装载发光元件用陶瓷基体

申请号 CN201080030211.X 申请日 2010-07-30 公开(公告)号 CN102471171A 公开(公告)日 2012-05-23
申请人 京瓷株式会社; 发明人 内野和仁; 西本健一;
摘要 提供一种从紫外线到红外线的区域(350~1000nm)的反射率高达90%以上,且还具有良好的机械性特性的装载发光元件用陶瓷基体。一种装载发光元件用陶瓷基体(1),其含有含量为94 质量 %以上97质量%以下的 氧 化 铝 、氧化 硅 、以及 氧化 钙 及 酸化 镁中的至少一种,其在基体(1)的表面(1a)的9.074×105μm2的表面积的部分,对圆当量直径0.8μm以上的气孔进行观察时,气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,气孔分布中的圆当量直径1.6μm以下的累积相对 频率 为70%以上。成为适合从紫外线到红外线的区域的反射率高达90%以上的机械性特性也良好的发光装置(21)的基体(1)。
权利要求

1.一种装载发光元件用陶瓷基体,其包含、氧化以及氧化及氧化镁中的至少一种,所述氧化铝的含量为94质量%以上97质量%以下,其特征在于,
5 2
在基体的表面的9.074×10μm 的表面积的部分,在对圆当量直径为0.8μm以上的气孔进行观察时,气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,气孔分布中的圆当量直径为1.6μm以下的累积相对频率为70%以上。
2.如权利要求1所述的装载发光元件用陶瓷基体,其特征在于,在对圆当量直径
0.8μm以上的气孔进行观察时,与所述基体的表面侧相比,中央部侧的气孔数多。
3.如权利要求1或者2所述的装载发光元件用陶瓷基体,其特征在于,所述氧化硅的含量为1质量%以上3质量%以下。
4.如权利要求1至3中任一项所述的装载发光元件用陶瓷基体,其特征在于,所述表面中的平均气孔径为1.0μm以上1.95μm以下。
5.一种发光装置,其特征在于,在权利要求1~4中任一项所述的装载发光元件用陶瓷基体上载置发光元件。

说明书全文

装载发光元件用陶瓷基体

技术领域

[0001] 本发明涉及一种用于载置LED等的发光元件的装载发光元件用陶瓷基体。

背景技术

[0002] 近年来,作为可大量生产的高亮度、消耗电少的发光元件,LED(发光二极管)备受关注。而且,作为一般照明用的光源或者电光显示板用的光源、进而作为手机、电脑及电视机等使用液晶的图像显示装置的背光源被广泛利用。
[0003] 对于用于装载这样的发光元件的基体,追求在表面上形成电极所需的绝缘性。另外,对于在基体上涂敷反射材料的类型,由于反射材料经时变化而变色导致反射率降低,或由于发光元件的散热而反射材料会从基体脱落等不良现象容易产生,从而追求基体自身具有高反射率。
[0004] 对于这样的要求,在专利文献1中,公开了作为装载发光元件用的陶瓷基体,使用氮化烧结体。
[0005] 另外,在专利文献2中,作为反射光用材料,提案有一种化铝的含量为74.6~100质量%的范围,作为其它成分包含酸钡,烧结后的平均粒子径为2.5μm以下的74.6质量%的氧化铝的发光元件收纳封装。
[0006] 另外,在专利文献3中,公开了一种半导体发光元件用的高反射白色陶瓷基板由氧化铝和玻璃材质成分构成,气孔率为5%以下的高反射白色陶瓷。进而公开了一种由氧化铝和玻璃材质成分构成,氧化铝的含有率为75~85重量%,作为玻璃材质成分含有二氧化、镁及钡,氧化铝的结晶粒径为0.5μm以下的高反射白色陶瓷。
[0007] 另外,在专利文献4中,公开了在将围绕发光元件装载部的框体的厚度设为0.8mm以上,该框体由氧化铝材质的烧结体构成的情况下,氧化铝含有率为90~99重量%,SiO2、MgO及CaO的合计的含量为1~10重量%时,能够使得波长400~700nm的光的反射率为80%以上。
