用于衬底表面金属化的新颖粘着促进剂

申请号 CN201480052526.2 申请日 2014-09-22 公开(公告)号 CN105579621A 公开(公告)日 2016-05-11
申请人 德国艾托特克公司; 发明人 刘志明; 付海罗; 色拉·汉格那; 卢茨·勃兰特; 塔发瓦·马格亚;
摘要 本 发明 提供一种用于非导电衬底 金属化 的方法,其提供沉积金属对于衬底材料的高粘着性并且由此形成持久粘结。所述方法施用促进粘着的金属 氧 化物化合物与促进金属层形成的过渡金属 镀 敷催化剂化合物的新颖组合。
权利要求

1.一种用于向非导电衬底上敷金属的湿式化学方法,其包含以下步骤:
i.在所述非导电衬底表面的至少一部分上沉积选自由化锌、氧化、氧化锆、氧化、氧化和氧化或前述各物的混合物组成的群组的金属氧化物化合物和选自由氧化、氧化镍和氧化钴以及前述各物的混合物组成的群组的过渡金属镀敷催化剂化合物,并且其后
ii.在350℃到1200℃范围内的温度热处理所述非导电衬底并且由此在所述衬底表面的至少一部分上形成所述金属氧化物化合物与所述过渡金属镀敷催化剂化合物的粘着性催化层;并且其后
iii.通过应用湿式化学无电电镀方法至少金属镀敷所述具有所述过渡金属镀敷催化剂化合物的衬底表面,其中所述用于镀敷的组合物包含待镀敷的金属离子的来源和还原剂。
2.根据权利要求1所述的方法,其中所述金属氧化物化合物选自由ZnO、TiO2、ZrO2、Al2O3、SiO2、SnO2或前述各物的混合物组成的群组。
3.根据前述权利要求中任一权利要求所述的方法,其中所述过渡金属镀敷催化剂化合物选自由CuO、Cu2O、NiO、Ni2O3、CoO、Co2O3或前述各物的混合物组成的群组。
4.根据前述权利要求中任一权利要求所述的方法,其中所述金属氧化物化合物与所述过渡金属镀敷催化剂化合物同时沉积到所述衬底表面上。
5.根据前述权利要求中任一权利要求所述的方法,其中所述金属氧化物化合物与所述过渡金属镀敷催化剂化合物以胶状分散液的形式沉积到所述衬底表面上。
6.根据前述权利要求中任一权利要求所述的方法,其中所述非导电衬底是陶瓷、半导体或玻璃衬底。
7.根据前述权利要求中任一权利要求所述的方法,其中在所述非导电衬底表面的至少一部分上沉积金属氧化物化合物和所述过渡金属镀敷催化剂化合物包含:
i.使所述衬底与适于在热处理时形成所述金属氧化物化合物和所述过渡金属镀敷催化剂化合物的金属氧化物前体化合物以及过渡金属镀敷催化剂前体化合物接触,并且其后ii.在350℃到1200℃范围内的温度下热处理所述非导电衬底并且由此在所述衬底表面的至少一部分上形成来自所述金属氧化物前体化合物的金属氧化物化合物与来自所述过渡金属镀敷催化剂前体化合物的过渡金属镀敷催化剂化合物的粘着性催化层。
8.根据权利要求7所述的方法,其中所述金属氧化物前体化合物和所述过渡金属镀敷催化剂前体化合物选自由金属甲氧基化物、乙氧基化物、丙氧基化物、丁氧基化物、乙酸盐、乙酰基丙酸盐硝酸盐、氯化物、溴化物和碘化物组成的群组。
9.根据前述权利要求中任一权利要求所述的方法,其中在方法步骤ii.之后进行另一方法步骤:
iia.使所述衬底与酸性溶液或性水溶液接触。
10.根据前述权利要求中任一权利要求所述的方法,其中所述衬底是非导电或半导体衬底并且所述步骤
iii.应用湿式化学镀敷方法金属镀敷所述衬底;
包含:
iiib.使所述衬底与包含待镀敷的金属离子的来源和还原剂的无电金属镀敷水溶液接触;和
iiic.使所述衬底与电解金属镀敷溶液接触。
11.根据前述权利要求中任一权利要求所述的方法,其中所述无电金属镀敷溶液是镀镍或镀铜溶液。
12.根据权利要求10所述的方法,其中所述电解金属镀敷溶液是镀镍或镀铜溶液。
13.根据前述权利要求中任一权利要求所述的方法,其另外包含以下步骤iv.将所述金属镀层加热到高达150℃和500℃的温度。
14.根据前述权利要求13中任一权利要求所述的方法,其中所述步骤iv.中的加热时间在5到120分钟的范围内。

说明书全文

用于衬底表面金属化的新颖粘着促进剂

技术领域

[0001] 本发明涉及通过施用催化活性金属化物组合物使如玻璃、陶瓷和半导体类型表面的非导电衬底金属化的新颖方法。所述方法产生在玻璃或陶瓷衬底与敷金属之间展示高粘着性、而同时使光滑衬底表面保持完整的金属镀敷表面。
[0002] 本发明可适用于印刷电子电路(如用于信号分布的在玻璃和陶瓷上的细线电路(倒装芯片玻璃中介层))、平板显示器和射频识别(RFID)天线的领域。又,其可适用于硅基半导体衬底的金属镀敷。

背景技术

[0003] 所属领域中已知用于使衬底金属化的各种方法。
[0004] 可通过各种湿式化学镀敷方法(例如电镀或无电电镀)以另一种金属直接镀敷导电性衬底。所述方法在所属领域中已完全得到确认。通常对表面进行清洁预处理,之后进行湿式化学镀敷工艺以确保可靠的镀敷结果。
[0005] 已知用于涂布非导电表面的各种方法。在湿式化学方法中,将欲金属化的表面在适当初步处理后首先进行催化,并且随后以无电方式金属化,并且此后如果必要,那么进行电解金属化。
[0006] 通常通过机械锚定来将金属层粘着到非导电衬底。然而,这要求衬底表面剧烈粗糙化,这将不利影响金属化表面的功能,例如在印刷电子电路或RFID天线中。
