Integrated ceramic/metallic component and method of making same

申请号 JP2005131265 申请日 2005-04-28 公开(公告)号 JP2005350341A 公开(公告)日 2005-12-22
申请人 United Technol Corp ; ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation; 发明人 FRELING MELVIN; SCHLICHTING KEVIN W; DIERBERGER JAMES A;
摘要 PROBLEM TO BE SOLVED: To provide an integrated ceramic/metallic component and a method of making same. SOLUTION: The integrated ceramic/metallic component (50) comprises a metallic non-foam region (52) and ceramic foam regions (60, 70, 80) comprising a gradient porosity therein, wherein the ceramic foam regions and the metallic non-foam region are integrally formed together to create the integrated ceramic/metallic component. The integrated ceramic/metallic component (50) comprises a metallic region (52) and a single piece ceramic foam construction (58) comprising a plurality of ceramic foam regions (60, 70, 80) therein, each ceramic foam region comprising a predetermined pore size and a predetermined volume percent porosity, wherein the single piece ceramic foam construction (58) is integrally joined to the metallic region (52) to form the integrated ceramic/metallic component. These components may be utilized in gas turbine engines. COPYRIGHT: (C)2006,JPO&NCIPI
权利要求
  • 金属非発泡体領域と、
    内部に傾斜多孔度を有するセラミック発泡体領域と、
    を含む一体化セラミック/金属部材であって、
    セラミック発泡体領域と金属非発泡体領域とは、一体化セラミック/金属部材を生成するように共に一体に形成される、
    ことを特徴とする一体化セラミック/金属部材。
  • 内部に傾斜多孔度を有するセラミック発泡体領域は、金属非発泡体領域と共に一体に形成される前に一体セラミック発泡体構造として形成されることを特徴とする請求項1記載の部材。
  • セラミック発泡体領域と金属非発泡体領域とは、一体化セラミック/金属部材を生成するように、以下の方法すなわちインベストメント鋳造、粉末冶金、および真空誘導溶解のうちの少なくとも一つの方法で、共に一体に形成されることを特徴とする請求項1記載の部材。
  • 傾斜多孔度は、変化する体積パーセント多孔度および変化する細孔径のうちの一方または両方を含むことを特徴とする請求項1記載の部材。
  • 変化する体積パーセント多孔度は、約5から約90体積パーセント多孔度の範囲であることを特徴とする請求項4記載の部材。
  • 変化する細孔径は、約10から約100細孔毎直線インチの範囲であることを特徴とする請求項4記載の部材。
  • セラミック発泡体領域の最も外側の表面に所定の性質を生成するように所定の方法でセラミック発泡体領域の最も外側の表面を処理することをさらに含むことを特徴とする請求項1記載の部材。
  • 所定の方法でセラミック発泡体領域の最も外側の表面を処理することは、セラミック発泡体領域の最も外側の表面の作製中に一つまたは複数の所定の材料を使用することと、セラミック発泡体領域の最も外側の表面を所定の材料で含浸させることの一方または両方を行うことを含むことを特徴とする請求項7記載の部材。
  • セラミック発泡体領域は、イットリア安定化ジルコニア、ムライト、ジルコニア、炭化ケイ素、窒化ケイ素、アルミナ、およびチタニアのうちの少なくとも一つを含むことを特徴とする請求項1記載の部材。
  • 金属非発泡体領域は、ニッケル基超合金、コバルト基超合金、および耐熱金属合金のうちの少なくとも一つを含むことを特徴とする請求項1記載の部材。
  • セラミック発泡体領域は、金属非発泡体領域上に被覆を含むことを特徴とする請求項1記載の部材。
  • セラミック発泡体領域は、前記部材それ自体の少なくとも一部を含むことを特徴とする請求項1記載の部材。
  • 金属非発泡体領域は、強化支持をセラミック発泡体領域に与えることを特徴とする請求項12記載の部材。
  • 金属非発泡体領域およびセラミック発泡体領域の一方または両方は、内部に冷却通路を備えることを特徴とする請求項1記載の部材。
  • 前記部材は、ガスタービンエンジン部材を含むことを特徴とする請求項1記載の部材。
  • ガスタービンエンジン部材は、ブレード外側空気シール、バーナ浮遊壁、タービンベーン、タービンブレード、ノズル、燃焼器パネル、およびオーグメンタのうちの少なくとも一つを含むことを特徴とする請求項15記載の部材。
  • 金属領域と、
    内部に複数のセラミック発泡体領域を含む一体セラミック発泡体構造と、
    を含む一体化セラミック/金属部材であって、
    各セラミック発泡体領域は、所定の細孔径と、所定の体積パーセント多孔度とを有し、
    一体セラミック発泡体構造は、一体化セラミック/金属部材を形成するように、金属領域に一体に結合される、
    ことを特徴とする一体化セラミック/金属部材。
  • 一体セラミック発泡体構造は、インベストメント鋳造、粉末冶金、および真空誘導溶解のうちの少なくとも一つの方法で、金属領域に一体に結合されることを特徴とする請求項17記載の部材。
  • 各セラミック発泡体領域は、異なる所定の細孔径を有することを特徴とする請求項17記載の部材。
  • 各セラミック発泡体領域は、異なる所定の体積パーセント多孔度を有することを特徴とする請求項17記載の部材。
  • 所定の細孔径は、約10から約100細孔毎直線インチであることを特徴とする請求項17記載の部材。
  • 所定の体積パーセント多孔度は、約5から約90体積パーセント多孔度であることを特徴とする請求項17記載の部材。
  • 一体セラミック発泡体構造の最も外側の表面に所定の性質を生成するように所定の方法で一体セラミック発泡体構造の最も外側の表面を処理することをさらに含む特徴とする請求項17記載の部材。
  • 所定の方法で一体セラミック発泡体構造の最も外側の表面を処理することは、一体セラミック発泡体構造の最も外側の表面の作製中に一つまたは複数の所定の材料を使用することと、一体セラミック発泡体構造の最も外側の表面を所定の材料で含浸させることの一方または両方を行うことを含むことを特徴とする請求項23記載の部材。
  • 一体セラミック発泡体構造は、イットリア安定化ジルコニア、ムライト、ジルコニア、炭化ケイ素、窒化ケイ素、アルミナ、およびチタニアのうちの少なくとも一つを含むことを特徴とする請求項17記載の部材。
  • 金属領域は、ニッケル基超合金、コバルト基超合金、および耐熱金属合金のうちの少なくとも一つを含むことを特徴とする請求項17記載の部材。
  • 一体セラミック発泡体構造は、金属領域上に被覆を含むことを特徴とする請求項17記載の部材。
  • 一体セラミック発泡体構造は、前記部材それ自体の少なくとも一部を含むことを特徴とする請求項17記載の部材。
  • 金属領域は、強化支持を一体セラミック発泡体構造に与えることを特徴とする請求項28記載の部材。
  • 前記部材は、ガスタービンエンジン部材を含むことを特徴とする請求項17記載の部材。
  • ガスタービンエンジン部材は、ブレード外側空気シール、バーナ浮遊壁、タービンベーン、タービンブレード、ノズル、燃焼器パネル、およびオーグメンタのうちの少なくとも一つを含むことを特徴とする請求項30記載の部材。
  • 内部に少なくとも二つのセラミック発泡体領域を含む一体セラミック発泡体構造を用意し、
    この一体セラミック発泡体構造をセラミック鋳型シェル内の所定の位置に配置し、
    溶融金属をセラミック鋳型シェル内へ導入し、
    セラミックシェル鋳型内で一体化セラミック/金属部材を形成するように溶融金属を凝固させる、
    工程を含む、一体化セラミック/金属部材を作成する方法であって、
    溶融金属は少なくとも一部が、溶融金属に隣接する一体セラミック発泡体構造の少なくとも一部に浸透して、凝固の際にそれとの鋳造結合部を形成し、それによって、一体化セラミック/金属部材を形成する、
    ことを特徴とする方法。
  • 溶融金属を凝固させることは、等軸凝固、一方向凝固、および単結晶凝固のうちの少なくとも一つを含むことを特徴とする請求項32記載の方法。
  • 一体セラミック発泡体構造をセラミック鋳型シェル内の所定の位置に配置する前に一体セラミック発泡体構造上の所定の位置に皮膜被覆を施すことをさらに含むことを特徴とする請求項32記載の方法。
  • 说明书全文