[0008] 现有技术文献
[0009] 专利文献
[0010] 专利文献1:(日本)国际公开第2007/034955号手册
[0011] 专利文献2:(日本)国际公开第2007/058361号手册
[0012] 专利文献3:(日本)特开2007-284333号公报
[0013] 专利文献4:(日本)特开2004-207678号公报

发明内容

[0014] 发明所要解决的问题
[0015] 然而,在专利文献1中公开的由氮化铝构成的装载发光元件用陶瓷基体并未公开从可见光的长波长到红外线区域的反射率,进而,存在主成分即氮化铝昂贵的问题。
[0016] 另外,在专利文献2中公开的发光元件收纳封装存在氧化铝为100质量%时,烧结温度变高的问题。进而,残存有当为了降低烧结温度,作为添加剂而加入的碳酸钡的量变多时,成本变高的问题。
[0017] 进而,在专利文献3中公开的半导体发光元件用的高反射白色陶瓷基板虽然可以得到波长为450~750nm的反射率为90%以上,但是如实施例所示,残存有因包含3重量%的昂贵的钡,所以成本变高的问题。
[0018] 另外,在专利文献4中公开的发光元件收纳用封装,并未就用于该封装的陶瓷的反射率起因于陶瓷内部的气孔做出记载。
[0019] 本发明是为了解决上述课题而创立的,其目的在于提供一种实现成为基体的陶瓷烧结体的低成本化,得到作为发光元件装载用的基体的高反射率的装载发光元件用陶瓷基体。
[0020] 解决问题的手段
[0021] 本发明提供一种装载发光元件用陶瓷基体,其包含氧化铝、氧化硅以及氧化钙及氧化镁中的至少一种,所述氧化铝的含量为94质量%以上97质量%以下,其特征在于,在5 2
基体的表面的9.074×10μm 的表面积的部分,在对圆当量直径为0.8μm以上的气孔进行观察时,气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,气孔分布中的圆当量直径为1.6μm以下的累积相对频率为70%以上。
[0022] 发明效果
[0023] 根据本发明的装载发光元件用陶瓷基体,本发明为包含94质量%以上97质量%以下的含量的氧化铝,并含有氧化硅、以及氧化钙及氧化镁中的至少一种的基体,在该基体5 2
的表面的9.074×10μm 的表面积的部分,在对圆当量直径为0.8μm以上的气孔进行观察时,气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,气孔分布中的圆当量直径为1.6μm以下的累积相对频率为70%以上,因此,即便来自发光元件的光未在基体的表面上反射,而向基体的内部入射,由于具有示出上述气孔率、气孔数、气孔分布的气孔,使基体内部的反射光增加,所以能够容易地提升基体的反射率。
附图说明
[0024] 图1是表示在本实施方式的装载发光元件用陶瓷基体上载置发光元件的发光装置的构成的一例的剖面图;
[0025] 图2是表示向本实施方式的装载发光元件用陶瓷基体的表面的入射光散射的状态的概念图
[0026] 图3是表示对本实施方式的装载发光元件用陶瓷基体的表面上粘附的导体的密合强度的测定方法的剖面图。

具体实施方式

[0027] 下面,说明本发明的装载发光元件用陶瓷基体的实施方式的例子。
[0028] 图1为表示在本实施方式的装载发光元件用陶瓷基体上载置有发光元件的发光装置的构成的一例的剖面图。
