用于天线罩的陶瓷材料、天线罩及其生产方法

申请号 CN201280070311.4 申请日 2012-02-22 公开(公告)号 CN104302600A 公开(公告)日 2015-01-21
申请人 MBDA意大利公司; 发明人 达尼埃拉·迪马蒂诺; 希蒂·迪莱塔; 劳拉·埃斯波西托;
摘要 阐明了一种用于天线罩的陶瓷材料,其包含:-约80-95%(%wt)的Si3N4;约5-15%(wt%)的 硅 酸镁 铝 ,所述 硅酸 镁铝包括2.5-12.5%(wt%)的SiO2,0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3;并且具有不低于2.5g/cm3的 密度 和不超过6.5的 介电常数 。还阐明了一种用于生产天线罩的方法。
权利要求

1.用于天线罩的陶瓷材料,包含:
-约80-95%(%wt)的Si3N4;以及
-约5-15%(wt%)的酸镁,所述硅酸镁铝包括2.5-12.5%(wt%)的SiO2、
0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3;
3
并且具有不低于2.5g/cm 的密度和不超过6.5的介电常数
3 3
2.根据权利要求1所述的陶瓷材料,其中,所述密度包括在2.5g/cm 和2.9g/cm 之间;
和/或所述介电常数包括在5.7和6.4之间。
3.根据权利要求1或2所述的陶瓷材料,其中,15-35%(%wt)的Si3N4是β-Si3N4。
4.根据前述权利要求中任一项所述的陶瓷材料,包含:
-90-94%(wt%)的Si3N4;以及
-6-10%(wt%)的硅酸镁铝,所述硅酸镁铝包括3.2-5%(wt%)的SiO2、0.7-2%(wt%)的MgO和2.1-4%(wt%)的Al2O3。
5.包含前述权利要求中任一项所述的陶瓷材料的天线罩。
6.用于生产天线罩的方法,包括以下步骤:
a.形成约80-95%(%wt)的Si3N4粉末和约5-15%(wt%)的硅酸镁铝粉末的均匀混合物,所述硅酸镁铝粉末包括2.5-12.5%(wt%)的SiO2、0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3;
b.将至少一种有机粘合剂加入至所述混合物;
c.使所述混合物雾化;
d.在专用模具中,在环境温度下,使所述混合物经受等静压压制以形成绿色半成品;
e.机械加工所述绿色半成品以基本上赋予它最终的形状;
f.使成型的所述绿色半成品经受热循环;
g.烧结所述绿色半成品以获得成品。
7.根据权利要求6所述的用于生产天线罩的方法,其中,形成均匀混合物的所述步骤a包括以下两个子步骤:
a'.使Si3N4与SiO2混合以形成预混物;
a″.使所述预混物与MgO以及与Al2O3混合。
8.根据权利要求6或7所述的用于生产天线罩的方法,其中,使所述半成品经受热循环的所述步骤f包括以下子步骤:
f'.以8℃/hr升高温度直至达到300℃-390℃的温度;
f″.将所述半成品置于温度下3-6小时。
9.根据权利要求6-8中一项所述的用于生产天线罩的方法,其中,使所述半成品经受热循环的所述步骤f在炉中运行,所述炉包括特定的支撑物和/或用于输送气体以确保所述有机粘合剂脱离体的系统。
10.根据权利要求6-9中一项所述的用于生产天线罩的方法,其中,在由与所述半成品相同的材料制成的支撑物上进行所述烧结步骤g。

说明书全文

用于天线罩的陶瓷材料、天线罩及其生产方法

技术领域

[0001] 本发明涉及用于天线罩(天线屏蔽器、整流罩,radome)的陶瓷材料、天线罩及其生产方法。
[0002] 特别地,本发明涉及用于导弹并且通常用于航空航天应用的天线罩的陶瓷材料及相关生产方法。