    本発明は、一般に一体化セラミック/金属部材に関する。 より詳細には、本発明は、高性能の一体化セラミック/金属部材を製造するために、内部に二つ以上の異なるセラミック発泡体領域を含む前もって作製された一体セラミック発泡体部材を金属非発泡体部材に一体に鋳造すること、およびその作成方法に関する。

    ガスタービンエンジンは、燃料の形態における化学ポテンシャルエネルギーを熱エネルギーに、さらには、航空機の推進、電の発生、流体のポンプ輸送などに使用するための力学的エネルギーに変換するために長い間使用されている。 ガスタービンエンジンの効率は、作動温度の増加とともに増加する。 従って、このようなエンジンの燃焼および排気ガス温度を増加させる大きな動機がある。 しかしながら、このようなエンジンの高温セクション部材に使用される金属材料は現在、その熱安定性の上限のごく近くにある環境において作動される。 現代のガスタービンエンジンの最高温度セクションにおいては、金属材料は、その融点を超える高温ガス経路内において使用される。 これらの金属材料は、単に空冷されるので持ちこたえるか、あるいは、これらの金属材料は、部材の熱伝導率を低下させるセラミック被覆をその上に有しており、それによって、部材が、より少ない冷却空気を使用しながらより高い温度で作動できるので、持ちこたえることができる。 断熱材として機能するほかに、このようなセラミック被覆はさらに、部材を通り抜けるかあるいは部材のそばを通過する高温ガスによる酸化性および腐食性の影響に対して部材を保護する環境保護を金属部材に提供する。

    作動温度の増加が所望されていると同時に、タービンブレードおよびその他の回転部材の重量をできる限り低下させて、エンジンの重量効率を増加させる大きな動機もある。 このように、現在の部材より軽量な部材を有することも所望されている。 セラミック被覆は一般に、セラミック被覆が上部に使用されている部材の加重支持部分ではない。 その結果として、これらの被覆は、部材にはっきりと認められるほど強度を付加せずに重量を付加する。 このように、部材に最小限の付加的重量を加えながら、部材に最大の利益および/または保護を与えるセラミック被覆が非常に所望されている。 さらに、特定の所望の性質を有するように作ることができるセラミック被覆、部材、または部材の一部を有することが所望されている。

    ガスタービンエンジン部材上の現在のセラミック被覆は一般に、溶射、電子ビーム物理蒸着、スパッタリング、化学蒸着、または同様のものによって施されている。 部材上のセラミック材料の付着性を向上させるために、および、酸化保護を部材に与えるために、金属接合被覆が一般に、部材に施され、次いでセラミック被覆が、金属接合被覆上に施される。 この複数被覆プロセスは、製造費用を増加させ、さらに部材に付加的重量を加える。 従って、一体化セラミック/金属部材を実現するシステムおよび方法を有するのが望ましい。 また、セラミック被覆を金属部材と共に使用するときに、このようなシステムおよび方法に別個の接合被覆の必要性を省かせるのが望ましい。 また、従来の金属部材の少なくとも一部をより軽量なセラミック発泡体材料で形成するシステムおよび方法を有するが望ましい。 また、内部に複数の異なる多孔度領域を有する前もって作製された一体セラミック発泡体構造を使用すること、および、この一体セラミック発泡体構造を金属部材で一体に鋳造し、それによって、一体化セラミック/金属部材を形成することが望ましい。

    従って、上部にセラミック部分またはセラミック被覆を有する既存部材およびその作成方法の上述した短所は、新規な一体化セラミック/金属部材およびその作成方法に関する本発明の実施態様によって克服される。 これらのシステムおよび方法は、内部に複数の異なる多孔度領域を有する前もって作製された一体セラミック発泡体構造を使用し、この一体セラミック発泡体部材を金属部材に一体に結合させ、それによって一体化セラミック/金属部材を形成する。

