品的方法包括步骤(a)形成可 烧结 陶瓷混合物的压坯,(b)用汽相沉积法对压坯涂覆陶瓷混合物覆层,混合物在随后的等静压制步骤前或压制过程中不会陶化,(c)在压制 温度 和压 力 下在能与覆层及/或压坯反应的气氛中,将涂覆过的压坯加热并等静压制,使压坯接近理论 密度 。该方法用于制造烧制的陶瓷压坯,该压坯有约大于12.5%(体积比)的晶须填料。
权利要求

1、一种用热等静压制使其中掺有陶瓷晶须相的成形陶瓷制品的密度达到大于95%理论值的方法,该方法包括的步骤为,
(a)形成一种其中至少有5%(体积比)陶瓷晶须的可烧结陶瓷混合物压坯基质,
(b)在压坯基底上汽相沉积一种在随后的热等静压制之前或过程中不陶化的陶瓷混合物覆层,以及
(c)在能与覆层及/或压坯基质反应的气氛中,将涂覆过的压坯基底在使压坯接近理论密度的温度和压下加热等静压制。
2、一种用热等静压制使其中掺有陶瓷晶须相的成形陶瓷制品的密度达到大于95%理论值的方法,该方法包括的步骤为,
(a)形成一种其中至少有5%(体积比)陶瓷晶须的可烧结陶瓷混合物压坯基质,
(b)在压坯基底上汽相沉积一种在随后的热等静压制之前或过程中不陶化的陶瓷混合物覆层,以及
(c)在能与压坯基质反应的气氛中,将涂覆过的压坯基质在使压坯接近理论密度的温度和压力下加热等静压制。
3、权利要求2所述的方法,其中化物晶须占压坯基质的5-40%(体积比)。
4、权利要求2所述的方法,其中碳化物晶须占压坯基质的10-35%(体积比)。
5、权利要求2所述的方法,其中碳化物晶须选自由碳化和碳化组成的这类碳化物。
6、一种用热等静压制使其中掺有陶瓷晶须相的陶瓷切削工具镶刃的密度达到大于理论值的95%的方法,该方法包括的步骤为,
(a)将一种其中至少有5%(体积比)陶瓷晶须的可烧结陶瓷混合物压坯基质大致形成所需的切削工具形状,
(b)在压坯基质上汽相沉积一种在随后的热等静压制之前或过程中不陶化的陶瓷混合物覆层,以及
(c)在能与覆层及/或压坯基质反应的气氛中,将涂覆过的压坯在使压坯接近理论密度的温度和压力下加热并等静压制,以及
(d)磨去附着在热等静压制压坯上的覆层,并在必要时进一步将压坯加工成切削工具镶刃的形状。
7、权利要求1、2或6所述的方法,其中覆层为以化学汽相沉积涂覆的氮化钛。
8、权利要求6所述的方法,其中覆层厚度在5μ和50μ之间。
9、权利要求6所述的方法,其中热等静压制过程中所用的气体为氮气。
10、权利要求1、2或6所述的方法,其中加热和等静压制在氮气氛中、大于10,000psi的压力和大于1500℃的温度下进行。
11、权利要求1、2或6所述的方法,其中在热等静压制步骤之前,在接近大气压力下,于中性或反应性气氛中进行附加的烧结步骤。
12、权利要求1、2或6所述的方法,其中压坯包含粉末状化物和碳化物晶须。
13、权利要求12所述的方法,其中压坯包含粉末状氧化和选自由碳化钛和碳化硅组成的这类碳化物晶须。
14、权利要求1、2或6所述的方法,其中用化学汽相沉积沉积的覆层为氮化物。
15、权利要求14所述的方法,其中覆层为氮化钛。
16、权利要求1、2或6所述的方法,其中覆层的汽相沉积是以化学汽相沉积、物理气相沉积或两者兼用而进行的。
17、权利要求1、2或6所述的方法,其中对压坯涂覆多层覆层,而每层组成不同。
18、权利要求17所述的方法,其中邻接压坯基质的那层覆层的热膨胀系数介乎压坯和下一个邻接覆层之间。
19、权利要求17所述的方法,其中邻接压坯基质的覆层厚度为2-4μ,并由用化学汽相沉积涂覆的氧化铝构成。
20、一种用热等静压制使其中掺有碳化物晶须相的成形陶瓷制品的密度达到理论值95%以上的方法,该方法包括的步骤为,
(a)形成一种可烧结氧化铝基陶瓷混合物压坯,该混合物中至少有20%(体积比)的碳化物晶须,该晶须选自由碳化钛和碳硅组成的这类碳化物,
(b)在接近大气压力下,将压坯在氮气氛中加热,以使压坯预烧结,
(c)在约1000℃下用化学气相沉积对预烧结的压坯涂覆氮化钛覆层,该覆层在随后的热等静压制步骤之前或过程中不陶化,以及
(d)将涂覆过的压坯在超过1500℃和超过10,000pii的压力下,在能同压坯基质反应的氮气氛中加热并等静压制,以使压坯接近理论密度。