背景技术

[0003] 用于这些应用的材料在高耐机械性、高耐热性和良好的介电性能方面需要有特别严格的要求。
[0004] 特别地,用于天线罩应用中的材料必须确保宽温度范围内的最佳耐机械性和低介电常数
[0005] 它们必须能够在长时间内抵抗空气动、大气介质和热冲击,并且同时它们对于电磁波必须是可透过的。
[0006] 使用陶瓷材料制造天线罩是已知的。
[0007] 特别地,由于它们在环境温度和高温下的良好的机械性能并且由于它们的良好的抵抗热冲击性,使得使用基于Si3N4(氮化)的陶瓷材料制造天线罩是已知的。
[0008] 然而,在烧结步骤过程中,这类材料具有的问题在于:在大气压力下,氮化硅倾向于分解而不是首先熔化或烧结。
[0009] 为此,通过挤压(压制,pressing)进行形成由这类材料制成的物品的步骤。这所表示的限制在于通过挤压的形成仅允许获得简单的形状。因此,生产具有更多复杂形状的物品需要在体(piece)上进行后续的加工操作。
[0010] 即使由于材料的良好的机械特性,这些操作也是耗时、复杂并且昂贵的。特别地,这些材料的高硬度需要复杂的机械加工操作并且使用昂贵的工具。
[0011] 在现有技术的一些方法中,提出了包括氮化硅和硅酸(barium aluminosilicate,BAS)的材料。
[0012] 这些已知的方法,虽然具有高密度并且因此具有良好的机械性能,但是具有高介电常数并且因此具有差的介电性能。
[0013] 此外,包括这类材料的天线罩的生产方法存在上述缺点。
[0014] 此外,应该观察到,针对航空航天应用而研究的基于氮化硅的已知陶瓷材料中的大部分存在的工业应用问题在于,它们的性能与它们的微观结构和宏观结构严格相关,因此,它们的组成和/或生产过程中的即使微小的变化也会显著地改变它们的性能。

发明内容

[0015] 因此,本发明的目的是提供在宽温度范围内在耐机械性、耐热性和介电性能方面具有高性能的用于天线罩的陶瓷材料。
[0016] 本发明的进一步的目的是提供用于天线罩的陶瓷材料和无烧结问题的天线罩的生产方法。
[0017] 本发明的进一步的目的是提供用于生产简单、便宜的天线罩并且允许获得具有上述机械、热和介电性能的天线罩的方法。
[0018] 这些和其他目的通过用于天线罩的陶瓷材料获得,所述陶瓷材料包括:
[0019] -约80-95%(%wt)的Si3N4;以及
[0020] -约5-15%(wt%)的硅酸镁铝(magnesium aluminosilicate),所述硅酸镁铝包括2.5-12.5%(wt%)的SiO2、0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3;
[0021] 并且具有不低于2.5g/cm3的密度和不超过6.5的介电常数。
[0022] 优选地,介电常数的值基本恒定或在温度变化时发生微小的变化。
[0023] 在X、Ku和Ka波段测量介电常数的值。
[0024] 根据优选的实施方式,所述密度包括在2.5和2.9g/cm3之间和/或所述介电常数包括在5.7和6.4之间。
[0025] 根据特别优选的实施方式,所述密度包括在2.65和2.79g/cm3之间和/或所述介电常数包括在5.9和6.2之间。
[0026] 有利地,15-35%(wt%)的Si3N4是β-Si3N4。这允许改善材料的介电性能。
[0027] 优选地,所述材料包括90-94%(wt%)的Si3N4;和约6-10%(wt%)的硅酸镁铝,所述硅酸镁铝包括3.2-5.2%(wt%)的SiO2、0.7-2%(wt%)的MgO和2.1-4%(wt%)的Al2O3。
[0028] 根据本发明的材料的特别优选的组成包括90%(wt%)的Si3N4、5.1%(wt%)的SiO2、1.4%(wt%)的MgO和3.5%(wt%)的Al2O3。