[0007] 可以含有HF的酸性介质或含有热NaOH、KOH或LiOH的性介质进行湿式化学蚀刻来对非导电衬底,尤其玻璃或陶瓷类型衬底进行清洁和粗糙化。随后通过粗糙化表面的其它锚定部位来提供粘着。
[0008] 在EP 0 616 053 A1中,揭示一种用于使非导电表面直接金属化的方法,其中表面首先以清洁剂/调节剂溶液进行处理、其后以活化剂溶液(例如胶状钯溶液)进行处理、以化合物稳定并且随后以含有比锡更贵的金属化合物以及碱金属氢氧化物与成络合物剂的溶液进行处理。此后,可在含有还原剂的溶液中处理表面,并且最后可电解金属化。
[0009] WO 96/29452涉及一种用于选择性或部分电解金属化由非导电材料制得的衬底表面的方法,为达成涂布方法的目的所述非导电材料紧固于塑料涂布的固持组件。提出的方法包涵以下步骤:a)以含有氧化铬(VI)的蚀刻溶液初步处理表面;继而即刻b)以钯/锡化合物的胶状酸性溶液处理表面,谨慎防止与吸收促进溶液提前接触;c)以含有能被锡(II)化合物还原的可溶性金属化合物、碱金属或碱土金属氢氧化物和金属的络合物形成剂的溶液以至少足以防止金属氢氧化物沉淀的量处理表面;d)以电解金属化溶液处理表面。
[0010] US 3,399,268报道一种以包含热固性树脂、柔性粘着性树脂和精细分散于其中的金属或金属氧化物组分的催化性油墨在陶瓷上无电沉积金属的方法。尤其优选的是氧化亚,尤其当其经酸至少部分还原为金属铜时。油墨沉积之后,可通过高温固化。在无电沉积金属之前,固化油墨必须摩擦或机械粗糙化以在其表面上提供足够量的催化部位。这是一种费方法,因为其首先要求将粒子分散于油墨配制品中,并且其次要求机械粗糙化表面以达成最佳结果。
[0011] WO 2003/021004涉及对表面赋予催化性的方法。其中一个实例涉及制备涂铜玻璃。首先在玻璃表面上沉积另外含有钯作为催化剂的烷氧基化锆与烷氧基化的混合物,并且经简单固化以在衬底上形成有机金属膜。此后,通过无电电镀在其上形成铜层。然而,文献未教示经这种处理的衬底的任何其它详情和应用。
[0012] US 6,183,828 B1教示一种制造刚性内存磁盘的方法。在这种方法中,以在与衬底接触时分解并且形成对应氧化物的金属醇盐处理热衬底。为了对表面赋予催化性以用于后续的涂镍步骤,在其上沉积钯催化剂。
[0013] JP H05-331660揭示一种用于如陶瓷和玻璃的非导电衬底金属化的方法。这种方法包含以下步骤:将乙酸锌溶液喷雾到衬底上和将其加热以形成氧化锌层,在其上沉积钯作为催化剂,之后镀铜。
[0014] US 4,622,069涉及一种无电电镀陶瓷的方法,其中在陶瓷衬底上沉积由钯和/或有机金属化合物制得的催化剂,之后进行金属化步骤。
[0015] US 2006/0153990 A1报道UV可固化镀敷催化剂组合物,其在金属化之前可用于如塑料、玻璃、陶瓷等的非催化性衬底上。这些组合物包含催化性活性金属(优选地银)的金属氢氧化物或金属合氧化物、惰性载体(如硅酸盐、金属氧化物和多价阳离子与阴离子对)、UV固化剂和有助于从镀敷溶液结合氢的聚合物
[0016] 所属领域中还报道溶胶-凝胶衍生的涂层。溶胶-凝胶是一种包含以下步骤的方法:首先将适合的金属前体在溶剂水解,继而是反应产物的缩合反应,之后将由此形成的溶液涂覆在表面上。
[0017] US 5,120,339涉及一种在玻璃织物上涂覆醇性二氧化硅溶胶-凝胶,之后进行无电金属镀敷并且与可额外含有还原性催化剂(例如,铜或钯盐)的热固性聚合物层压。US 6,344,242 B1揭示一种溶胶-凝胶组合物,其包含金属醇盐、有机溶剂、氯离子来源和催化性金属,优选地在金属镀敷之前可用在衬底上的钯。
[0018] 或者,可在非导电表面上形成导电聚合物以提供用于表面的后续金属镀敷的第一导电层。
[0019] US 2004/0112755 A1描述非导电衬底表面的直接电解金属化,其包含使衬底表面与水溶性聚合物(例如,噻吩)接触;以高锰酸盐溶液处理衬底表面;以含有至少一种噻吩化合物和至少一种选自包含甲烷磺酸、乙烷磺酸和乙烷二磺酸的群组的烷磺酸的含水基质的酸性水溶液或酸性微乳液处理衬底表面;电解金属化衬底表面。
[0020] US 5,693,209涉及一种使具有非导体表面的电路板直接金属化的方法,其包括使非导体表面与碱性高锰酸盐溶液反应以形成在非导体表面上化学吸收的二氧化锰;形成弱酸与吡咯或吡咯衍生物和其可溶性寡聚物的水溶液;使含有吡咯单体和其寡聚物的水溶液与其上化学吸附有二氧化锰的非导体表面接触以在非导体表面上沉积粘附性、导电的不溶性聚合物产物;和在其上形成有不溶性粘附性聚合物产物的非导体表面上直接电沉积金属。在室温与溶液凝固点之间的温度下,在含有0.1到200g/l吡咯单体的水溶液中有利地形成寡聚物。
[0021] 孙仁德(Ren-De Sun)等人(电化学学会志(Journal of the Electrochemical Society),1999,146:2117-2122)教示通过喷热解、继而进行湿式化学Pd活化并且无电沉积Cu来在玻璃上沉积薄ZnO层。其报道在沉积铜层与玻璃衬底之间的适度粘着。沉积铜的厚度是约2μm。
[0022] 取决于衬底表面的化学性质、镀敷金属的类型和金属镀层的厚度,金属镀层与所述表面的粘着可能呈现问题。举例来说,粘着性可能过低而无法在金属层与下层衬底之间提供可靠粘结。
[0023] 本发明的目标