    本発明の実施態様は、一体化セラミック/金属部材を含む。 これらの部材の実施態様は、金属非発泡体領域と、内部に傾斜多孔度(gradient porosity)を含むセラミック発泡体領域とを含み、セラミック発泡体領域と金属非発泡体領域とは、一体化セラミック/金属部材を生成するように共に一体に形成される。 セラミック発泡体領域内の傾斜多孔度は、変化する体積パーセント多孔度および/または変化する細孔径(pore size)を含む。 変化する体積パーセント多孔度は、約5から約90体積パーセント多孔度の範囲とすることができ、変化する細孔径は、約10から約100細孔毎直線インチの範囲とすることができる。 セラミック発泡体領域は好ましくは、金属非発泡体領域と共に一体に形成される前に一体セラミック発泡体構造として形成される。

    これらの部材の実施態様は、金属領域と、内部に複数のセラミック発泡体領域を含む一体セラミック発泡体構造とを含み、各セラミック発泡体領域は、所定の細孔径と、所定の体積パーセント多孔度とを有し、一体セラミック発泡体構造は、一体化セラミック/金属部材を形成するように、金属領域に一体に結合される。 各セラミック発泡体領域は、異なる所定の細孔径および/または異なる所定の体積パーセント多孔度を有することができる。 所定の体積パーセント多孔度は、約5から約90体積パーセント多孔度の範囲とすることができ、所定の細孔径は、約10から約100細孔毎直線インチの範囲とすることができる。

    セラミック発泡体領域と金属非発泡体領域とは、一体化セラミック/金属部材を生成するように、例えば、インベストメント鋳造、粉末冶金、および/または真空誘導溶解、または同様のものなどといった任意の適切な方法で、共に一体に形成され得る。

    任意のセラミック発泡体領域の最も外側の表面は、セラミック発泡体領域の最も外側の表面に所定の性質を生成するように所定の方法で処理され得る。 この所定の方法は、セラミック発泡体領域の最も外側の表面の作製中に一つまたは複数の所定の材料を使用することと、セラミック発泡体領域の最も外側の表面を所定の材料で含浸させることの一方または両方を行うことを含み得る。

    セラミック発泡体領域は、例えば、イットリア安定化ジルコニア、ムライト、ジルコニア、炭化ケイ素、窒化ケイ素、アルミナ、および/またはチタニア、または同様のものなどといった任意の適切な材料を含み得る。

    金属非発泡体領域は、例えば、ニッケル基超合金、コバルト基超合金、および/または耐熱金属合金、または同様のものなどといった任意の適切な材料を含み得る。

    セラミック発泡体領域は、金属非発泡体領域上に被覆を含み得るか、あるいは、セラミック発泡体領域は、部材それ自体の少なくとも一部を含み得る。 セラミック発泡体領域が部材それ自体の一部を含む場合、金属非発泡体領域は、強化支持をセラミック発泡体領域に与えることができる。

    金属非発泡体領域およびセラミック発泡体領域の一方または両方は、内部に冷却通路を備えることができる。

    これらの一体化セラミック/金属部材は、例えば、ブレード外側空気シール、バーナ浮遊壁(floatwall)、タービンベーン、タービンブレード、ノズル、燃焼器パネル、および/またはオーグメンタなどといったガスタービンエンジン部材を含み得る。

    また、本発明の実施態様は、一体化セラミック/金属部材を製造する方法を含む。 実施態様において、この方法は、内部に少なくとも二つのセラミック発泡体領域を含む一体セラミック発泡体構造を用意し、この一体セラミック発泡体構造をセラミック鋳型シェル内の所定の位置に配置し、溶融金属をセラミック鋳型シェル内へ導入し、セラミックシェル鋳型内で一体化セラミック/金属部材を形成するように溶融金属を凝固させる、工程を含み、溶融金属は少なくとも一部が、溶融金属に隣接する一体セラミック発泡体構造の少なくとも一部に浸透または貫入して、凝固の際にそれとの鋳造結合部を形成し、それによって、一体化セラミック/金属部材を形成する。 この方法は、さらに、一体セラミック発泡体構造をセラミック鋳型シェル内の所定の位置に配置する前に一体セラミック発泡体構造上の所定の位置に皮膜(skim)被覆を施す工程を含み得る。 溶融金属を凝固させることは、等軸凝固、一方向凝固、および/または単結晶凝固を含み得る。

    本発明のさらなる特徴、態様、および利点は、本発明のいくつかの好ましい形態を例示する添付の図面が参照され、かつ、参照符号の同様の文字が図面の全体を通して同様の部品を示している以下の説明の間に、当業者には容易に明らかになるであろう。

    本発明のシステムおよび方法は、さまざまな図面を参照して以下に説明する。

    本発明の理解を促進する目的で、図1〜図5に例示される本発明のいくつかの好ましい実施態様と、本発明を記載するのに使用される特定の用語とをここで参照する。 ここで使用する用語は、限定ではなく説明の目的のためのものである。 ここに開示する特定の構造上および機能上の詳細は、限定として解釈されるものではなく、本発明をさまざまに利用するのを当業者に教示するための代表的な基礎としての請求項のための単なる基礎として解釈する必要がある。 説明した構造および方法における任意の変更または変形、および、当業者には通常浮かぶであろうような、ここに例示した本発明の原理のさらなる適用は、本発明の精神および範囲内にあると考えられる。

    本発明は、高品質、高性能の一体に鋳造されたセラミック/金属部材を生成するためのシステムおよび方法に関する。 これらのシステムおよび方法は、一体セラミック発泡体構造として前もって作製され、次いで、一体化セラミック/金属部材を製造するように金属部材に一体に鋳造される、二つ以上のセラミック発泡体領域を使用する。 従って、これらの部材は、比較できる既存の部材より大幅に重量が軽くなり得る。 さらに、これらの一体セラミック発泡体構造は、ガスタービンエンジン部材上の通常の断熱被覆および摩耗可能(abradable)被覆の一方または両方の代わりに使用することができ、あるいは/かつ、これらの一体セラミック発泡体構造は、ガスタービンエンジン部材それ自体のより軽量な部分を形成するのに使用することができる。