[0029] 根据本发明的第二个方面,本发明涉及天线罩,所述天线罩包括这类材料并且获得与材料相同的优点,即,对于宽温度范围的良好的耐机械性和耐热性以及良好的介电性能。
[0030] 更通常地,本发明涉及包含这类材料的物品。
[0031] 根据本发明的第三个方面,本发明涉及生产天线罩的方法,所述方法包括以下步骤:
[0032] a.形成约80-95%(%wt)的Si3N4粉末和约5-15%(wt%)的硅酸镁铝粉末的均匀混合物,所述硅酸镁铝粉末包括2.5-12.5%(wt%)的SiO2、0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3;
[0033] b.将至少一种有机粘合剂加入至混合物;
[0034] c.使混合物雾化;
[0035] d.在专用模具(special mould)中,在环境温度(ambient temperature)下,使混合物经受等静压压制(等静压成型,isostatic pressing)以形成绿色半成品(green semi-finished product);
[0036] e.机械加工绿色半成品以基本上赋予它最终的形状;
[0037] f.使成型的绿色半成品经受热循环;
[0038] g.烧结绿色半成品以获得成品。
[0039] 这种方法相对于已知方法而言是有利的,因为它允许获得在宽温度范围内具有高耐机械性和耐热性以及良好的介电性能的天线罩。
[0040] 特别地,这种方法的全部具体步骤允许获得赋予材料并且从而赋予天线罩上述特征的特定微观结构。
[0041] 此外,提供绿色半成品的机械加工的事实允许获得改善的可加工性、材料回收、更快速的生产过程以及改善的成品的机械特性。
[0042] 需要在烧结块体上完成操作,相对于现有技术的那些操作而言,这些操作将更省时,因此节省了时间和工具的寿命。
[0043] 此外,全部操作步骤和材料的具体组成允许克服与工业适用性相关的问题,因为针对工业生产而不只是针对原型(prototype)它们得到了优化。
[0044] 优选地,形成均匀混合物的步骤a包括以下两个子步骤:
[0045] a'.使Si3N4与SiO2混合以形成预混物;
[0046] a″.使预混物与MgO以及与Al2O3混合。
[0047] 优选地,步骤a提供了将添加到混合物以形成浆料(slurry)的步骤。
[0048] 有利地,在包括在1500巴和1800巴之间的压力下进行步骤d的等静压压制。
[0049] 根据本发明的方法的优选实施方式,使半成品经受热循环的步骤f包括以下子步骤:
[0050] f'.以8℃/hr升高温度直至达到300℃-390℃的温度;
[0051] f″.将半成品置于上述温度下3-6小时。
[0052] 优选地,使半成品经受热循环的步骤f在提供特定的(专的,specific)支撑物(支撑体)或基底和/或用于输送气体以确保有机粘合剂从块体(piece)中脱离(离开,exit)的系统的炉中进行。这允许防止由于有机粘合剂施加的压力所致的半成品的破裂。
[0053] 优选地,在1500℃-1650℃的温度和/或惰性气氛(优选氮气)中的液相下,进行烧结步骤g。
[0054] 这种温度较低的事实允许降低工厂并且从而降低生产过程的投资和运营成本。
[0055] 有利地,在由与半成品相同的材料制成的基底上进行烧结步骤g。这允许避免产品的变形
[0056] 根据一些实施方式,在烧结步骤g之前是在产品的表面上施加抗化剂的步骤。附图说明
[0057] 为了更好地理解本发明并且为了观察本发明的优势,以下是参考附图的用于天线罩的陶瓷材料以及用于生产本发明的天线罩的方法的一些示例性的非限制性实施方式的说明,其中:
[0058] -图1示意性示出了根据本发明的用于生产天线罩的方法的步骤;和[0059] -图2示出了在一些具体生产步骤中使用本发明的材料制备的物品的实例。