[0029] 使用本实施方式的装载发光元件用陶瓷基体1(下面称为基体1。)的发光装置21在装载发光元件2的基体1的一表面1a上,使用厚膜印刷法粘附阴极电极及阳极电极用的电极(表面电极)3c、3d,在形成了电极3c、3d的局部,通过敷等形成电极焊盘3a、3b,在该电极焊盘3a上载置有由半导体构成的发光元件2。而且,通过接合线32将发光元件2的阳极电极(未图示)或者阴极电极(未图示)和电极焊盘3b电接合。另外,在此,关于电极焊盘3a和发光元件2的接合,如果能够电接合,则可以使用导电性粘接剂的接合、接合线32的接合或者焊(半田バンプ)的接合。而且,用由树脂等构成的密封构件31被覆含有发光元件2及电极焊盘3a、3b的电极3c、3d,该密封构件31兼备发光元件2的保护和透镜31a的功能。另外,在电极3c、3d及电极焊盘3a、3b的露出部分,通常作为保护层粘附透明的涂敷层玻璃,这里省略说明。
[0030] 另外,电极(表面电极)3c、3d经由贯通于基体1的电极(贯通导电层)3e、3f与形成于基体1的其它表面1a’的电极(背面电极)3g、3h电接合。
[0031] 而且,将外部的直流电源(未图示)或者AC-DC开关电源(未图示)连接到该电极(背面电极)3g、3h,通过在阴极电极侧施加正电压,在阳极电极侧施加负电压,发光元件2的P-N接合部发光。此时,密封构件31为不仅保护发光元件2,而且多具有选择性地转换光的波长的功能,进而具有通过密封构件31的外壳即透镜31a来扩散及放射光的构造。
[0032] 本实施方式的装载发光元件用陶瓷基体1的组成含有94~97质量%的含量的氧化铝,并含有氧化硅、以及氧化钙及氧化镁中的至少一种。另外,在装载发光元件用陶瓷基5 2
体1的表面的9.074×10μm 的表面积的部分,在观察圆当量直径0.8μm以上的气孔时,圆当量直径0.8μm以上的气孔的气孔率为2.5~4.5%的范围,圆当量直径0.8μm以上的气孔的气孔数为7000~11000个的范围,圆当量直径0.8μm以上的气孔的气孔分布的圆当量直径1.6μm以下的累积相对频率为70%以上是很重要的。
[0033] 图2为表示向本实施方式的装载发光元件用陶瓷基体的表面的入射光进行散射的状态的概念图。
[0034] 如图2所示,本实施方式的装载发光元件用陶瓷基体1在以结晶尺寸的平观察剖面时,具有氧化铝粒子4和氧化硅等构成的玻璃相(晶界相)5、气孔6。另外,将这些氧化铝粒子4和玻璃相5之间作为界面7、气孔6和玻璃相5的界面8。
[0035] 照射到本实施方式的装载发光元件用陶瓷基体1的表面1a的入射光11成为由基体1反射的反射光13、和透过基体1的内部且来自照射了入射光11的一表面1a的相反侧的另一表面1a′的透射光12。
[0036] 另外,入射光11的一部分成为在表面1a以与入射度相同的角度向反方向反射的正反射光13a、和在表面1a向不特定的方向反射的扩散反射光13d,剩余的部分进入基体1的内部,成为透过氧化铝粒子4,气孔6及玻璃相5的至少一种的透射光12。而且,该透射光12在基体1内,在氧化铝粒子4和玻璃相5之间的界面7其一部分成为扩散反射光13b,另外,在气孔6和玻璃相5的界面8成为扩散反射光13c,剩余的光进一步地在基体1内部成为透射光12而行进下去,产生出氧化铝粒子4和玻璃相5之间的界面7、气孔6和玻璃相5之间的界面8的扩散反射光13b、13c,成为来自表面1a的反射光13。而且,一部分的光从另一表面1a’作为透射光12出来。
[0037] 另外,为了提升光的反射率,最优选照射到基体1的表面1a的入射光11在表面1a成为正反射光13a及扩散反射光13d,与目前的装载发光元件用陶瓷基体相比较,在表面侧存在的气孔6的数量大幅增大,进而越朝向中央部侧,越进一步地增大气孔6的存在数,由此,在气孔6和玻璃相5的界面8,透射光12的扩散反射光13c的发生机会增多,能够增加来自表面1a的反射光13,容易地提升反射率。
[0038] 本实施方式的装载发光元件用陶瓷基体1由于主成分即氧化铝的含量在94~97质量%的范围内,因而除去不可避免的杂质的氧化硅和氧化钙及酸化镁的至少一种的合计的含量成为余量的3~6质量%,无需使用材料成本高的钡,即便在比通常的烧成温度低的温度即1420~1540℃的温度下烧成,也可以充分地提高烧结性,所以能够谋求基体1的低成本化。另外,并非是一定不包含钡的物质。