    本発明の実施態様は、図1および図2に示すように、一体化セラミック/金属部材50を含む。 これらの部材50は、一般に、金属非発泡体領域52と、少なくとも二つのセラミック発泡体領域(最も内側のセラミック発泡体領域60および最も外側の発泡体領域80)を含むセラミック発泡体部分58とを含む。 実施態様においては、図1に示す例示的で非限定的な一体化セラミック/金属部材50に示すように、最も内側のセラミック発泡体領域60は、金属非発泡体領域52の最も近くに配置され、最も外側のセラミック発泡体領域80は、第一のセラミック発泡体領域60の最も近くに配置される。 実施態様においては、図2に示す例示的で非限定的な一体化セラミック/金属部材50に示すように、最も内側のセラミック発泡体領域60と最も外側のセラミック発泡体領域80との間に配置された一つまたは複数の中間のセラミック発泡体領域70も存在し得る。

    図1および図2に示すように、これらの部材のセラミック発泡体部分58は、傾斜多孔度を有する。 実施態様においては、この傾斜多孔度は、セラミック/金属界面53の近くにおけるより大きな細孔と、セラミック発泡体部分58の最も外側の表面59の近くにおけるより小さな細孔とを含む。 この傾斜多孔度はさらに、変化する細孔径に加えてあるいは変化する細孔径の代替として、変化する体積パーセント多孔度を含む。 ここで説明しかつ図1および図2に示す実施態様は、複数の層を含むものとして異なるセラミック発泡体領域を示しているけれども、多くの他の適切な構成も本発明の範囲内で可能である。 例えば、異なるセラミック発泡体領域は、一つの上部に別の一つを層状に重ねる代わりに、並列(side−by−side)の構成で、または任意の他の適切な構成で配置することができる。 例えば、二つの異なるセラミック発泡体領域が、金属部材上に並列に存在することができ、次いで第三のセラミック発泡体領域が、一体の外側セラミック発泡体領域を形成するように、第一の二つの並列セラミック発泡体領域両方の上に層状に重ねられ得る。 他の実施態様においては、セラミック発泡体領域が、上部に複数の層または被覆を含む代わりにあるいはそれらに加えて、一体化セラミック/金属部材50それ自体の部分を含むことができる。 例えば、タービンブレードエーロフォイルは、図3に示すように、金属非発泡体領域52上の被覆として一体に鋳造されているセラミック発泡体部分58を含むことができるか、あるいは、図4に示すように、タービンブレードエーロフォイルそれ自体の実質的な部分が、セラミック発泡体部分58を含むことができる。 多くの他の構成も可能である。

    例示的な一体化セラミック/金属部材50、すなわちガスタービンエーロフォイルを図3に示す。 この実施態様においては、本発明のセラミック発泡体部分58が、金属非発泡体領域52上の通常の断熱被覆の代わりに使用されており、内部に中空の冷却通路54を有する。 図1および図2と同様に、図3Aの拡大図においてより明確に見ることができるように、金属非発泡体領域52の金属は、形成の際に隣接する最も内側のセラミック発泡体領域の少なくともいくつかの多孔度(細孔)62の中へ流入し、それによって、セラミック発泡体領域との強固な界面(すなわち強固な鋳造結合部)が生成される。

    別の例示的な一体化セラミック/金属部材50、すなわちガスタービンエーロフォイルを図4に示す。 この実施態様においては、ガスタービンエーロフォイルは実質的に全て、セラミック発泡体部分58から構成されており、金属非発泡体領域52は単に、構造支持を、内部に複数のセラミック発泡体領域を含むセラミック発泡体部分58に与える。 実施態様においては、このセラミック発泡体部分58は、大きな細孔を含む最も内側のセラミック発泡体領域60と、より小さな細孔を含む最も外側のセラミック発泡体領域80とを含むことができる。 このような仕方で、セラミック発泡体部分58の内側表面および外側表面は、特定の所望の性質または特性を有するように特注設計できる。 例えば、最も外側のセラミック発泡体領域80内のより小さな細孔によって、部材50はより耐摩耗性となることができ、一方、最も内側のセラミック発泡体領域60内のより大きな細孔によって、金属非発泡体領域52とのより良好な結合が可能となり得る。 部材50が実質的に全て、セラミック発泡体部分58で作成される場合は、セラミック発泡体部分58の多孔度(細孔)が十分な冷却を可能とし得るので、冷却の目的のために内部に中空の冷却通路54を有する必要がなくなり得る。 セラミック発泡体部分58と金属非発泡体領域52とのさまざまな他の組み合わせも可能である。

    図1および図2を再度参照すると、本発明の各セラミック発泡体領域60、70、80は、互いに浸透または貫入し合う(interpenetrate)二つの相、すなわち、セラミックマトリックス64、74、84と、これらの内部に収容される小胞体内(intracellular)体積部または多孔度(細孔)62、72、82とを含む。 実施態様においては、セラミックマトリックス64、74、84は、三次元内でランダムに相互に連結しそれによって間に連続気泡(open cell)または流路62、72、82を形成する織り交ぜられた帯(ligament)、脈状物(vein)、繊維、リボン、または同様のものなどからなる実質的に連続した網状体から成る。 連続したセラミックマトリックス64、74、84は、セラミック発泡体領域60、70、80の物理的完全性を維持する自立構造である。 実施態様においては、小胞体内体積部または多孔度(細孔)62、72、82もまた、それ自体の中で連続することができ、三次元内で互いにランダムに相互に連結してセラミックマトリックス64、74、84内の連続(open)または開いた流路を形成する。 実施態様においては、セラミックマトリックス64、74、84および小胞体内体積部62、72、82は両方とも、それら自体の中で連続することができ、外部表面から各相内の任意の位置への連続した経路を提供する。