[0024] 总的来说,工业上强烈驱使陶瓷和玻璃衬底用于电子应用,其需要不会不利地改变衬底特性并且在经济上可行的用于镀Cu的合适粘着促进剂。
[0025] 就经济观点来说,可能另外高度需要通过较廉价的替代物来代替已得到认可但昂贵的Pd镀敷催化剂,包括减少所需加工步骤的数目。
[0026] 因此,本发明的目标在于提供一种用于衬底金属化的方法,其提供沉积金属对于衬底材料的高粘着性并且由此形成持久粘结。本发明的另一目标在于提供一种在陶瓷与玻璃衬底表面的金属化中提供用于同时促进粘着并且催化无电电镀的涂层-而实质上不增加或粗糙化表面的方法。
[0027] 此外,本发明的目标在于能够完全或选择性地使衬底表面金属化。

发明内容

[0028] 所述目标通过用于向非导电衬底上镀敷金属的湿式化学方法而得以解决,其包含以下步骤:
[0029] i.在非导电衬底表面的至少一部分上沉积选自由氧化锌、氧化、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的金属氧化物化合物和选自由氧化铜、氧化镍和氧化钴以及前述各物的混合物组成的群组的过渡金属镀敷催化剂化合物,并且其后
[0030] ii.在350℃到1200℃范围内的温度下热处理非导电衬底并且由此在衬底表面的至少一部分上形成金属氧化物化合物与过渡金属镀敷催化剂化合物的粘着性催化层;并且其后
[0031] iii.通过应用湿式化学无电电镀方法至少金属镀敷具有过渡金属镀敷催化剂化合物的衬底表面,其中用于镀敷的组合物包含待镀敷的金属离子的来源和还原剂。
[0032] 这种方法提供在非导电衬底上展示沉积金属对于衬底材料的高粘着性并且由此形成持久粘结的金属沉积物
[0033] 尤其适用的是本发明的方法不需要任何其它加工步骤,如溶胶-凝胶方法或机械粗糙化步骤所需要的沉积物质的合成。

具体实施方式

[0034] 本发明提供一种用于非导电衬底金属化的金属镀敷方法。
[0035] 适合经本发明的镀敷方法处理的非导电衬底包含玻璃、陶瓷和硅基半导体材料(还表示为晶片衬底)。玻璃衬底的实例包含二氧化硅玻璃(非晶形二氧化硅材料)、碱石灰玻璃、漂浮玻璃、氟化物玻璃、铝硅酸盐、磷酸盐玻璃、酸盐玻璃、硼硅酸玻璃、硫属玻璃、氧化铝、具有氧化表面的硅。这种类型的衬底例如用作微芯片封装等的中介层。硅基半导体材料用于晶片工业中。
[0036] 陶瓷衬底包含工业陶瓷(如基于氧化物的氧化铝、氧化铍、二氧化铈、二氧化锆氧化物)或基于钡的陶瓷(如BaTiO3)和非氧化物(如化物、硼化物、氮化物和硅化物)。
[0037] 所述非导电衬底(尤其玻璃和晶片衬底)常具有光滑表面。非导电衬底的“光滑表面”在本文中根据ISO 25178,由如光学干扰显微法所测定的表面的平均表面粗糙度Sa来定义。
[0038] 玻璃衬底来说,“光滑表面”的参数Sa的值优选地在0.1到200nm、更优选地在1到100nm并且甚至更优选地在5到50nm的范围内。对于陶瓷衬底来说,表面粗糙度常更高。其可高达1000nm的Sa值,例如在400到600nm之间的范围内。
[0039] 具有Sa值在0.1到200nm范围内的光滑表面的衬底(如玻璃和晶片衬底)是优选的,根据本发明玻璃是最优选的。
[0040] 非导电衬底优选地在与金属氧化物前体化合物接触前经清洁。适合的清洁方法包含将衬底浸没于包含表面活性物质的溶液中、将衬底浸没于极性有机溶剂或极性有机溶剂的混合物中、将衬底浸没于碱性溶液中和两种或两种以上前述清洁方法的组合。
[0041] 玻璃衬底例如可通过浸没于30wt.%NH4OH、30wt.%H2O2与水的混合物中历时30分钟,继而浸没于35wt.%HCl、30wt.%H2O2与水的混合物中历时30min来进行清洁。此后,将衬底在去离子水(DI water)中冲洗并干燥。
[0042] 如本文所定义的金属氧化物化合物选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的化合物。金属离子的价数可变化。然而,一些金属主要以一种价数出现,例如锌几乎总是锌(II),因此形成Zn(II)O氧化物物质。
[0043] 金属氧化物前体化合物在本文中定义为充当相应金属氧化物来源的化合物。前体化合物在热处理时能够在非导电衬底表面上形成金属氧化物薄层。通常,在热处理时形成相应金属氧化物的所有金属盐均适合。热处理优选地在氧气存在下。通常不直接施用相应金属氧化物本身,因为其在水溶液以及有机溶剂中仅具较差的可溶性,并且因此难以均匀涂覆到衬底表面。
[0044] 相应氧化物最常通过热处理金属氧化物前体化合物来获得。热解是一种在氧气存在下的热处理过程。金属氧化物前体化合物的热解导致形成相应金属氧化物化合物。
[0045] 典型的金属氧化物前体化合物包含对应金属的可溶性盐。金属氧化物前体化合物可以是有机金属盐并且例如是烷氧基化物,例如甲氧基化物、乙氧基化物、丙氧基化物和丁氧基化物、乙酸盐和乙酰基丙酸盐。或者,金属氧化物前体化合物可以是无机金属盐,并且例如是硝酸盐、卤化物,尤其是氯化物、溴化物和碘化物。
[0046] 金属氧化物前体的金属选自由锌、钛、锆、铝、硅和锡或前述各物的混合物组成的群组。
[0047] 如前文提及形成的金属氧化物选自由ZnO、TiO2、ZrO2、Al2O3、SiO2、SnO2或前述各物的混合物组成的群组。