21、一种烧制陶瓷混合物,该混合物含有基体相和碳化物晶须相,以及作为所述碳化物晶须相与氮气反应产物形成的含氮相,该碳化物晶须相超过12.5%(体积比),晶须取向的X射线参数在0.66至1.5范围之内,而烧制陶瓷的密度超过95%理论值。
22、权利要求21所述的烧制陶瓷混合物,其中碳化物晶须相选自由碳化硅晶须和碳化钛晶须组成的这类晶须。
23、权利要求21所述的烧制陶瓷混合物,其中碳化物晶须相含15-40%(体积比)选自由碳化硅和碳化钛组成的这类碳化物晶须。
24、权利要求21所述的烧制陶瓷混合物,其中基体相含有包括氧化铝在内的氧化锾沾伞?
25、权利要求21所述的烧制陶瓷混合物,其中基体相含有一种选自以高纯度氧化铝、富铝红柱石,氧化铝-氧化锆混合物,氮化铝-氧化铝-氧化硅陶瓷材料、氮化硅及碳化组成的这类陶瓷材料。
26、权利要求22或23所述的烧制陶瓷混合物,其中碳化物晶须长度在20μ与150μ之间,直径在0.3μ与0.7μ之间。
27、权利要求21所述的烧制陶瓷混合物,其中晶须取向的X射线参数在0.8与1.25的范围之内。
28、权利要求21所述的烧制陶瓷混合物,其中烧制陶瓷的密度超过97%理论值。
29、一种切削工具,该工具包括:一种具有基体相,陶瓷晶须相及作为所述陶瓷晶须相与氮的反应产物形成的含氮相的烧制陶瓷混合物;所述的陶瓷晶须相超过12.5%(体积比);而且其中晶须取向的X射线参数在0.66至1.5的范围之内;所述烧制陶瓷混合物的密度超过95%理论值;以及所述烧制陶瓷混合物在前倾面与侧面的交会处形成切削刃。
30、权利要求29所述的切削工具,其中所述的烧制陶瓷混合物的密度大于理论密度的97%。
31、权利要求30所述的切削工具,其中所述的晶须相包括碳化物晶须相。
32、权利要求30所述的切削工具,其中所述的碳化物晶须相选自由碳化硅晶须和碳化钛晶须组成的这类碳化物晶须。
33、权利要求30所述的切削工具,其中所述的晶须相包括碳化物晶须相,该相构成所述烧制陶瓷混合物的15-40%(体积比)。
34、权利要求30所述的切削工具,其中所述的基体相包括氧化铝在内的氧化物陶瓷。
35、权利要求30所述的切削工具,其中基体相含有一种选自由氧化铝、富铝红柱石、氧化铝-氧化锆混合物,氮化铝-氧化铝-氧化硅陶瓷料,氮化硅及碳化硼组成的这类陶瓷材料。
36、权利要求31所述的切削工具,其中碳化物晶须长度在20μ和150μ之间,直径在0.3μ和0.7μ之间。
37、权利要求30所述的切削工具,其中晶须取向的X射线参数在0.8和1.25之间。
38、权利要求30所述的切削工具,其中所述的基体相主要由氧化铝组成。
39、权利要求37所述的切削工具,其中所述的基体相主要由氧化铝组成。
40、权利要求30所述的切削工具,其中所述的晶须相基本上由碳化硅晶须组成,该碳化硅晶须构成所述烧制陶瓷混合物的15-40%(体积比)。
41、权利要求37所述的切削工具,其中所述的晶须相基本上由碳化硅晶须组成,该碳化硅晶须构成所述烧制陶瓷混合物的15-40%(体积比)。
42、权利要求38所述的切削工具,其中所述的晶须相基本上由碳化硅晶须组成,该碳化硅晶须构成所述烧制陶瓷混合物的15-40%(体积比)。
43、权利要求39所述的切削工具,其中所述的晶须相基本上由碳化硅晶须组成,该碳化硅晶须构成所述烧制陶瓷混合物的15-40%(体积比)。
44、权利要求30所述的切削工具,其中所述的基体相基本上由氧化铝和氧化锆组成。
45、权利要求37所述的切削工具,其中所述的基体相基本上由氧化铝和氧化锆组成。
46、权利要求40所述的切削工具,其中所述的基体相基本上由氧化铝和氧化锆组成。
47、权利要求41所述的切削工具,其中所述的基体相基本上由氧化铝和氧化锆组成。
48、权利要求6所述的方法,其中所述的可烧结陶瓷混合物至少含有12.5%(体积比)的陶瓷晶须。
49、权利要求6所述的方法,其中所述的可烧结陶瓷混合物至少含有15%(体积比)的陶瓷晶须。
50、权利要求1、2、6或20所述的方法,其中所述的方法使所述的成形陶瓷制品的密度达到大于理论密度的97%。
51、权利要求48或49所述的方法,其中所述的方法使所述的成形陶瓷制品的密度达到大于理论密度的97%。