    内部に複数のセラミック発泡体領域60、70、80を含むセラミック発泡体部分58は、単一構造として容易に製造できる。 多孔質セラミックマトリックス64、74、84を生成するのに任意の適切な材料または方法を使用できる。 例示的な一実施態様において、例えばウレタンフォームなどの連続気泡多孔質有機材料を、内部に結合剤を含む、微細に分割されたセラミック粉末のスラリー内に浸漬でき、それによって、多孔質有機材料の壁を被覆する。 その後、過剰のスラリーは、除去でき、被覆された多孔質有機材料は、有機材料を燃焼するように焼成でき、それによって、スラリー内の微細に分割されたセラミック粒子間に焼結されたセラミック結合が形成され、そこから燃焼された多孔質有機材料の内部構造を複製する多孔質セラミックマトリックスが生成される。 内部に複数の異なる多孔度領域を有する単一構造58を生成するために、スラリー内に浸漬される多孔質有機材料もまた、内部に複数の異なる多孔度領域を有する必要があり、それによって、それから得られる一体構造58に同じ構造を付与できる。 例えば、多孔質有機材料の二つの異なる領域または層を、任意の適切な仕方で一緒に取り付けることができ、次いで、スラリー内に浸漬し、焼成し、それによって、各領域が内部に異なる多孔度を有する二つの異なるセラミック発泡体領域を内部に含む一体構造58を形成できる。 多孔質セラミックマトリックスを形成する多数の他の方法も可能である。

    これらの一体セラミック発泡体構造は、それらの最終形態で作製でき、あるいは、これらの一体セラミック発泡体構造は、作製した後にそれらを最終形態にするように機械加工できるか別な方法で処理できる。 例えば、これらの一体構造は、それらの所望の形状および大きさで作製できるか、あるいは、これらの一体構造は、作製された後にそれらを所望の形状および大きさにするように機械加工できる。 また例えば、冷却通路または冷却孔54などといった詳細な特徴部は、一体構造で作製できるか、あるいは、これらの特徴部は、作製した後に、一体構造にドリル穿孔できるか別な方法で形成できる。

    本発明の実施態様においては、各セラミック発泡体領域60、70、80は、内部に所定の多孔度を含み、各セラミック発泡体領域内の多孔度は、セラミック発泡体部分58全体に亘って傾斜多孔度を生成するように異なり得る。 ここにおいてまた全体に亘って使用するように、「多孔度」は、細孔径および/または体積パーセント多孔度のことを指す。 例えば、実施態様においては、最も内側のセラミック発泡体領域60は、図1に示すように、最も外側のセラミック発泡体領域80より大きな細孔を含むことができる。 最も内側のセラミック発泡体領域60内のより大きな細孔によって、セラミック発泡体領域と金属非発泡体領域52との間のより良好な結合が可能となり得るし、一方、最も外側のセラミック発泡体領域80内のより小さな細孔によって、部材の熱伝導率を低減でき、より良好な耐摩耗性を提供でき、あるいは、外部の汚染物質が部材を攻撃したりまたは部材と反応するのを防止することができる。 他の実施態様においては、図2に示すように、最も内側のセラミック発泡体領域60は、最も大きな細孔を含むことができ、任意の一つまたは複数の中間のセラミック発泡体領域70は、中間の大きさの細孔を含むことができ、最も外側のセラミック発泡体領域80は、最も小さな細孔を含むことができる。

    セラミック発泡体部分58内に二つ以上の異なるセラミック発泡体領域を有することによって、金属非発泡体領域52と最も外側のセラミック発泡体領域80との間に漸進的移行層が形成され、それによって、部材50の材料モジュラス(modulus)を変化させるのが助けられる。 セラミック発泡体部分58全体に亘って傾斜多孔度を有することによって、セラミック発泡体部分58の厚み全体に亘る冷却流れを変化させるのも助けられる。 例えば、より大きな細孔がセラミック/金属界面の近くに存在しかつより小さな細孔がセラミック発泡体部分58の最も外側の表面の近くに存在する場合、セラミック発泡体部分58は、熱的影響または衝撃損傷に起因して割れおよび剥離が生じるので、より大きな多孔度が露出することになり、より多量の冷却空気がそこを通って流れるようになり、それによって、この領域に付加的な冷却空気が提供されるとともに、存在し得るどのような温度勾配も低減される。 他の実施態様においては、最も内側のセラミック発泡体領域60は、所望の用途に応じて、最も外側のセラミック発泡体領域80より高い体積パーセントの多孔度を含むことができ、あるいはその逆にすることもできる。

    本発明の実施態様においては、体積パーセント多孔度は、約5〜90体積パーセント多孔度の範囲とすることができ、細孔径は、約10〜100細孔毎直線インチの範囲、またはそれを超える範囲とすることができる。 非限定的な一実施態様においては、最も内側のセラミック発泡体領域60は、約80〜90体積パーセント多孔度および/または約10〜65細孔毎直線インチを有することができ、任意の中間のセラミック発泡体領域70は、約20〜80体積パーセント多孔度および/または約65〜85細孔毎直線インチを有することができ、最も外側のセラミック発泡体領域80は、約5〜20体積パーセント多孔度および/または約85〜100細孔毎直線インチまたは100を超える細孔毎直線インチを有することができる。 実施態様において、セラミックマトリックス部分64、74、84は、セラミック発泡体領域60、70、80に十分な構造上の強度を付与するように、セラミック発泡体領域60、70、80の約60体積パーセント以上を含むことができる。 小胞体内体積部62、72、82がそれ自体の中で連続であるのを図1および図2に示す平面の微細構造(microstructure)から理解するのは困難となり得るが、本発明の実施態様の場合はそのようなものである。

    少なくとも二つのセラミック発泡体領域のうちの各セラミック発泡体領域内の異なる多孔度によって、さまざまな設計パラメータが適合できる。 例えば、第一のセラミック発泡体領域60は、金属非発泡体領域52と第一のセラミック発泡体領域60との間に強固な鋳造結合部を達成することが可能な第一の多孔度を、その内部に有することができる。 次いで、第一のセラミック発泡体領域60の上に重なる外側のセラミック発泡体領域80は、第一のセラミック領域60内の第一の多孔度とは異なる第二の多孔度をその内部に有することができ、それによって、より良好な磨耗性(abrasion)、摩耗可能性(abradability)、またはその他の所望の性質が、外側のセラミック発泡体領域80内に存在する。 さまざまなセラミック発泡体領域内の多孔度は、さまざまな用途に合わせて個々に特注することができる。