[0048] 氧化锌是欲应用于本发明方法中的最优选氧化物化合物。典型的氧化锌前体化合物是乙酸锌、硝酸锌、氯化锌、溴化锌和碘化锌。另一种优选氧化物是氧化铝。典型的氧化铝前体化合物是铝的乙酸盐、硝酸盐、氯化物、溴化物和碘化物。
[0049] 金属氧化物前体化合物通常溶解于适合溶剂中,之后涂覆到非导电衬底表面。这有利于化合物在衬底表面上的均匀表面分布。适合溶剂包含极性有机溶剂,尤其醇类,如乙醇、丙醇、异丙醇、甲氧基-乙醇或丁醇。
[0050] 其它极性有机溶剂包含如1-甲氧基-2-丙醇的二醇类的烷基醚,乙二醇、二乙二醇、丙二醇的单烷基醚、酮类(如甲基乙基酮、甲基异丁基酮、异佛尔酮);酯类和醚类(如乙酸2-乙氧基乙酯、2-乙氧基乙醇)、芳香族物(如甲苯和二甲苯)、含氮溶剂(如二甲基甲酰胺和N-甲基吡咯烷酮)以及前述各物的混合物。
[0051] 或者,溶剂可以是水基溶剂。其还可以是水与有机溶剂的混合物。
[0052] 尤其在使用水基溶剂时,溶液可另外含有一或多种润湿剂以改良非导电衬底表面的润湿。适合的润湿剂或其混合物包括非离子剂(如非离子性烷基酚聚乙氧基加合物或烷氧基化聚亚烷基类)和阴离子性润湿剂(如有机磷酸酯或膦酸酯)以及以双十三烷基磺基丁二酸钠为代表的二酯磺基丁二酸盐。至少一种润湿剂的量在溶液的0.0001wt.%到5wt.%、更优选地在0.0005wt.%到3wt.%的范围内。
[0053] 金属乙酸盐的乙醇溶液是根据本发明的一种优选实施例,以乙酸锌的乙醇溶液为最优选。金属氧化物前体化合物可包含不同盐的混合物,但优选为仅一种盐。
[0054] 或者,金属氧化物化合物可直接沉积到非导电衬底的表面上。有机溶剂与水性介质均可使用。金属氧化物化合物通常不易溶解于大多数常用溶剂或水中并且因此通常以胶状分散液的形式涂覆到表面。所述胶状分散液典型地由表面活性剂或聚合物稳定化。所属领域的技术人员已知如何制备所述胶状分散液。
[0055] 在根据本发明的方法中,优选地沉积金属氧化物前体化合物,因为将前体化合物涂覆到表面通常可以更优选地得到控制。随后将前体化合物转化为相应的金属氧化物。
[0056] 至少一种金属氧化物化合物或金属氧化物前体化合物的浓度优选地在0.005mol/l到1.5mol/l、更优选地在0.01mol/l到1.0mol/l并且最优选地在0.1mol/l到0.75mol/l的范围内。
[0057] 根据本发明的含有金属氧化物化合物或金属氧化物前体化合物的溶液或分散液可通过如浸涂旋涂喷涂、帘式涂布、辊涂、印刷、丝网印刷、喷墨印刷和刷涂的方法涂覆到非导电衬底。所述方法在所属领域中已知并且可适用于根据本发明的镀敷方法。所述方法在非导电衬底表面上产生具有确定厚度的均匀膜。
[0058] 金属氧化物层的厚度优选地是5nm到500nm、更优选地是10nm到300nm并且最优选地是20nm到200nm。
[0059] 涂覆可进行一次或数次,例如两次、三次、四次、五次或多达十次。涂覆步骤的数目可变并且取决于所需金属氧化物化合物层的最终厚度。通常三到五个涂覆步骤应足够。建议在涂覆下一层之前至少部分干燥由溶液或分散液制成的涂层。适合温度取决于所用溶剂和其沸点以及层厚度并且可由所属领域的技术人员通过常规实验来选择。通常150℃到高达350℃之间、优选地200℃与300℃之间的温度应足够。在个别涂覆步骤之间对涂层进行这种干燥或部分干燥是有利的,因为形成了稳定的非晶金属氧化物以防溶解于含有金属氧化物化合物或金属氧化物前体化合物和过渡金属镀敷催化剂前体化合物或过渡金属镀敷催化剂化合物的溶液或分散液的溶剂中。
[0060] 在步骤i.中与溶液或分散液的接触时间是历时10秒钟到20分钟、优选地30秒钟与5分钟之间并且甚至更优选地1分钟与3分钟之间的时间。涂覆温度取决于所用的涂覆方法。
举例来说,对于浸涂、辊涂或旋涂方法来说,涂覆温度典型地在5℃到90℃之间、优选地在10℃与80℃之间并且甚至更优选地在20℃与60℃之间的范围内。对于喷雾热解方法来说,温度典型地在200℃到800℃之间、优选地在300℃到600℃之间并且最优选地在350℃到500℃之间的范围内。
[0061] 在步骤ii)中进行加热。这种加热可在一或多个步骤中进行。在某一阶段,需要温度大于350℃,优选地大于400℃。高温加热导致金属氧化物冷凝而在衬底表面上形成机械稳定的金属氧化物层。这种金属氧化物通常为结晶状态。对于ZnO来说,这个加热步骤中的温度优选地等于或超过400℃。
[0062] 加热步骤ii)有时还称为烧结。烧结是通过加热但不使材料熔化液化点来形成材料的固态机械稳定层的过程。加热步骤ii)在350℃到1200℃、更优选地在350℃到800℃并且最优选地在400℃到600℃范围内的温度下进行。
[0063] 处理时间优选地是1分钟到180分钟、更优选地是10分钟到120分钟并且最优选地是30分钟到90分钟。
[0064] 在本发明的一个实施例中,可能使用温度斜坡进行加热。这个温度斜坡可以是线性或非线性的。线性温度斜坡在本发明的上下文中应理解为从较低温度开始连续加热并且使温度稳定上升直到达到最终温度。根据本发明的非线性温度斜坡可包括改变温度上升速度(即,随时间改变温度)并且可包括无温度变化的时间并且由此使衬底保持同一温度持续一定时间。非线性温度斜坡还可包括线性温度斜坡。无论何种类型的温度斜坡,其后均可进行无任何温度变化的最终加热步骤。在温度斜坡之后,可使衬底例如在500℃下保持1h。