[0039] 另外,由于在氧化铝粒子4彼此之间形成由氧化硅等构成的玻璃相5,因此,当在装载基体1的发光元件2的一表面1a涂布用于形成电极3c、3d用的厚膜膏并烧成厚膜时,膏中包含的金属成分就会从表面1a传递到玻璃相5,向内部扩散,因此,容易提高电极3c、3d和基体1的密合强度。
[0040] 进而,在装载基体1的发光元件2的表面1a的9.074×105μm2的表面积的部分,在观察圆当量直径0.8μm以上的气孔时,气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,因此,能够不提高气孔率而增多气孔数,能够扩大玻璃相5和气孔6的界面8的面积,其结果,如使用图2说明,可增大在基体1的表面1a的正反射光13a及扩散反射光13d以及在基体1的内部的扩散反射光13b、13c,入射光11能够向其入射侧的表面1a的外部反射。另外,在基体1的内部的氧化铝粒子4传递而要向另一表面1a’侧透过的光也透过玻璃相5时,通过将气孔率和气孔数设为本实施方式的范围,能够使得在玻璃相5和气孔6之间的界面8上有更多的光扩散而进行反射,因此,从入射光11入射的相反侧的表面1a’透过出来的光就变少,能够容易大幅增加向表面1a上放出的反射光13,能够容易提升基体1的反射率。因此,无需使用昂贵的钡,就能够容易地提高反射率。
[0041] 此外,由于在基体1的装载发光元件2的表面1a的9.074×105μm2的表面积的部分,在观察圆当量直径0.8μm以上的气孔时,气孔分布的圆当量直径1.6μm以下的累积相对频率为70%以上,因而,容易减轻由大气孔6带来的机械强度的下降,能够扩大玻璃相5和气孔6的界面8的面积,因此容易增加反射光13。
[0042] 在此,本实施方式的装载发光元件用陶瓷基体1的表面1a的9.074×105μm2的表面积的部分的气孔6的气孔数为机械特性和反射率双方成为最好的9000个以上11000个以下,圆当量直径0.8μm以上的气孔分布的圆当量直径1.6μm以下的累积相对频率更优选为75%以上,在烧结温度设为1420~1540℃左右,烧成时间设为在3.6~21小时的范围下进行,在以能够更均匀地烧结成为基体1的烧结体的方式抑制烧成炉内的温度偏差的同时,减少成形体的重叠片数,进行升温降温的温度曲线的严格的控制,由此,能够得到这样的成为基体1的烧结体。
[0043] 另外,关于气孔6的平均气孔径、气孔数、气孔率及气孔分布的测定,镜面研磨加工基体1的试样的表面1a至例如10μm的深度,将倍率调为100倍的金属显微镜的图像读取到CCD相机中,使用图像解析装置进行解析并将其数值化。具体地,图像解析的软件使用5 2
(株式会社)三谷商事制的型号名称Win ROOF,关于9.074×10μm 的表面积以圆当量直径0.8μm为阈值计算出各测定值即可。
[0044] 另外,光的反射率的测定使用分光光度计(例如(株式会社)岛津制作所制的分光光度计 型号名称UV-315和作为附件的积分球装置 型号名称ISR-3100),光源使用50W卤素灯和氘灯,波长范围设为200~1000nm,测定范围设为扩散反射率(狭缝20nm时
7×9mm),不使用掩模,基准使用硫酸钡粉体来测定。
[0045] 优选本实施方式的装载发光元件用陶瓷基体1在对圆当量直径0.8μm以上的气孔进行观察时,与基体1的表面侧相比,中央部侧的气孔数多。
[0046] 在此,就本实施方式的装载发光元件用陶瓷基体1的表面侧和中央部侧进行说明。首先,所谓表面侧是指将自图3所示的基体1的一表面1a或者另一表面1a’在厚度方向上到达10μm左右的表层的部分设为表面侧。这是由于,在一般的由厚膜膏印刷用的氧化铝构成的基体(俗称:厚膜基板)中,与在膏中添加了导体即金属成分的导体密合用成分(例如铋等)一同自氧化铝基板的表面侵入内部的深度约为10μm,因此,将此范围的表层设为表面侧。其次,所谓中央部侧是指将基体1在厚度方向上3等分时的中间的部分设为中央部侧。