    実施態様においては、金属非発泡体領域52に直ぐ隣接して配置された最も内側のセラミック発泡体領域60および/または任意の他のセラミック発泡体領域は好ましくは、内部に連続気泡多孔度(細孔)を含むかあるいは少なくとも部分的に連続な気泡の多孔度(細孔)を含み、それによって、鋳造の際に、溶融金属は、隣接するセラミック発泡体領域内の多孔度(細孔)の中へ少なくとも部分的に流入し、これらの隣接するセラミック発泡体領域と近接の金属非発泡体領域52との間に強固な鋳造結合部を形成する。 実施態様においては、最も外側のセラミック発泡体領域80も好ましくは、内部に連続気泡多孔度(細孔)を含むかあるいは少なくとも部分的に連続な気泡の多孔度(細孔)を含み、それによって、この領域は、摩耗可能性の性質を示す。 しかしながら、この最も外側のセラミック発泡体領域80は、所望ならば、研磨性(abrasive)の性質を示すように設計することもできる。 実施態様においては、任意の中間のセラミック発泡体領域70も、最終の一体化セラミック/金属部材50の所望の用途に応じて、内部に連続気泡多孔度(細孔)を含むかあるいは少なくとも部分的に連続な気泡の多孔度(細孔)を含むことができる。

    実施態様においては、最も内側の発泡体領域60内または金属非発泡体領域52に隣接する他のセラミック発泡体領域内の小胞体内体積部62の少なくともいくつかは、金属非発泡体領域52と同じ組成を有する金属で満たすことができるが、これは、鋳造の際に溶融金属がそれらの中へ流入でき、それによって、それとの鋳造結合部を形成するからである。 本発明の実施態様において、これらの領域は、共に一体に鋳造されるので、他の方法ではしばしば必要となるようには、金属非発泡体領域52と一つまたは複数の最も内側のセラミック発泡体領域60との間に接合被覆層は必要でなくなり得る。

    各セラミック発泡体領域は、特定の所望の性質を有するように個々に設計できる。 例えば、最も外側のセラミック発泡体領域80は、部材50の所望の用途に応じて、研磨性の性質かあるいは摩耗可能な性質を有するように設計できる。 この研磨性または摩耗可能性は、最も外側のセラミック発泡体領域80の連続気泡または部分的に連続な気泡の多孔度に起因し得るか、それは、セラミック発泡体領域80の作製の際に修飾または変更するセラミック材料の添加に起因し得るか、あるいは、それは、最も外側のセラミック発泡体領域80の鋳造後の処理に起因し得る。 例えば、実施態様においては、摩耗可能性が所望される場合は、少なくとも部分的に連続な気泡の多孔度を最も外側のセラミック発泡体領域80内で使用することができる。 実施態様においては、鋳造後、最も外側のセラミック発泡体領域80の外側表面は、その内部の多孔度の量を制御するために、その耐食性を向上または低下させるために、その密度を制御するために、および/または、性能の理由でその表面を変更するためにまたはその他のために、所定の材料で含浸させることができる。 例えば、研磨性が所望される場合は、研磨性材料を、最も外側のセラミック発泡体領域80内へ含浸させることができる。 実施態様においては、セラミック発泡体領域のために選択されるセラミック材料と任意の修飾セラミック材料とは、それらの固有の性質(すなわち、熱伝導率、熱膨張/収縮係数、熱容量、耐熱衝撃性、耐酸化性、耐食性、耐摩耗性、強度、その他)によって選択できる。 本発明では、最終の一体化セラミック/金属部材50の所望の性質および用途に応じて、多数のセラミック材料を使用できる。 例えば、本発明のセラミック発泡体領域は、例えば7YSZ(7重量パーセントイットリア安定化ジルコニア)、ムライト、ジルコニア、炭化ケイ素、窒化ケイ素、アルミナ、チタニア、および/またはこれらの組み合わせなどといった任意の適切なセラミック材料を含むことができる。

    セラミック発泡体領域の多孔質構造は、モノリシックセラミック構造が抵抗するより良好に衝撃損傷に抵抗する。 これは、モノリシックセラミック構造で生じるように衝撃エネルギーおよび関連する割れが構造内部に伝播する代わりに、本発明の多孔質構造の局所的破砕および圧縮によって衝撃エネルギーが吸収され得るからである。 本発明のセラミック発泡体領域は、良好な荷重支持強度および良好な腐食−浸食抵抗性も有する。 これらのセラミック発泡体領域は、低熱伝導率、低熱容量、および優秀な耐熱衝撃性も有する。 これらのセラミック発泡体領域の多孔質構造によって、その内部の小胞体内体積部の中に断熱気体障壁を提供することで、セラミック材料のモノリシック形態に比較して、セラミック材料の熱伝導率が低減される。 小胞体内体積部の空の多孔度(細孔)によって、一体化セラミック/金属部材50の全体の重量も低減され、それによって、部材50が取り付けられている支持構造に加えられる荷重が低減される。 空の多孔度(細孔)および付随する重量低下によって、部材50に付加的な重量を加えずに、より厚いセラミック被覆が達成され得る。 また、多孔度(細孔)は、セラミックにコンプライアンス(compliance)を付与し、作動中にセラミックスを撓ませ、それによって、作動中にそれが剥離する傾向を低減する。 さらに、本発明のセラミック発泡体領域は、その下にある金属非発泡体領域52に対する付加的な酸化保護を提供できる。 本発明のセラミック発泡体領域によって与えられるその他の多くの利点も存在する。