[0065] 在一个实施例中,非线性温度斜坡可包括如本文所述的若干个加热步骤,如可选的干燥步骤和必需的烧结步骤,在彼等步骤之间存在温度上升。
[0066] 如果将金属氧化物化合物直接沉积到表面上,那么热处理主要用以将金属氧化物层转变为牢固的粘着层,其可另外经烧结以形成非导电衬底的相应金属氧化物致密层。
[0067] 不受这种理论约束,相信在金属氧化物前体化合物转化为相应金属氧化物后,可能发生金属氧化物相互扩散到衬底中并且形成金属氧化物与衬底的桥粘结。还观测到金属氧化物的部分烧结。所形成的金属氧化物(以金属氧化物化合物的形式直接涂覆时以及以金属氧化物前体化合物的形式涂覆并且在步骤ii.中转变为相应氧化物化合物时)良好粘附到非导电衬底表面。举例来说,如果非导电衬底是玻璃衬底,那么经由OH基团缩合在玻璃衬底与金属氧化物之间形成共价键。
[0068] 非导电衬底表面还与过渡金属镀敷催化剂化合物接触。过渡金属镀敷催化剂化合物是金属氧化物盐,其中金属选自铜、镍和钴。
[0069] 过渡金属镀敷催化剂化合物最优选地是氧化铜。
[0070] 通常,在热处理时形成相应金属氧化物的所有金属盐均适合:优选地在氧气存在下进行热处理。
[0071] 过渡金属镀敷催化剂化合物的相应金属氧化物最通常通过热处理过渡金属镀敷催化剂前体化合物来获得。热解是最常见的并且是一种在氧气存在下的热处理。热解过渡金属镀敷催化剂前体化合物导致形成对应的金属氧化物。
[0072] 典型的过渡金属镀敷催化剂前体化合物包含对应金属的可溶性盐。过渡金属镀敷催化剂前体化合物可以是有机金属盐并且例如是烷氧基化物(例如甲氧基化物、乙氧基化物、丙氧基化物和丁氧基化物)、乙酸盐和乙酰基丙酮酸盐。或者,过渡金属镀敷催化剂前体化合物可以是无机金属盐并且例如是硝酸盐、卤化物,尤其是氯化物、溴化物和碘化物。
[0073] 步骤ii.中形成的金属氧化物优选地选自由CuO、Cu2O、NiO、Ni2O3、CoO、Co2O3或前述各物的混合物组成的群组。
[0074] 在氧化性环境中,更可能存在更高的氧化态。
[0075] 氧化铜与氧化镍是应用于根据本发明的方法中的最优选过渡金属镀敷催化剂化合物,以氧化铜尤其优选。典型的铜和镍前体化合物是以下金属盐:乙酸盐、硝酸盐、氯化物、溴化物、碘化物。
[0076] 过渡金属镀敷催化剂前体化合物通常溶解于适合的极性溶剂中,之后涂覆到非导电衬底表面。这有利于化合物在衬底表面上的均匀表面分布。适合溶剂包含有机溶剂,尤其醇类,如乙醇、丙醇、异丙醇、甲氧基-乙醇或丁醇。
[0077] 其它极性有机溶剂包含如1-甲氧基-2-丙醇的二醇类的烷基醚,乙二醇、二乙二醇、丙二醇的单烷基醚、酮类(如甲基乙基酮、甲基异丁基酮、异佛尔酮);酯类和醚类(如2-乙氧基乙酸乙酯、2-乙氧基乙醇)、芳香族物(如甲苯和二甲苯)、含氮溶剂(如二甲基甲酰胺和N-甲基吡咯烷酮)以及前述各物的混合物。
[0078] 或者,溶剂可以是水基溶剂,包括水与有机溶剂的混合物。
[0079] 尤其在使用水基溶剂时,溶液可另外含有一或多种润湿剂以改良非导电衬底表面的润湿。适合的润湿剂或其混合物包括非离子剂,如非离子性烷基酚聚乙氧基加合物或烷氧基化聚亚烷基类和阴离子性润湿剂(如有机磷酸酯或膦酸酯)以及以双十三烷基磺基丁二酸钠是代表的二酯磺基丁二酸盐。至少一种润湿剂的量在溶液的0.0001到5wt.%、更优选地在0.0005到3wt.%的范围内。
[0080] 金属乙酸盐的乙醇溶液是根据本发明的一种优选实施例,以乙酸铜和乙酸镍的乙醇溶液为最优选。过渡金属氧化物前体化合物可包含不同盐的混合物,但优选为仅一种盐。
[0081] 或者,过渡金属镀敷催化剂化合物可直接沉积到非导电衬底的表面上。有机溶剂与水性介质均可使用。过渡金属镀敷催化剂化合物通常不容易溶解于大多数常用溶剂中并且因此通常以胶状分散液的形式涂覆到表面。所述胶状分散液典型地由表面活性剂或聚合物稳定化。所属领域的技术人员已知如何制备所述胶状分散液。
[0082] 在根据本发明的方法中,优选地沉积过渡金属镀敷催化剂前体化合物。
[0083] 至少一种过渡金属镀敷催化剂化合物或过渡金属镀敷催化剂前体化合物的浓度优选地在0.005到1.5mol/l、更优选地在0.01到1.0mol/l并且最优选地在0.1到0.75mol/l的范围内。
[0084] 本发明含义内的过渡金属镀敷催化剂化合物意指可由如甲、次磷酸盐、乙醛酸、DMAB(二甲基硼烷)或NaBH4的还原剂还原为其金属形式的含金属离子化合物。本发明者已发现,所述金属氧化物化合物可例如由上文提及的还原剂还原为其金属形式。因此,金属氧化物优选地作为根据本发明的方法中的过渡金属镀敷催化剂化合物。
[0085] 在使用过渡金属镀敷催化剂前体化合物的实施例2中,根据本发明用于在非导电衬底表面的至少一部分上沉积金属氧化物化合物和过渡金属镀敷催化剂化合物的方法包含:
[0086] 2.i.使衬底与适合于在热处理时形成金属氧化物化合物和过渡金属镀敷催化剂化合物的金属氧化物前体化合物以及过渡金属镀敷催化剂前体化合物接触;并且其后[0087] 2.ii.如上所述热处理非导电衬底并且由此在衬底表面的至少一部分上形成来自金属氧化物前体化合物的金属氧化物化合物与来自过渡金属镀敷催化剂前体化合物的过渡金属镀敷催化剂化合物的粘着性催化层;并且其后