[0047] 而且,在装载基体1的发光元件2的表面1a的9.074×105μm2的表面积的部分,在对圆当量直径0.8μm以上的气孔进行观察时,气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,且对圆当量直径0.8μm以上的气孔6进行观察时,在与基体1的表面侧相比较,靠中央侧的气孔数多时,从基体1的表面1a向内部透过中的光在氧化铝粒子4和玻璃相5之间的界面7和气孔6和玻璃相5之间的界面8,光的一部成为扩散反射光13b、13c,剩余的光进一步为透过中的光而行进,但随着靠近基体1的中央部侧,与表面侧相比气孔数变多,气孔6和玻璃相5的界面8的面积也变大,扩散反射光13c的发生频率增加。因此,向表面1a放出的反射光13增加。
[0048] 另外,由于本实施方式的装载发光元件用陶瓷基体1的两表面侧和中央部侧的气孔数的关系相同,因而例如发光元件2也可以装载在表面1a、1a’中的任一者上,在发光装置21的制造工程中,无需考虑基体1的表里(表裹)的方向性,能够提升生产性。
[0049] 本实施方式的装载发光元件用陶瓷基体1优选氧化硅的含量为1质量%以上3质量%以下。
[0050] 如果氧化硅的含量为1质量%以上3质量%以下,则如图2所示,在除去气孔6的氧化铝粒子4间的晶界中能够充分地形成玻璃相5。另外,由于在较之通常的烧成温度低的温度即1420~1540℃的温度下,烧结基体1的表面1a、1a’成为作为电子零件用基板没有问题的程度,因此,能够确保作为基体1的机械性强度。
[0051] 另外,在基体1的表面1a、1a’上,为了装载发光元件2,而以阴极电极及阳极电极为主形成如图1所示的电极3c、3d、3g及3h,在涂布厚膜膏而烧成、形成厚膜时,在膏中包含的金属从基体1的表面1a、1a’在玻璃相5中传递并向内部扩散而烧结,由此,印刷的电极3易于牢固地密合到基体1的表面1a、1a’。此时,当氧化硅的含量不足1质量%时,氧化铝粒子4之间不会形成足够的玻璃相5,因此,在电极3中包含的金属不会从表面1a、1a’向玻璃相5充分地扩散,因此,电极3的密合强度容易变低。
[0052] 另外,在氧化硅的含量超过3质量%时,由于玻璃相5的比例增大,所以机械性强度(弯曲强度)及硬度容易下降。此外,莫来石等的异常结晶有可能析出,由于这些析出物往往会成为降低电特性的原因,因而,作为电子零件用基板,优选氧化硅的含量为1质量%以上3质量%以下。
[0053] 另外,优选本实施方式的装载发光元件用陶瓷基体1的表面1a、1a’上的气孔的平均气孔径为1.0μm以上1.95μm以下。
[0054] 如图2所示,照射到基体1的一表面1a的入射光11作为由基体1反射的反射光13以及其一部分光透过基体1的内部从照射入射光11的表面1a的相反侧的基体1的另一表面1a’作为透射光12出来。
[0055] 在此,根据本实施方式的装载发光元件用陶瓷基体1,认为,由于在气孔6和玻璃相5的界面8也发生与在氧化铝粒子4和玻璃相5的界面7产生的扩散反射光13b相同的扩散反射光13c,从而反射光13向基体1的外部的放出的机会明显地增大,因此,光的反射率提升。
[0056] 在此,进而认为如果气孔6的平均气孔径在1.0~1.95μm的范围内,则在基体1的内部的扩散反射光13b及扩散反射光13c适宜地发生,同时,它们从基体1的表面1a向外部放出的机会增加。
[0057] 下面,说明本实施方式的装载发光元件用陶瓷基体的制造方法的一例。