    本発明の一体化セラミック/金属部材50によって、作動中にセラミック発泡体領域内の多孔度(細孔)を通って熱および/または冷却剤を拡散させることで、部材の冷却が達成され得る。 この種の蒸散冷却は、いくつかの適用において従来の冷却技術より効果的となり得る。 さらに、空気などの冷却媒体は、部材50の多孔質セラミック部分を通って流れることができ、開放冷却孔だけが存在していた場合より長い時間その内部に留まり、それによって、従来の開放冷却孔で可能なよりも多くの熱が、多孔質セラミック部分を通過する冷却媒体へと部材50から移動する。 部材50の多孔質セラミック部分から流出する冷却媒体は、さらに、部材50上に冷却フィルムを形成できる。 従って、本発明の一体化セラミック/金属部材50を使用する場合、いくつかの用途においては、必要とされる冷却孔および冷却空気がより少なくなり得る。

    本発明のセラミック発泡体領域の少なくとも部分的に連続な多孔度(細孔)に加えて、従来の冷却孔54または他の冷却通路も、作製の際またはその後に、これらの部材50に組み込むことができる。 このような冷却孔54は、図1に示すように、金属非発泡体領域52とセラミック発泡体領域60、80との両方の中に存在することができ、あるいは、このような冷却孔54は、図2に示すように、金属非発泡体領域52の中だけに存在することができる。 図2に示すように、冷却空気90が、金属非発泡体領域52を通ることができ、次いで、そこから速やかに流出する代わりに、セラミック発泡体領域60、70、80を通ってゆっくりと拡散する。 図2に示すような仕方で、冷却空気90は、金属非発泡体領域52内の冷却孔54から径方向に膨張でき、冷却孔54からセラミック発泡体領域60、70、80を通って拡張する円錐形の冷却空気の広がりが生成される。 複数の冷却孔54が、互いに十分に接近して配置される場合は、これらの円錐形の冷却空気は、互いに重なることができ、それによって、部材の完全な表面冷却が可能となる。 本発明のセラミック発泡体領域60、70、80および/または金属非発泡体領域52において、さまざまな他の冷却通路も存在し得る。

    本発明の金属非発泡体領域52は、部材50の目的に適合する任意の金属材料を含むことができる。 いくつかの例示的な非限定的な金属材料としては、ニッケル基超合金、コバルト基超合金、および耐熱金属合金が挙げられる。 典型的なニッケル基超合金は、重量パーセントで、約1〜25%のコバルト、約1〜25%のクロム、約0〜8%のアルミニウム、約0〜10%のモリブデン、約0〜12%のタングステン、約0〜12%のタンタル、約0〜5%のチタン、約0〜7%のレニウム、約0〜6%のルテニウム、約0〜4%のニオブ、約0〜0.2%の炭素、約0〜0.15%のホウ素、約0〜0.05%のイットリウム、約0〜1.6%のハフニウム、および、ニッケルおよび付随的(incidental)不純物である残部を含む。 多数の他の特定の合金が、当業技術内で知られて使用されており、本発明にも使用され得る。

    一旦作製されると、内部に二つ以上の異なるセラミック発泡体領域を含む所望の一体化セラミック発泡体構造58は、セラミックシェル鋳型24内に配置することができ、一体化セラミック/金属複合部材50は、次いでその内部で鋳造できる。 セラミックシェル鋳型内に配置する前に、任意の適切な材料から成る皮膜被覆を、最も外側のセラミック発泡体領域80の外側表面上に配置することができ、それによって、セラミック発泡体領域は、最終の鋳造部材50内に入り組んだ中空通路を生成するのに使用されるセラミックまたは耐熱中子が鋳造部材50からエッチングされる間に、エッチングされることがない。 鋳造後、皮膜被覆は次いで、最も外側のセラミック発泡体領域80の外側表面上に所望の最終形状を生成するように、機械加工し去ることができるかあるいは別の方法で除去できる。

    インベストメント鋳造は長年の間、鋳造後にさらに必要な処理が最小限に抑えられる最終形状に近い(near−net shape)部材を作成するのに使用されてきた。 インベストメント鋳造によって、入り組んだ内部通路を内部に有する複雑な部品を作成できる。 一般に、インベストメント鋳造プロセスにおいては、部品の射出成形されたワックスパターンが最初に作成される。 本発明の一体セラミック発泡体構造58に加えて、このワックスパターンは、ワックスが除去されたときに最終の鋳造部材の中に入り組んだ中空通路を作成することになるセラミック中子または他の耐熱材料中子を内部に含むことができる。 このような中空の鋳造物は一般に、ガスタービンエンジン部材などの複雑な部品を製造するのに使用される。 ワックスパターンが一旦形成されると、ワックスパターンは、いくつかの層のセラミック材料(すなわち、スラリーおよびスタッコ(stucco))内に包まれて、部品のセラミックシェル鋳型24を形成することができる。 次いでワックスは、加熱によってセラミックシェル鋳型24から燃焼され、除去されることができ、次いでセラミックシェル鋳型24は、炉内で焼結によって強化されることができる。 次いでセラミックシェル鋳型24は、一体化セラミック/金属部材50を鋳造するのに使用される準備が整う。

    実施態様においては、鋳造は、図5に示す例示的なインベストメント鋳造システム10を含むことができる。 このシステム10においては、真空炉11が、サセプター12を備えており、サセプター12は、サセプター12の直ぐ近くに配置された誘導コイル14によって加熱される。 この炉11はまた、活性(active)加熱室16と、低温室18と、これら二つの室を分離する放射シールドとして機能するバッフル20と、冷却板22の上に位置するセラミックシェル鋳型24の基部を冷却する冷却板22とを備える。 鋳造の前に、セラミックシェル鋳型24の底部以外での核形成を防止するのを助けるために、セラミックシェル鋳型24は、鋳造中にセラミックシェル鋳型24内へ注ぎ込まれることになる溶融金属の融点を超える温度に活性加熱室16内で加熱できる。