具体实施方式

[0060] 根据本发明的用于天线罩的陶瓷材料是基于氮化硅的材料,其实际上包括约80-95%(%wt)的Si3N4。
[0061] 优选地,约15-35%(wt%)的Si3N4是β-Si3N4。
[0062] 事实上发现,这个阶段中的具体控制的百分比允许获得低介电常数,并且因此改善材料的介电能力,即,材料对于电磁波可透过的能力。
[0063] 特别地,本发明的材料对于天线罩,即对于适合于保护天线的结构而言是最佳的,因此,表述“良好的介电性能”用于表明材料对于通过天线发射和接收的能量是可透过的能力。
[0064] 本发明的材料进一步包括约5-15%(wt%)的硅酸镁铝,所述硅酸镁铝包括2.5-12.5%(wt%)的SiO2、0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3。
[0065] 优选地,所述材料包括90-94%(wt%)的Si3N4和6-10%(wt%)的硅酸镁铝,所述硅酸镁铝包括3.2-5%(wt%)的SiO2、0.7-2%(wt%)的MgO和2.1-4%(wt%)的Al2O3。
[0066] 根据本发明的材料的特别优选的组成包括90%(wt%)的Si3N4、5.1%(wt%)的SiO2、1.4%(wt%)的MgO和3.5%(wt%)的Al2O3。
[0067] 使用这种组成获得了特别期望的结果。
[0068] 根据本发明,陶瓷材料具有不低于2.5g/cm3的密度,并且优选包括在2.5和2.9g/3
cm 之间。
[0069] 这种特性连同组成一起是用于定义材料的耐机械性能并且因此用于获得适合于航空航天应用的产品的基础
[0070] 此外,在X、Ku和Ka波段中,在环境温度和高温下,材料的介电常数不超过6.5,尤其包括在5.7和6.4之间。
[0071] 根据进一步的方面,本发明涉及包含这种材料的物品,尤其是包含这种材料的天线罩。优选地,天线罩是用于导弹应用并且通常是用于航空航天应用的天线罩,但其也可以应用于不同的环境下,例如应用于航海应用中。
[0072] 以下是根据本发明用于生产天线罩的方法的描述。
[0073] 本发明的方法提供了形成约80-95%(%wt)的Si3N4粉末和约5-15%(wt%)的硅酸镁铝粉末的均匀混合物的第一步骤a,所述硅酸镁铝粉末包括2.5-12.5%(wt%)的SiO2、0.5-3%(wt%)的MgO和2-6%(wt%)的Al2O3。
[0074] 优选地,该材料包括90-94%(wt%)的Si3N4和6-10%(wt%)的硅酸镁铝,所述硅酸镁铝包括3.2-5%(wt%)的SiO2、0.7-2%(wt%)的MgO和2.1-4%(wt%)的Al2O3。
[0075] 根据本发明的材料的特别优选的组成包括90%(wt%)的Si3N4、5.1%(wt%)的SiO2、1.4%(wt%)的MgO和3.5%(wt%)的Al2O3。
[0076] 可以通过将所有组分混合在一起或通过两个随后的子步骤进行这种步骤:即第一子步骤a',其提供Si3N4和SiO2的均匀混合以形成预混物;然后是第二子步骤a″,其提供使预混物与MgO以及与Al2O3混合。
[0077] 在两种情况中,优选在添加水的情况下发生混合,因为水有助于随后的喷雾步骤。可替换地,可以使用乙醇或已知类型的任何其他溶剂
[0078] 混合用于保证均一性和粉末之间的紧密接触
[0079] 优选地,在专用研磨机(mill)或滚筒混合器(roller mixer)中进行这种步骤。
[0080] 随后是将至少一种有机粘合剂添加到混合物的步骤b。
[0081] 这种粘合剂是已知的类型,并且它可以例如是聚乙二醇。
[0082] 它适合于帮助促进粉末粒子(powder particle)之间的紧密结合的混合。
[0083] 随后,以已知方法,优选根据步骤c通过提供具有旋流器(cyclone)的雾化器(喷雾器,atomiser)雾化混合物。
[0084] 在这种步骤的最后,混合物处于均匀且稳定的无定形分散形式。
[0085] 随后,在专用模具(步骤d)中,在环境温度下使混合物经受等静压压制。在包括在1500巴和1800巴之间的压力下进行这种压制。
[0086] 模具具有与想要获得的产品形状相适合的(compatible)形状,并且优选弹性体类型。
[0087] 如图2中所示出的,在具体的应用中,它是圆柱形的并且提供有与其同轴的(concentric)圆柱芯,以赋予混合物以中空的圆柱形形状。
[0088] 在将混合物引进圆柱体之后,引进芯,之后密封模具并且使混合物经受等静压压制(等静压成型)。
[0089] 获得的产品是绿色半成品。
[0090] 在这一点上,如图2中示出的,进行机械加工绿色半成品以赋予半成品希望的基本上与产品的最终形状相符的形状的步骤e。
[0091] 正如之前所提到的,在绿色半成品上并且因此在可锻性(延展性)更强的产品上进行的这种步骤,允许获得最终产品的方法和特征方面的显著优势。
[0092] 因此,在机械加工的最后,半成品虽然是绿色的,但基本上具有其最终的形状。