[0058] 首先,准备用于制作装载发光元件用陶瓷基体1的平均粒径为1.4~1.8μm左右的氧化铝(Al2O3)的粉末、氧化硅(SiO2)、和氧化钙(CaO)及酸化镁(MgO)中的至少一种粉末,将以各粉末的合计含量为100质量%的方式秤量的混合粉末与水等溶剂一同投入滚磨机并混合。其次,相对于混合粉末100质量%,向其中添加4~8质量%左右的聚乙烯醇、聚乙二醇、丙烯酸树脂或者缩丁树脂等中的一种的成形用粘合剂,使用高纯度的氧化铝球,进一步用滚磨机混合,得到料浆。其次,使用此料浆通过刮板法形成片,或者使用用喷雾干燥机制作该料浆的造粒体,通过滚筒压制法形成陶瓷片。其次,通过用于制成制品形状用的模具的加工或者激光加工,制作未烧成的成形体。此时,成形体最终可以为装载发光元件的基体1的单品,如果考虑到量产性,则更优选取多个的成形体。而且,通过使用大气(氧化)气氛的焙烧炉(例如,滚筒式隧道炉,分批式气氛炉及推杆式隧道炉),将最高温度设定为1420~1540℃进行烧成,由此能够制作本实施方式的装载发光元件用陶瓷基体1。另外,通过变更烧成时间,也能够增减气孔数。
[0059] 实施例1
[0060] 下面,具体地说明本发明的实施例,但是本发明并非限定于下面的实施例。
[0061] 首先,准备作为氧化铝(Al2O3)的平均粒径1.6μm左右的粉末、氧化硅(SiO2)、和氧化钙(CaO)及酸化镁(MgO)的至少一种粉末。而且,将以各粉末的合计含量为100质量%的方式称量的混合粉末与水等溶剂一同投入滚磨机进行混合。
[0062] 下面,向其中添加丙烯酸树脂的成形用粘合剂,使用高纯度的氧化铝球进一步用滚磨机混合,得到料浆。在此,成形用粘合剂的添加量相对于混合粉末100质量%设为4~8质量%左右。如果在此范围内,则成形体的强度及挠性就没有问题,另外,也不会发生烧成时成形用粘合剂的脱脂不充分的不良状态。
[0063] 下面,用公知的刮板法将得到的料浆成形为片状,用模具将该片加工成制品形状的尺寸。
[0064] 下面,为了烧结该制品形状的成形体,用推杆式隧道炉以表1所示的温度条件进行烧成,基体1的厚度为0.635mm,得到表1所示的那样的试样No.1~33的装载发光元件用陶瓷基体的试样。另外,关于烧成时间,在试样No.1~23为9小时,试样No.24~33为3.6~21小时的范围内增减,进行烧成。
[0065] 关于该得到的装载发光元件用陶瓷基体的试样,用下面的方法进行气孔率、气孔数、气孔分布的累积相对频率、弯曲强度、导体的密合强度及反射率的测定。
[0066] 关于基体1的气孔率、气孔数及气孔分布的累积相对频率的测定,将各试样的表面从表面进行镜面研磨加工到10μm的深度,用CCD相机读取倍率为100倍的金属显微镜的图像,使用图像解析装置将其数值化。具体地,金属显微镜使用(株式会社)KEYENCE制的显微镜 型号名称VHX-500,CCD相机使用(株式会社)Nikon制的Digital SIGHT型号名称DS-2Mv,图像解析的软件使用(株式会社)三谷商事制的型号名称WinROOF,对于5 2
9.074×10μm 的表面积,将圆当量直径0.8μm设为阈值,计算各测定值。另外,测定数为
5 2
每个试样数1个,每1次的测定面积为2.2685×10μm,测定共计4处,求出测定总面积相
5 2
对于9.074×10μm 的表面积的各数据。另外,在使用其它装置等计算气孔数时,将每测定
5 2
面积的气孔数换算为每9.074×10μm 的气孔数的值为7000个以上11000个以下即可。
[0067] 另外,在与各试样同一组成、同一烧成条件下,以JISR 1601为准,预先制作长度为30mm、宽度为10mm、厚度为0.8mm的烧结体,在烧结体的跨度为20mm的中央部施加0.5mm/分钟的负荷,测定烧结体破坏为止的最大负荷,计算三点弯曲强度。另外,测定数为测定试样数10个,求出其平均值。
[0068] 下面,图3为表示相对于粘附到本实施方式的装载发光元件用陶瓷基体的表面的导体的密合强度的测定方法的剖面图。