说明书全文

特种陶瓷混合物系用烧结陶瓷粉末的方法制造的。人们一直在不断研究各种烧结工艺方法,以在尽可能低的烧结温度下,以尽可能短的烧结时间,生产出接近理论密度的烧结压坯。通常采用两种工艺方法,单向热压制和热等静压制(“hipping”)来充分压实陶瓷混合物。

单向热压制时,粉末是在被加热的例如用高频炉加热的石墨模中压制成压坯。参见美国专利No.4,657,877。该热压制方法有许多缺点:热压制是一种劳动强度大而费时的工艺方法,而且不易形成复杂形状。例如,不易形成其中具有中心孔道的形状。最后,单向热压制过程中所施加的单向压影响烧结产品的晶粒结构,使之有些各向异性

热等静压制时,通常将粉末先预压制成坯,然后以某种方式封闭压坯的表面。在高压热气体中加热成形。由于表面抗渗透,气体将压力传递给压坯。热等静压制可在很高压力下进行较短时间,或可在较低压力下进行较长时间。热等静压制的具体方法,因压坯的性质而异。

已经对封闭压坯表面的技术进行过一些研究。例如,有时可以在热等静压制之前,将压坯预烧结,以充分封闭压坯表面。参见美国专利No.3,562,371及4,652,413。有时可以在热 等静压制之前,将压坯封装在柔性耐热金属外壳中,该外壳抽成真空并围绕压坯封密。参见下列专利:美国专利No.4,230745(金属熔体的致密表面覆层)、美国专利No.4,152,223(热等静压制后未除去的金属封皮)以及美国专利NO.4,108,652(在金属粉末、氯化物盐及碎耐火材料中包埋预烧结压坯并加热形成金属密封覆层)。而另一种封闭压坯表面的方法,是在热等静压制温度下将粘性的玻璃或釉料涂覆于压坯表面。参见下列专利:美国专利No.4,250,610、4,242,294、4,199,339及4,104,782。对于形状复杂的小型压坯,在现有技术中尚没有可供选用的方法。某些粉末简直不能充分烧结到使表面封闭。金属外壳过于昂贵,而使用釉料或玻璃压坯会被有害于压坯性能的元素污染。

含有大量化物晶须第二相的陶瓷切削工具近来已有介绍。通常,这些混合物用热压制成形。参见Wei的美国专利No.4,543,345,该专利介绍了-碳化硅晶须混合物,并介绍了用热压制法压坯。这类工具含有30-36%(体积比)的碳化物晶须。不可能用简单的预烧结后接热等静压制来压制含有大量碳化物晶须相的混合物,参见Becher及Tiegs的美国专利No.4,657,877。在某些情况下,晶须在预烧结过程中阻碍充分压实和抗渗透表面的形成。