    鋳造中は、所定の合金または他の金属材料が溶融され、注ぎカップ(pour cup)26を介して耐熱セラミックシェル鋳型24内へ導入され得る。 注ぎカップ26から溶融金属が下方へと鋳型キャビティ28内へ流れ込み、溶融金属は、取り除かれまたは「失われた」ワックスによって生成された鋳型24内のキャビティを満たし、鋳型24内に配置されたどのようなセラミックまたは耐熱中子も封じ込める。 溶融金属は次いで、一体化セラミック/金属部材50を製造するように選択的に冷却され得る。 選択的冷却は、冷却版22による溶融金属の凝固を開始させることを含み得る。 溶融金属の引き続く一方向結晶化は、冷却板22をゆっくりと降下させて、セラミックシェル鋳型24を活性加熱室16から徐々に引き出し、それを低温室18内へ配置させて、鋳型24内に収容される溶融金属からの一方向の熱除去を確立および制御することによって生じることができる。 これが生じる間に、凝固先端が、溶融金属内で確立され、そしてこの凝固先端は、上方へと鋳型キャビティ28内の溶融金属内を通って移動して、一方向鋳造された一体化セラミック/金属部材50が鋳型キャビティ28内に形成される。 これによって、所定の一方向凝固パターンを内部に有する制御された結晶粒構造を備える一体化セラミック/金属部材50が生成される。 鋳造後、セラミックシェル鋳型24は、鋳造部材の外側から(すなわち機械的に)除去でき、どのようなセラミックまたは他の耐熱中子も、化学的溶解処理によって鋳造部材から除去できる。 その後、皮膜被覆は、機械加工し去ることができ、一体化セラミック/金属部材50は、所望ならば熱処理することができて、部材50を強化し、また、その冶金学的構造を均質化する。

    上述した一方向凝固鋳造技術は、部材をインベストメント鋳造するための方法の一つに過ぎない。 それは、本発明をよりよく説明するための例示的な目的でのみ説明したものであり、どのような仕方であれ本発明を限定することを意図するものではない。 例えば、等軸鋳造、一方向凝固鋳造、単結晶鋳造、その他などといったさまざまな鋳造技術のいずれも本発明の一体化セラミック/金属複合部材50を生成するのに使用でき、すべて本発明の範囲内に含まれるとみなされる。 さらに、本発明の一体化セラミック/金属部材50を形成するのに、例えば、粉末冶金、真空誘導溶解、その他などといった多数の他の方法を使用できる。

    実施態様において、所望ならば、種結晶34が、本発明の一体化セラミック/金属部材50に所望の結晶方位(orientation)を付与するために使用され得る。 種結晶34は、鋳型キャビティ28内へ溶融金属が注ぎ込まれるときに結晶成長を開始させるために、また、溶融金属全体に亘って凝固先端が進行する間に結晶方位を制御するために使用できる。 このような仕方で、種結晶34は、最終の一体に鋳造されたセラミック/金属部材50の結果として得られる結晶方位を決定する。

    実施態様において、所望ならば、結晶粒セレクタ(grain selector)30が、生産歩留まりを向上させかつ本発明の一体化セラミック/金属部材50内の最適な所望の結晶構造の形成を促進するのに使用され得る。 結晶セレクタ30は、所望の結晶方位が溶融金属内で成長し続けるのを確実にすることができ、あるいは、結晶セレクタ30は、溶融金属内の柱状(columnar)結晶成長を単結晶成長に変換することができる。

    本発明のこの一体化セラミック/金属部材50は、例えば、ブレード外側空気シール、バーナ浮遊壁、タービンブレード、タービンベーン、ノズル、燃焼器パネル、およびオーグメンタ、その他などといったガスタービンエンジン部材を含み得る。 セラミック発泡体領域は、これらの部材上に被覆を含むことができ、セラミック発泡体領域は、部材それ自体の部分を含むことができる。

    上述したように、本発明は、一体化セラミック/金属部材およびそれを作成する方法を提供する。 有利なことには、複数の異なるセラミック発泡体領域が、一体セラミック発泡体構造として前もって作製でき、これらは次いで、金属部材に一体に鋳造されるかあるいは別な方法で金属部材に結合されて、一体化セラミック/金属部材を形成できる。 従って、これらの部材および方法は、別個の接合被覆の必要性を省くことができる。 さらに、これらの部材は、従来の部材より大幅に軽量となり得る。 ガスタービンエンジン内のより軽量な部材は、より軽量なエンジン全体の重量に繋がるが、これは非常に望ましいことである。 多くの他の実施態様および利点が、当業者には明らかであろう。

    本発明が満足するさまざまな必要を果たす、本発明のさまざまな実施態様を説明した。 これらの実施態様は、本発明のさまざまな原理の単なる例示であることを理解する必要がある。 本発明の多数の変形および適合は、本発明の精神および範囲から逸脱せずに当業者には明らかであろう。 例えば、本発明はここでガスタービンエンジンに使用するものとして説明したとはいえ、本発明は、炉、および内燃機関などの高温に遭遇する他の用途においても使用できる。 従って、本発明は、添付の請求項およびそれらの均等物の範囲に含まれる全ての適切な変形および変更を含むことが意図されている。

    本発明の実施態様に使用される、金属非発泡体領域と二つのセラミック発泡体領域とを含む例示的な一体化セラミック/金属部材を示す概略図である。

    本発明の実施態様に使用される、金属非発泡体領域と三つのセラミック発泡体領域とを含む例示的な一体化セラミック/金属部材を示す概略図である。

    本発明の実施態様に使用される、セラミック発泡体がエーロフォイル上の通常の断熱被覆の代わりに使用されている、例示的な一体化セラミック/金属ガスタービンエーロフォイルを示す概略図である。

    図3の円3A内に示される領域の拡大図である。

    本発明の実施態様に使用される、エーロフォイルが実質的に全て、金属強化材によって強化されているセラミック発泡体で作成されている、別の例示的な一体化セラミック/金属ガスタービンエーロフォイルを示す概略図である。

    本発明の実施態様に使用される、例示的なインベストメント鋳造システムを示す概略図である。

    符号の説明

    10…インベストメント鋳造システム 11…真空炉 16…活性加熱室 18…低温室 24…セラミックシェル鋳型 28…鋳型キャビティ 50…一体化セラミック/金属部材 52…金属非発泡体領域 53…セラミック/金属界面 54…中空の冷却通路 58…セラミック発泡体部分 60…最も内側のセラミック発泡体領域 70…中間のセラミック発泡体領域 80…最も外側のセラミック発泡体領域

    QQ群二维码
    意见反馈