[0069] 如图3所示,关于相对于向基体1的表面粘附的导体33的密合强度的测定方法,向被测定物即基体1的表面1a印刷厚膜膏(未图示),形成由烧成后的尺寸为2mm见方、厚度为10μm的钯(田中贵金属工业(株式会社)公司制 型号TR4846)构成的导体33,在约850℃下烧成。下面,在导体33的表面上,使用以Sn-Pb(6∶4焊锡)系相对于整体将Ag设为2质量%的焊锡34,焊剂为向松香系合成树脂中混合了和醇系溶剂物质,使用商品名为XA-100(TAMURAKAKEN(株式会社)社制),在225±5℃的温度下焊接直径为0.6mm的镀敷导线(在线上镀敷Sn)35,准备测定用试样。下面,以7.62mm/分钟的速度拉伸镀敷导线35,测定导体33从基体1剥离时的强度,作为对基体1的导体的密合强度。该实验装置使用ダイ·シエアリング·テスタ(ANZA TECH社制 型号520D)。另外,关于测定数,对各试样数10个进行测定,求其平均值。另外,在数据中排除镀敷铜线35从导体33剥离的情况,仅将导体33从基体1剥离时的数据作为导体33的密合强度。
[0070] 下面,关于反射率的测定,测定器(未图示)使用(株式会社)岛津制作所的分光光度计 型号名称:UV-315和积分球单元 型号名称ISR-3100,光源使用50W卤素灯和氘灯,波长范围设为200~1000nm,对于测定范围,作为扩散反射率(狭缝20nm时7×9mm)不使用过滤器及掩模,作为反射率的基准使用硫酸钡粉体测定。另外,关于测定试样数,对于基体1的厚度为0.635mm的各1个的表面1a的1处进行测定。
[0071] 另外,试样No.3~7、9、10、12、13及15~33为本实施方式的装载发光元件用陶瓷基体1的实施例,试样No.1、2、8、11及14为比较例。
[0072] 另外,各试样的综合评价为弯曲强度为310MPa以上,且导体33的密合强度为19MPa以上,进而将波长350~1000nm范围的反射率满足90%以上的设为合格,将不满足以上的任一个项目的设为不合格。
[0073] 将得到的结果在表1及表2中表示出来。
[0074] 表1
[0075]
[0076] 表2
[0077]
[0078] 如表1、2所示的结果得知,比较例的试样No.1、2、8、11、14由于在上述综合评价的各项目中,不满足任一个以上的项目,所以不合格。
[0079] 首先,试样No.1由于烧成温度高,所以气孔率及气孔数变少,反射率不足90%。试样No.2由于氧化铝的含量较低达93.5%,第二成分即氧化硅、氧化钙及酸化镁的至少一种的合计的含量多,所以气孔率和气孔数就变低,反射率在哪一个波带上都较低为不足90%。试样No.8由于不含有氧化钙及酸化镁中的任一个,所以不能抑制烧结时的结晶粒成长,因而气孔率高,气孔数变少,反射率在哪一个波带上都低至不足90%,可知弯曲强度与其它试样相比为较低的值。
[0080] 另外,试样No.11由于氧化硅的含量少至0.5质量%,因而导体33的密合强度低达10.5MPa。试样No.14由于进一步地降低烧成温度,从而氧化铝粒子就变得烧结不足,气孔数多,虽然各波带的反射率高,但弯曲强度结果也变得稍微低。
[0081] 与之相对,本发明的实施例的试样No.3~7、9、10、12、13及15~33为包含含量为94质量%以上97质量%以下的氧化铝、氧化硅、氧化钙及酸化镁中的至少一种的装载5 2
发光元件用陶瓷基体,在基体的表面的9.074×10μm 的表面积的部分,在对圆当量直径
0.8μm以上的气孔进行观察时,由于气孔率为2.5%以上4.5%以下,气孔数为7000个以上11000个以下,气孔分布的圆当量直径1.6μm以下的累积相对频率为70%以上,所以波长350~1000nm的光的反射率为90%以上,弯曲强度为310MPa以上,导体33的密合强度也为19MPa以上,综合评价为合格。
[0082] 另外,试样No.4~6、9、10、12、13、17~24、26、27、29、30、32及33为下述这样的5 2