[0088] 2.iii.通过应用湿式化学无电电镀方法至少金属镀敷具有过渡金属镀敷催化剂化合物的衬底表面,其中用于镀敷的组合物包含待镀敷的金属离子的来源和还原剂。
[0089] 在本发明的一个实施例中,向非导电衬底上沉积金属氧化物化合物作为第一层并且其后沉积过渡金属镀敷催化剂化合物作为第二层。在这个实施例中,重要的是过渡金属镀敷催化剂形成顶层,因为在后续金属镀敷步骤iii.中,无电金属层仅沉积到过渡金属镀敷催化剂层的层上。
[0090] 在本发明的实施例3中,如下进行金属氧化物化合物与过渡金属镀敷催化剂化合物的沉积:
[0091] 3.i.在非导电衬底表面的至少一部分上优选地以分散液的形式沉积选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的金属氧化物化合物,
[0092] 3.ii.任选地如上所述热处理非导电衬底并且由此形成金属氧化物化合物的粘着层;
[0093] 3.iii.在非导电衬底表面的至少一部分上沉积选自由氧化铜、氧化镍、氧化钴以及前述各物的混合物组成的群组的过渡金属镀敷催化剂化合物,并且其后
[0094] 3.iv.如上所述热处理非导电衬底并且由此形成金属氧化物化合物的粘着层(如果上文的步骤ii.省略)和过渡金属镀敷催化剂化合物的催化层;并且其后
[0095] 3.v.通过应用湿式化学无电电镀方法至少金属镀敷具有过渡金属镀敷催化剂化合物的衬底表面,其中用于镀敷的组合物包含待镀敷的金属离子的来源和还原剂。
[0096] 在实施例4中,根据本发明的方法包含在非导电衬底表面的至少一部分上沉积金属氧化物化合物和过渡金属镀敷催化剂化合物,其中:
[0097] 4.i.使至少一部分衬底与选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的金属氧化物化合物或适合于在热处理时形成金属氧化物化合物的金属氧化物前体接触;并且其后
[0098] 4.ii.任选地如上所述热处理非导电衬底并且由此在衬底表面的至少一部分上形成金属氧化物化合物的粘着层;并且其后
[0099] 4.iii.使衬底与选自由氧化铜、氧化镍和氧化钴以及前述各物的混合物组成的群组的过渡金属镀敷催化剂化合物或适合于在热处理时形成过渡金属镀敷催化剂化合物的过渡金属镀敷催化剂前体化合物接触;并且其后
[0100] 4.v.如上所述热处理非导电衬底并且由此在衬底表面的至少一部分上形成金属氧化物化合物的粘着层(如果上文的步骤ii.省略)和过渡金属镀敷催化剂化合物的催化层;并且其后
[0101] 4.vi.通过应用湿式化学无电电镀方法至少金属镀敷具有过渡金属镀敷催化剂化合物的衬底表面,其中用于镀敷的组合物包含待镀敷的金属离子的来源和还原剂。
[0102] 如上所述的热处理可个别地在实施例3或4中的每一接触步骤i.和iii.之后进行或在将过渡金属镀敷催化剂化合物涂覆到非导电衬底之后进行。
[0103] 在本发明的另一实施例中,使非导电衬底同时与含有金属氧化物化合物或金属氧化物化合物前体化合物和过渡金属镀敷催化剂化合物或过渡金属镀敷催化剂前体化合物的溶液或分散液接触。其后,如上所述进行热处理并转化为相应的金属氧化物。
[0104] 金属氧化物化合物与过渡金属镀敷催化剂化合物的比率可在宽范围内变化并且取决于如电导率、所用金属等诸多因素。所属领域的技术人员可经常规实验确定最佳比率。在所形成的组合物中具有小于50wt.%的过渡金属镀敷催化剂化合物常已足够。金属氧化物化合物与过渡金属镀敷催化剂化合物的比率的典型范围在5到95wt.%金属氧化物化合物之间变化并且其余是过渡金属镀敷催化剂化合物,更优选地在20到90wt.%之间并且甚至更优选地在40与75wt.%之间。ZnO(金属氧化物化合物)与CuO(过渡金属镀敷催化剂化合物)的典型混合物含有5到95wt.%之间的金属氧化物化合物,其余是过渡金属镀敷催化剂化合物,更优选地20到90wt.%之间的ZnO并且甚至更优选地40与75wt.%之间的ZnO,其余是CuO。
[0105] 所述方法任选地可包含在方法步骤ii之后进行的另一步骤。
[0106] iia.使衬底与酸性水溶液或碱性水溶液接触。
[0107] 这个额外步骤使平均表面粗糙度(Sa)增加约10nm到50nm,但不超过增加100nm。所增加的粗糙度在一定范围内以增加金属层对于非导电衬底表面的粘着性,但不负面影响其功能。
[0108] 酸性水溶液优选地为pH值在pH=1到5之间的酸性水溶液。可使用各种酸,例如硫酸盐酸或如乙酸的有机酸
[0109] 或者,碱性水溶液是pH值在pH=10到14之间的碱性水溶液。可使用各种碱性来源,例如氢氧化物盐,如氢氧化钠、氢氧化、氢氧化或碳酸盐。
[0110] 其后,在步骤iii.中应用湿式化学镀敷方法对具有催化层的非导电衬底表面进行金属镀敷。
[0111] 湿式化学镀敷方法为所属领域的技术人员所熟知。典型的湿式化学镀敷方法是施用外电路电流的电解电镀、使用待沉积金属与衬底表面上的金属的氧化还原电势差异的浸渍电镀或使用镀敷溶液中所含化学还原剂的无电电镀方法。
[0112] 在本发明的一优选实施例中,湿式化学镀敷方法是一种无电电镀方法,其中用于镀敷的组合物包含待镀敷的金属离子的来源和还原剂。
[0113] 对于无电电镀来说,使衬底与例如含有Cu-、Ni-、Co-或Ag-离子的无电电镀浴接触。典型还原剂包含甲醛、如次磷酸钠的次磷酸盐、乙醛酸、DMAB(二甲氨基硼烷)或NaBH4。