[0093] 根据优选的实施方式,这种形状是圆锥形的或尖拱形的(ogive-shaped)。
[0094] 随后,进行使成型的绿色半成品经受适合消除有机粘合剂的热循环的步骤f。
[0095] 应当根据使用的具体组成和半成品的尺寸来优化,并且优选在大气(空气)中进行。
[0096] 根据优选的实施方式,热循环包括以下子步骤:逐渐升高温度,特别地,以8℃/h升高温度至达到300℃-390℃的温度(步骤f'),以及将半成品置于达到的温度下3-6小时(步骤f″)。
[0097] 优选地,在提供特定的支撑物或基底和/或用于输送气体以保证有机粘合剂从块体中逐渐且均匀地脱离的系统的炉中进行步骤f。
[0098] 换句话说,从材料中蒸发的有机粘合剂可能仍然陷在引起变性或破裂的物品的空腔中。
[0099] 为了防止这种情况,炉配备有格网或配备有开口的基底以允许这种粘合剂经由那里通过。
[0100] 可替换地或者另外地,炉可以配备有合适的支撑物,该支撑物允许放置具有开口的块体并且因此凹面向上。
[0101] 可替换地或者另外地,可以提供用于输送气体并且强制运动气体进入期望方向的进一步的系统。
[0102] 根据本发明方法的优选实施方式,随后是将抗氧化剂施加在成品表面上的步骤h。
[0103] 优选地,通过喷雾进行这种施加。
[0104] 随后,对绿色半成品进行烧结步骤g,以便获得成品。
[0105] 优选地,在1500℃-1650℃的温度和/或在惰性气氛,优选地,在氮气中的液相下进行这样的步骤。
[0106] 优化烧结热循环以获得特定的微观结构(微结构)。
[0107] 观察到,除了温度之外,烧结动力学受到材料的特定初始组成的强烈影响。
[0108] 优选地,在由与半成品相同的材料制成的支撑物上,进行烧结步骤g。
[0109] 实施例
[0110] 在叶片研磨机(blade mill)中,将90%(wt%)的Si3N4、5.1%(wt%)的SiO2、1.4%(wt%)的MgO和3.5%(wt%)的Al2O3与水和聚乙二醇一起混合以获得浆料。
[0111] 将混合物雾化,然后在1500巴的压力下,在圆柱形模具中,在环境温度下使其经受等静压压制(等静压成型)。
[0112] 通过数控加工,对由此获得的半成品进行外部加工(机械加工,machine)以赋予它尖拱形形状。
[0113] 随后,对其进行以下热循环:
[0114] -以8℃/h升高温度至达到300℃-390℃的温度;
[0115] -在上述温度下保持3-6小时。
[0116] 在高至1550℃的温度下将产品烧结约两个小时的时间以获得成品。
[0117] 将成品进行标准验证测试,获得以下结果:
[0118]杨氏模量 GPa 220
泊松系数-ν 0.26
介电常量-ε 6
耐弯曲性(@21℃) MPa 349
断裂韧性 MPa·m1/2 3.69
热膨胀系数λ(@25÷1300℃) 10-6K-1 3.42
密度 g/cm3 2.7
[0119] 其中,对于杨氏模量和泊松系数,根据EN 843-2标准的指导,在测量为80×10×8mm测试块上,通过弯曲共振频率(bending resonance frequency)的方法进行测量。
[0120] 使用Zwick Z050通用机(Zwick Z050universal machine),以0.5mm/min的梁速度,相对上叶片10mm的距离并且相对下叶片20mm的距离,弯曲带有倾斜边缘(斜缘,bevelled edge)的棒(测量为25×2.5×2mm)上的4个点,根据EN 843-1标准的指导,进行耐弯曲性的测量。在5个测试块上进行测试。
[0121] 根据FprEN 14425-3标准的指导,在弯曲中,使用Chevron缺口梁(notched beam)方法进行断裂韧性的测量。使用Zwick Z050通用机,以0.02mm/min的梁速度进行弯曲测试。使用具有0.1mm厚度的叶片,在之前缺口的三个测试块(测量为25×2.5×2mm)上进行测试。
[0122] 关于热膨胀系数,在5℃/min的加热速度下,在氩气流中,在高达1450℃的25×2.5×2mm的测试块上,使用Netsch DIL E 402膨胀计进行热膨胀测试。
[0123] 使用填充有电介质波导方法进行介电常数的测量。
[0124] 几何学上,使用Archimede方法,根据ASTM C373标准,在烧结试样上进行密度测量。
[0125] 结论
[0126] 获得的结果表明,使用的特定组成和方法的特定步骤的组合允许获得具有良好的机械特性、良好的耐热性和良好的介电特性的材料。
[0127] 在上面的描述中并且在随后的权利要求中,除非另外指出,在任何情况下,表明数量、参数、百分比等的所有数值量应该被认为之前具有术语“约”。此外,除了本文中特别表明的那些之外,所有的数值量的范围包括最大和最小的数值的所有可能的组合以及所有可能的中间范围。
[0128] 为了满足临时和具体的需要,本领域技术人员应该对根据本发明的陶瓷、天线罩和生产方法进行进一步的修改和改变,所有修改和改变均落入本发明的保护范围内。
QQ群二维码
意见反馈