特别良好的结果,即,表面1a的9.074×10μm 的表面积的部分的圆当量直径0.8μm以上的气孔的气孔数为9000~11000个,通常,反射率的评价中使用的波长500nm的反射率全部在91%以上。因此,,得知圆当量直径0.8μm以上的气孔的气孔数更优选范围为9000~
11000个。
[0083] 另外,在本实施方式中,得知所谓氧化钙和酸化镁中至少含有一个是必须的,氧化硅为满足烧结性、厚膜印刷的导体的密合强度、反射率中的至少一个用的必须成分,特别优选的范围为1~3质量%。
[0084] 实施例2
[0085] 下面,调查与装载发光元件用陶瓷基体1的表面侧相比中央部侧的气孔数多带来的与反射率的关系。
[0086] 首先,使用与在实施例1中制作的试样No.12同样的原料,在与实施例1同样的工程中制作成形体,在表3所示的烧成温度和烧成时间的增减率的条件下进行烧成,制作基体1。
[0087] 气孔率的测定方法与实施例1同样。但是,在测定中央部侧的气孔数时,由于基体1的厚度为0.635mm,所以将基体1从表面1a研磨约0.32mm,用与实施例1同样的方法,测定该研磨面。另外,关于反射率,这里仅对波长500nm进行测定。
[0088] 将得到的结果表示在表3中。
[0089] 表3
[0090]
[0091] 由表3的结果得知,随着与表面侧相比中央部侧的气孔数变多,反射率增加,因此,能够作为装载发光元件用陶瓷基体良好地使用。
[0092] (实施例3)
[0093] 关于在实施例1中制作的比较例即试样No.1及14和本实施方式的实施例即试样No.5、12及13,以实施例1的测定方法,进行平均气孔径和波长200~350nm的反射率的测定。
[0094] 将得到的结果表示在表4中。
[0095] 表4
[0096]
[0097] 由表4的结果得知,平均气孔径高达2.02μm的比较例的试样No.1的波长350nm以下的反射率急剧变低。另外,平均气孔径小达0.95μm的情况下的反射率的波长250nm以下的反射率变低。
[0098] 本实施方式的实施例的试样No.5、12及13的平均气孔径在1.00~1.95μm的范围,至波长300nm的反射率为80%以上,至波长250nm为60%以上,能够显著提升成为课题的紫外线区域的反射率。
[0099] 虽然对该结果的平均气孔径的作用不得而知,但是可得知如果平均气孔径为1~1.95μm的范围,则有助于近紫外线区域的反射率的提升。
[0100] 如上,本实施方式的装载发光元件用陶瓷基体1无需使用材料成本高的钡,进而比通常的温度低的温度即1420~1540℃的温度下也能够提高烧结性,因此,能够实现基体1的低成本化。此外,为一种弯曲强度高,即便在基体1上直接厚膜印刷电极也具有足够的导体的密合强度,而且在覆盖自可见光区域的全部区域到紫外线区域及红外线区域的一部分的广大范围的波长中能够得到高反射率,同时能够充分地满足高反射率和机械性特性两方的对于发光元件装载用适用的陶瓷基体。
[0101] 符号说明
[0102] 1:装载发光元件用陶瓷基体(基体)
[0103] 1a、1a’:表面
[0104] 2:发光元件
[0105] 3、33:导体
[0106] 3a、3b:电极焊盘、3c、3d:表面电极、3e、3f:贯通导电层、3g、[0107] 3h:背面电极
[0108] 4:氧化铝粒子
[0109] 5:玻璃相(晶界相)
[0110] 6:气孔
[0111] 7:界面(氧化铝粒子和玻璃相的界面)
[0112] 8:界面(气孔和玻璃相的界面)
[0113] 11:入射光
[0114] 12:透射光
[0115] 13:反射光
[0116] 13a:正反射光、13b:扩散反射光、13c:扩散反射光、13d:扩散反射光[0117] 21:发光装置
[0118] 31:树脂
[0119] 32:透镜
[0120] 34:焊锡
[0121] 35:镀敷导线
QQ群二维码
意见反馈