[0114] 所述镀敷溶液将与非导电衬底表面上的过渡金属镀敷催化剂化合物反应。如果过渡金属镀敷催化剂化合物是非导电衬底表面上所含的金属氧化物,那么其将由无电电镀溶液中所含的还原剂还原。所属领域的技术人员将选择能够还原金属氧化物形式的过渡金属镀敷催化剂化合物的适合试剂。通过这种还原反应,在非导电衬底表面上形成第一薄层金属。这个层充当所谓成核部位。来自无电电镀浴的其它金属离子经浴中所含的还原剂还原并且由此沉积在成核部位上,致使金属层厚度增长。
[0115] 通过锚定在涂层本身中,这些成核部位为后续镀敷的无电金属层提供强粘着性。
[0116] 无电金属镀敷溶液优选地为包含适合于沉积相应金属或金属合金的组合物的铜、铜合金、镍或镍合金浴。
[0117] 铜或铜合金最优选地在湿式化学沉积期间沉积,无电电镀是用于湿式化学金属沉积的最优选方法。
[0118] 铜无电电镀电解质通常包含铜离子来源、pH改质剂、络合剂(如EDTA)、烷醇胺或酒石酸盐、加速剂、稳定剂添加剂和还原剂。在大多数情形下,使用甲醛作为还原剂,其它常用还原剂是次磷酸盐、二甲氨基硼烷和硼氢化物。用于无电镀铜电解质的典型稳定剂添加剂是如以下的化合物:巯基苯并噻唑、硫脲、各种其它硫化合物、氰化物和/或亚氰化物和/或钴氰化物盐、聚乙二醇衍生物、杂环氮化合物、甲基丁炔醇和丙腈。另外,通常通过使稳定空气流穿过铜电解质而使用分子氧作为稳定剂添加剂(ASM手册,第5卷:表面工程学(Surface Engineering),第311到312页)。
[0119] 用于无电金属和金属合金镀敷电解质的另一重要实例是用于沉积镍和其合金的组合物。所述电解质常基于作为还原剂的次磷酸盐化合物并且另外含有选自包含VI族元素(S、Se、Te)化合物、含氧阴离子(AsO2-、IO3-、MoO42-)、重金属阳离子(Sn2+、Pb2+、Hg+、Sb3+)和不饱和有机酸(来酸、衣康酸)的群组的稳定剂添加剂的混合物(无电电镀:基本原理与应用(Electroless Plating:Fundamentals and Applications),编者:G.O.马洛里(G.O.Mallory),J.B.哈伊杜(J.B.Hajdu),美国电镀和表面精饰协会(American 
Electroplaters and Surface Finishers Society),翻印版,第34到36页)。
[0120] 在后续加工步骤中,无电沉积的金属层可进一步结构化到电路中。
[0121] 在本发明的一个实施例中,通过在步骤iii中获得的第一金属或金属合金层的上电镀来沉积至少另一层金属或金属合金。
[0122] 应用湿式化学镀敷方法对衬底进行金属镀敷的一种尤其优选的实施例包含:
[0123] iiib.使衬底与无电金属镀敷溶液接触;和
[0124] iiic.使衬底与电解金属镀敷溶液接触。
[0125] 对于电解金属化来说,在步骤iiic.中可能使用任何需要的电解金属沉积浴,例如用于沉积镍、铜、银、金、锡、锌、铁、铅或其合金。所述沉积浴为所属领域的技术人员所熟悉。
[0126] 典型地使用瓦特镍浴(Watts nickel bath)作为亮镍浴,这个浴包含硫酸镍、氯化镍和硼酸,并且还包含糖精作为添加剂。用作亮铜浴的组合物的实例是包含硫酸铜、硫酸、氯化钠和有机硫化合物(其中硫为低氧化态,例如有机硫化物或二硫化物)作为添加剂的组合物。
[0127] 本发明者已发现,热处理沉积金属层极大地增加了金属层与下层非导电衬底的剥离强度(PS)。增加程度令人惊讶。所述热处理还称作退火。退火是一种改变金属的材料特性的已知处理方法,并且例如增加其延展性、释放内部应力并且通过使其均匀而改进金属结构。不明显的是所述退火还导致沉积金属层与非导电衬底表面之间的剥离强度大幅增加。
[0128] 根据本发明的方法,在最后的金属镀敷步骤之后,在步骤iv.中进行所述热处理:
[0129] iv.将金属镀层加热到150℃与500℃之间的温度。
[0130] 对于这种热处理来说,将衬底缓慢加热到150℃与500℃之间的最大温度,优选地高达400℃的最大温度并且甚至更优选地高达350℃的最大温度。处理时间视衬底材料、镀敷金属和镀敷金属层的厚度而变化并且可由所属领域的技术人员由常规实验来确定。处理时间通常在5分钟与120分钟之间、优选地在10分钟与60分钟之间的范围内,并且甚至更优选地至多20分钟、30分钟或40分钟的处理时间即足够。
[0131] 甚至更有利的是在两个、三个或甚至更多个步骤中进行热处理,相继增加在个别步骤期间的保持温度。所述逐步处理导致镀敷金属层与非导电衬底之间的剥离强度值尤其高。
[0132] 典型温度概况可如下:
[0133] a)100℃到200℃历时10分钟到60分钟,并且其后150℃到400℃历时10分钟到120分钟,或
[0134] b)100℃到150℃历时10分钟到60分钟,并且其后任选地150℃到250℃历时10分钟到60分钟,并且其后230℃到500℃历时10分钟到120分钟。
[0135] 如果根据本发明的方法包含无电金属镀敷步骤和电解金属镀敷步骤,那么建议在每一金属镀敷步骤后应用热处理步骤。无电金属镀敷步骤后的热处理可如上所述进行。通常在高达100℃与250℃之间的最大温度下进行单步骤热处理历时10分钟到120分钟已足够。
[0136] 实例