再者,单向热压制晶须增强陶瓷形成性能不完全各向同性的产品。各向异性的性能是由于压制过程中晶须相的取向垂直于加压轴而产生的。

发明的目的是,提供一种对不能预烧结的陶瓷压坯进行热等静 压制的方法,以形成抗渗透表面,而且不需使用金属或玻璃包封。

本发明的优点是,陶瓷制品不需包封在金属或玻璃中,就可通过热等静压制而成形。

本发明的另一优点是,具有大量陶瓷(例如碳化物)晶须第二相的陶瓷切削工具混合物,可用热等静压制成形。

本发明的另一目的是,提供一种碳化物晶须增强的烧制陶瓷产品,该产品含有大量(大于12.5或15体积百分比)晶须填料,但在该烧制陶瓷产品中晶须基本上无规则取向。晶须的无规则取向,可用本说明书中将阐明的晶须取向X射线参数来测量。该参数以在0.66至1.5范围之内为佳,以在0.8和1.25范围之内为最佳。该烧制陶瓷产品的密度大于理论值的95%,而最好大于理论值的97%。

简言之,本发明提供了一种以热等静压制法制造成形陶瓷制品的方法,它包括下列步骤:(a)形成可烧结陶瓷混合物压坯,(b)用汽相沉积在压坯上涂覆一层陶瓷混合物,该混合物在随后的热等静压制步骤之前或之中不陶化,以及(c)在一种气氛中,对涂覆过的压坯加热并进行热等静压制,该气氛在压制温度和压力下,同覆层及/或压坯发生反应,使压坯接近理论密度(即大于理论值的95%)。

该方法尤其适于含5-40%(体积比),最好10-35%(体积比)碳化物晶须的可烧结陶瓷混合物压坯的成形。该方法适于含有约大于12.5%或15%(体积比)晶须填料的烧制陶瓷压坯的成形,由于晶须基本上无规则取向,从而具有基本上各向同性的性能。该方法也可以用来成形晶须的少于12.5%(体积比)的陶瓷压坯,但它们也可以用其它方法来制造。该方法在成形接近切削工具 所需形状的压坯时,尤具优点。在该情况下,将覆层从热等静压制的压坯上磨掉,并将压坯进一步加工成在前倾面与侧面的会交处形成刃口的切削工具镶刃。

当陶瓷压坯基本上由陶瓷粉末和碳化物晶须组成,而且用汽相沉积涂覆的覆层为耐热氮化物,例如氮化时,本发明的方法特别有用。汽相沉积包括化学汽相沉积和物理汽相沉积。覆层以5μ和50μ之间的厚度为佳,以10μ和30μ之间的厚度更佳。在一个最佳的实施方式中,在大约1000℃通过TiCl4,H2及N2发生反应进行化学汽相沉积。在此情况下,形成TiN覆层,该覆层基本上不与预烧结的压坯发生反应。在较佳的实施方式中,热等静压制过程中对涂覆过的压坯加压所用的气体为氮气。更佳的是,加热等静压制在氮气氛中,在50-30,000psi压力和1500-1800℃下,最好1700-1800℃的温度下进行。

在绝大多数情况下,在涂覆和热等静压制步骤之前,在接近大气压和中性或反应气氛下附加预烧结步骤是有利的。该附加步骤对于诸如含有高百分比陶瓷晶须的那些压坯而言,并不使后接的汽相被覆步骤不要进行,而是有助于改善经热等静压制的压坯性能,同时也有助于提高屈服(压坯经热等静压制充分压实的百分比)。

在本发明的一个实施方式中,将一种含有粉末状氧化物和碳化物晶须,尤其碳化硅或碳化钛的陶瓷混合物进行压型、预烧结、涂覆氮化物,尤其氮化钛,并在氮气氛中进行热等静压制至接近理论密度。

根据另一个具体实施方式,在热等静压制之前,对压坯涂覆多层覆层。各层组成不同。例如,邻接压坯的那层可为一种氧化物,该氧化物的热膨胀系数处于烧制压坯和外层覆层的热膨胀系数之间。尤其 是,用化学汽相沉积涂覆的内层可为氧化铝,而用化学汽相沉积或物理气相沉积或两者兼用而涂覆的外层可为氯化钛。

可烧结的陶瓷,除碳化物晶须之外,还含有一种细散的组分,该组分在烧结后于晶须之间形成基体。该细散的组分以一种氧化物陶瓷为佳,而以高纯度氧化铝最佳。用来形成基体相的其它细散材料,举例来说,有富铝红柱石、氧化铝-氧化锆混合物,氮化硅、氮化铝-氧化铝-氧化硅陶瓷材料及B4C。

本发明的另外特点和其它目的及优点,根据下列附图的说明是显而易见的,其中:

图1为所研究的陶瓷混合物在不同加工阶段(生坯,1750℃预烧结,化学汽相沉积包覆,以及热等静压制)的密度(理论值的百分比)对碳化硅晶须含量体积百分比的关系曲线。

图2为一种含35%(体积比)晶须的混合物,在不同加工阶段的密度(理论值的百分比)对预烧结温度(℃)的关系曲线。

图3为一种含3.5%(体积比)晶须的混合物的屈服(在热等静压制过程中压实的压坯的百分比)对预烧结温度的关系曲线。

图4为经1750℃预烧结、化学汽相沉积包覆及热等静压制后的硬度(洛氏A级)对晶须含量体积百分比的关系曲线,以及对比用热压制混合物的硬度对晶须含量的关系曲线。

图5为经1750℃预烧结、化学汽相沉积包覆及热等静压制后的韧性(根据Evans及Charles的方法测量的KIC值,见“Fracture Toughness Determination by Indentation”,《J.American Ceramic Soc。》,第59卷,第7-8期,第371及372页)对晶须含量百分比的关系曲 线,以及对比用热压制混合物数据的关系曲线。

图6为含35%(体积比)晶须的混合物经1750℃预烧结、化学汽相沉积包覆及热等静压制后的硬度(洛氏A级)对预烧结温度的关系曲线,以及热压制混合物在不同热压温度时的对比数据曲线。

?为含有35%(体积比)晶须的热等静压制混合物的韧性(K1c,按Evans及Charles)对预烧结温度的关系曲线,以及不同热压制温度时热压制混合物的对比数据曲线。

图8为刀具寿命(以分钟计,以1000sfm和0.01ipr切削因科内尔(Inconel)718,切削深度为0.1英寸)对按本发明以化学汽相沉积包覆并热等静压制的氧化铝混合物中的碳化硅晶须体积百分比的关系曲线,以及刀具寿命对作对比用的热压制混合物晶须含量的关系曲线。

陶瓷切削刀具镶刃用热等静压制氧化铝及碳化硅配料来制备,配料中碳化硅处于晶须状态。测试了压制过的压坯固有性能和热加工适应性。机加工适应性是用压坯制造的刀具镶刃并在剧烈机加工条件下使用刀具镶刃来测量的。

制备切削刀具镶刃的原材料为预先碾磨过的氧化铝粉末、碳化硅晶须粉末,氧化钇粉末(Y2O3)以及氧化镁粉末(MgO)。这些粉末混合在一起,形成配料,其体积组成列于表1。

表1

混合物组成,体积百分比

原料    混合物A    混合物B    混合物C    混合物D    混合物E

氧化铝    88    83    68    63    58

Sic晶须    10    15    30    35    40

Y2O31 1 1 1 1

MgO    1    1    1    1    1

通常,使用很高纯度的氧化铝,例如99%(重量比)纯的。Alcoa公司的A16-SG对上述各混合物来说是一种合格的配料。氧化铝在与用超声分散的碳化硅晶须混合之前,磨到0.5-0.6μ的中等颗粒尺寸。通常,碳化硅晶须纯度会超过98%(重量比)。碳化硅晶须长度可为20-150μ,直径在0.3-0.7μ范围内。长度直径比从20变到70。

表1中的粉料分别混合在一起,形成一种均匀混合料,然后冷等静压制成压坯。而后,压坯在1个大气压下,于1700和1800℃之间的氩气中进行预烧结。然后预烧结过的压坯在1000℃和次大气压下通过标准化学汽相沉积(CVD)包封以TiN,以形成厚度在15μ和30μ之间的覆层。覆层厚度从抛光的截面处测定。经涂覆或包覆的压坯随后在氮气氛中,于15,000至20,000psi压力下,在1750℃进行热等静压制。然后磨削这些制件,以除去包覆层。

测量每个压坯在生坯、烧结、包覆及热等静压制状态的密度。参见图1,这些压坯的生坯(未烧结的)密度在理论值的44-53%之间变化,随晶须含量的增加而下降。当预烧结时,密度增高到理论值的62-94%。就由混合物A(晶须含量最低)组成的混合物而言,预烧结的密度已可足以进行热等静压制,而不必包覆。但是,对于由混合物B至E(15%线以上体积比晶须,预烧结密度小于90%)组成的各混合物而言,热等静压制前的包覆是必不可少的。含晶须少于25%(体积比)的混合物经热等静压制压实的密度大于或等于用热压制所达的密度。对于较高晶须含量的混合物来说,密度稍微小于用热压制所达的密度。然而,制造上的优点超过密度略低的缺点。