[0137] 以下实验欲说明本发明的益处,而不限制其范围。术语衬底与样品在本文中可互换使用。
[0138] 通用程序:对于粘着性测试目的来说,以15μm铜进一步电解镀敷无电金属层并且其后在180℃温度下加热30分钟。使镀铜层经受90°剥离强度测试。在粘着性不足的情形下,额外的铜厚度强烈增加粘着性界面破坏的可能性。
[0139] 在实例中,采用如表1中列举和识别的金属氧化物前体化合物(MO)和镀敷催化剂(MeO)。
[0140] 实例1(比较性)
[0141] 这个实例中使用以下三种市售样品(全部:1.5×4.0cm载片):
[0142] ●硼硅酸玻璃(Sa<10nm)。
[0143] ●晶片衬底,Si/SiO2(Sa<10nm),表面覆盖有厚度是约75到85nm的SiO2层,[0144] ●陶瓷衬底,Al2O3(Sa=450nm)。
[0145] 如下文所述清洁和处理样品。
[0146] 使衬底与含有50ppm Pd离子和2.5g/L SnCl2的市售Pd/Sn催化剂( 活化剂(Activator),安美特公司(Atotech Deutschland GmbH))在25℃的温度下接触5分钟,继而进行去离子水冲洗和加速步骤( 加速剂(Accelerator),安美特公司)用于增加
Pd催化剂的催化活性。
[0147] 此后,在37℃下将样品完全浸没于含有硫酸铜作为铜离子来源和甲醛作为还原剂的无电镀Cu浴中历时4分钟,产生约0.25μm铜金属的镀敷厚度。使样品在120℃下干燥10分钟并且随后在180℃的温度下加热30分钟。
[0148] 通过使思高(Scotch)胶带(剥离强度是约2N/cm)附着于无电铜层来测试镀层的粘着性。如果可从铜金属层去除胶带而不剥除金属层,那么金属层的粘着强度超过2N/cm。
[0149] 在通过快速移动剥除沉积铜金属层的彼等情形下,所述层与下层衬底的粘着强度低于2N/cm。对于所有三种样品类型来说,均观测到无电铜层与衬底完全分离(参见表1,第6列)。
[0150] 如上所述制备第二样品并且通过电解(酸性)镀铜沉积另一铜金属层。
[0151] 为此,使用含有硫酸铜作为铜离子来源和硫酸以及专用匀涂剂和增亮剂化合物的酸性镀铜浴(丘帕拉西德(Cupracid),安美特公司)。在1.5ASD的电流密度下进行镀敷,产生具有15μm厚度的镀铜层。在衬底材料上基本上不形成导致镀敷金属层完全分层的粘着性金属层。
[0152] 实例2
[0153] 使用以下三种市售样品(全部:1.5×4.0cm载片):
[0154] ●玻璃(Sa<10nm)。
[0155] ●晶片衬底,Si/SiO2(Sa<10nm),表面覆盖有厚度是约75到85nm的SiO2层,[0156] ●陶瓷衬底,Al2O3(Sa=450nm)。
[0157] 清洁后,样品通过喷雾热解相继涂有ZnO和CuO层。首先,由手持式气刷装置向在400℃温度下加热的衬底上喷射含有0.05mol/l Zn(OAc)2×2H2O的金属氧化物前体化合物的EtOH溶液(喷雾热解)。随后,在400℃温度下进行含有0.05mol/l Cu(OAc)2×H2O的过渡金属镀敷催化剂前体化合物的EtOH溶液的另一喷雾热解。
[0158] 随后使衬底在500℃温度下在空气中加热60分钟。所形成的ZnO金属氧化物层的厚度是约150nm,所形成的CuO层的厚度是约30nm。
[0159] 烧结后,在37℃温度下将样品在含有硫酸铜作为铜离子来源并且含有甲醛作为还原剂的无电镀Cu浴中处理15分钟。选择性地在覆盖有ZnO和CuO的非导电衬底部分上形成厚度是1μm的铜层。
[0160] 逐步使样品在120℃温度下加热(退火)10分钟,并且随后在180℃温度下加热(退火)30分钟。通过使PI胶带(剥离强度是约5N/cm)附着于无电Cu层并且通过快速移动将其剥除来测试镀层的粘着性。无电铜层未与经涂布的衬底分离。在所有情形下,铜层与下层衬底的粘着性均超过5N/cm(参见表1,第7列)。
[0161] 其后,在1.5ASD的电流密度下镀敷酸铜(丘帕拉西德,安美特公司)直到厚度是15μm。逐步使样品首先在120℃温度下加热(退火)10分钟,并且随后在180℃温度下加热(退火)30分钟。
[0162] 未观测到铜与衬底分离(如起泡)。玻璃衬底的剥离强度是0.7N/cm,对于Si/SiO2衬底来说是0.8N/cm并且对于Al2O3来说是6.7N/cm(参见表1,第8列)。
[0163] 在260℃下回焊处理所有衬底之后,所有衬底均未起泡并且保持初始的剥离强度值。进行这个回焊测试来仿真回焊期间的组件附着热应力。由于未发生起泡并且保持初始的剥离强度,故测试通过(参见表1,第9列)。
[0164] 实例3
[0165] 使用以下三种市售样品(全部:1.5×4.0cm载片):
[0166] ●玻璃(Sa<10nm)。
[0167] ●晶片衬底,Si/SiO2(Sa<10nm),表面覆盖有厚度是约75到85nm的SiO2层,[0168] ●陶瓷衬底,Al2O3(Sa=450nm)。
[0169] 清洁后,样品通过喷雾热解涂有混合的ZnO/CuO膜。
[0170] 由手持式气刷装置向加热到400℃温度的非导电衬底上喷射0.025mol/l Zn(OAc)2×2H2O(金属氧化物前体化合物)与0.025mol/l Cu(OAc)2×H2O(过渡金属镀敷催化
QQ群二维码
意见反馈