参见图2,提高预烧结温度的效果是使预烧结密度提高,并使最终的热等静压制密度提高。屈服,即热等静压制过程中至少显示一些压实(与根本未压实的相比)的压坯百分比,明显增加,但如图3所示,随预烧结温度的提高而增加。用CVD涂覆的覆层,在本说明书的实施例中为氮化钛覆层,其质量对于获得较高屈服起着重要作用。覆层过厚可导致覆层从预烧结压坯上剥落下来。申请人已发现,如果预烧结和包覆的密度大于理论值的80%,则屈服将接近100%。如果预烧结和包覆的密度降到70%和80%之间,由于热等静压制过程中的压实行为不一致,致使屈服不那么好。虽然屈服较低,但是不用单向热压装置就能压实含30%(体积比)以上晶须的混合物是一个显著的优点。

根据本发明方法所制造的压坯的硬度和韧性特性示于图4、5、6及7。参见图4,晶须最多为35%的所有混合物的硬度大体相 同,超过35%以上则明显降低。晶须含量最多为35%,经热等静压制的压坯,几乎同用单向热压制的相同混合物一样硬。参见图5,随晶须含量增加经热等静压制的压坯和经热压制的压坯韧性均有改善。实际上这就是向压坯中添加第二相的理由。两种工艺方法的韧性相当,不过单向热压制压坯的韧性略好。参见图6及图7,可以看出,对于用本发明的热等静压制的压坯而言,提高预烧结温度会使硬度有所提高,而韧性有所下降。

为进行金属切削试验,用按本发明混合物A至混合物D的混合物制成的压坯磨成SNG-433T(标称0.004英寸,20°削)型切削工具镶刃。切削条件苛刻,也就是说,工件为因科内尔(Inconel)718,进给率为0.01英寸/转(ipr)时,切削速度为1000英尺/分(sfm),切削深度为0.1英寸,同时超前为45°。所有热等静压制的压坯均在CVD包覆TiN之前,在1750℃下进行预烧结。为比较起见,也试验在1750℃用相同混合物经单向热压制制造的刀具镶刃。参见图8,简要说明了刀具寿命和失败方式。NW表示刀尖磨损失效;BK表示破损失效;FW表示侧面磨损失效;DOCN表示切削缺口失效的深度;而CH表示切削失效。当压坯用含有20%(体积比)或更少碳化硅晶须的混合物制成时,刀具失效的方式主要为断裂,而晶须含量较高时,磨损则是最常见的失效方式。当混合物含有30%(体积比)以上的晶须时,单向热压制的压坯和本发明的热等静压制的压坯都具相似的刀具寿命。

虽然申请人并不希望被任何特定理论所约束,但仍对该方法作下列阐述。在化学汽相沉积过程中,氮化钛似乎沉积在预烧结压坯表面 附近的开口孔隙上。这使密度随覆层而增加,该增加正比于预烧结孔隙。较佳的化学汽相沉积反应是在大约1000℃在TiCl4、H2和N2之间进行。在该温度下,可能与SiC晶须发生的反应能生成Si3N4和碳。然而,在化学汽相沉积过程中,只有很少的SiC通过该反应而转变。当冷却时,由于热收缩不同而可能在TiN覆层中出现裂纹。该裂纹照理可以阻止被包盖的压坯进行热等静压制。实际上,如果用氩气作为热等静压制的介质,热等静压制将不能进行。但是,如果用氮气作为热等静压制的介质,则可进行压制。显然,在热等静压制的各种温度和各种压力下,氮气非常迅速地同碳化硅反应。反应结果使体积增加18%(或当固体碳作为反应产物残留下来,为27%)。裂纹附近的这种体积增加使残留的表面孔隙闭合,使热等静压制能够用来压实压坯。

为了充分评价热等静压制含有碳化硅晶须的混合物的优点,需要测定其中晶须的取向。为此目的,提出了晶须取向X射线参数。这种参数是烧制陶瓷压坯中的晶须取向程度的量度。参数为1,表明取向完全无规则。参数大于1或小于1,表明取向规则。该参数越偏离1,压坯中的晶须取向越一致。

X射线参数是通过观察衍射仪中相应于晶须晶体结构中形成较大两面角(以尽可能接近90°为佳)的两个晶面的较强X射线衍射峰值来测得的。在碳化硅晶须的情况下,最好选择相应于{220}和{111}面的峰值。

X射线衍射读数通过照射两个基本上互相垂直的面来取得。对于每个被照射的面,计算被选来观测的两个峰值之强度比。因此,对于第一个被照射面,强度比用下式来计算:

ρ(垂直)=I{220}/I{111}

对于第二个被照射面,强度比用下式计算:

ρ(平行)=I{220}/I{111}。

晶须取向的X射线参数然后如下式按照上述两个强度比之比得出:

参数=ρ(垂直)/ρ(平行)。

被选择进行照射的面相互平行。在进行照射时,平行于单向热压方向的面选作测量比率ρ(平行)的面。当切削刀具用陶瓷压坯制造时,它有一个称为前倾面的大面和一个称为侧面的窄面。前倾面一般垂直于单向热压制压坯的压制方向。正如本专利说明书中所述,对于或者用单向压制或者按本发明制造的试样,照射前倾面来测定比率ρ(垂直),而照射侧面来测定比率ρ(平行)。

所选峰值的强度可在上列计算ρ(平行)和ρ(垂直)的每个算式中倒置(只要将同一峰值用作各算式的分子)及/或可将上列算式的右边倒置来计算参数。因此,参数1.5就变成0.666。每个表示相同的晶须取向程度。

下列表中,列出了按本发明制造的烧制陶瓷压坯或用传统单向热压制制造的陶瓷压坯的取向X射线参数数据。数据包括含有如表中所示10%和35%(体积比)之间的碳化硅晶须填料的压坯的参数。

表2

包覆并热等静压制

(体积百分比)SiC    ρ(垂直)    ρ(平行)    参数

10    50.0    57.9    0.86

10    61.5    82.4    0.75

15    33.3    36.7    0.91

15    41.0    45.5    0.90

15    40.0    34.2    1.17

35    35.7    36.5    0.98

35    43.5    47.6    0.91

表3

热压制

(体积百分比)SiC    ρ(垂直)    ρ(平行)    参数

15    75.9    41.2    1.84

20    60.9    40.4    1.85

25    58.5    32.9    1.78

30    66.3    31.8    2.09

35    62.1    30.7    2.02

比较表2和表3中的数据,显然,正如所料,热压制压坯中的晶须取向程度很大,而在按本发明所制造的压坯情况下,取向程度显著 地小。

可通过显微镜检查相应于用X射线照射的面的抛光表面来观察晶须是否取向。对于用单向热压制制造的陶瓷压坯来说,平行于压制方向与垂直于压制方向的抛光表面会呈现明显差别。对于按本发明制造的陶瓷压坯来说,垂直抛光表面会更相似平行抛光表面。因此,以非定量的方法,可以证实X射线取向参数的意义。此外,还可以观测晶须取向对陶瓷压坯某些物理性能的影响。当进行Palmgvist断裂韧性试验时,在抛光表面上压出一个威氏(Vickers)压痕,然后测量从压痕四角向外展扩的裂纹。平均裂纹长度越长,混合物的韧性越小。垂直方向上的裂纹扩展长度比可看作韧性性能各向异性的量度。在观察裂纹从平行于单向热压制的含晶须陶瓷压坯的压制方向的面上的压痕向外扩展时,各向异性很明显。而在本发明中,用此方法所测的各向异性则降低。

特别可预期的是,本发明可用来制造P.K.Mehrotra等人同本申请一起提交的序号为No.092,113的同时待批申请和P.K.Mehrotra等人于1987年5月28日提出的序号为No.056,091的同时待批申请中所述的基质混合物。

序号为092,113的申请涉及具有SiC晶须增强的氧化铝基体基质的制品制造方法,该基质有一附着其外表面的氧化铝覆层。现已发现,这些制品可用作高速机械粗加工的切削镶刃。

序号为056,091的申请涉及由陶瓷混合物构成的切削工具,该混合物由50-90%(体积比)氧化铝、10-50%(体积比)碳化钛晶须及最多3%(体积比)烧结助剂残留物组成。

因此,将上述专利申请,以及本说明中提及的所有其它专利和出 版物结合起来作为参考。

因此已按专利法说明了本发明的细节和特殊要求,而且这是按照专利证书列入权利要求书中要求保护的范围。

QQ群二维码
意见反馈