用于净化来自热机的废气的装置,其包含陶瓷载体以及化学和机械锚定在载体中的活性相

申请号 CN201280031129.8 申请日 2012-06-08 公开(公告)号 CN103732324A 公开(公告)日 2014-04-16
申请人 乔治洛德方法研究和开发液化空气有限公司; 科学研究国家中心; 利摩日大学; 发明人 P·德尔加洛; F·罗西尼奥; T·沙尔捷; R·福尔; S·古达尔; C·博诺姆;
摘要 本 发明 涉及用于 净化 来自 热机 的废气的装置,所述装置包含:一种或几种陶瓷催化剂载体,所述载体包含具有相同尺寸、相同等直径形态和相同化学组成,或者基本相同尺寸、相同等直径形态和相同化学组成的微晶排列,其中各个微晶与周围微晶点 接触 或几乎点接触;和一种或几种用于化学破坏废气中的杂质的活性相,所述活性相包含金属颗粒,所述金属颗粒与所述陶瓷催化剂载体化学相互作用并机械锚定在所述催化剂载体中,使得各个颗粒的聚结和移动性限于相当于陶瓷催化剂载体的微晶体积的最大体积。
权利要求

1.用于净化来自热燃机的废气的装置,其包含:
-一种或几种陶瓷催化剂载体,其包含具有相同尺寸、相同等直径形态和相同化学组成,或者近似相同尺寸、相同等直径形态和相同化学组成的微晶排列,其中各个微晶与周围微晶点接触或准点接触;所述微晶的平均当量直径为2-20nm;和
-一种或几种用于化学破坏废气中的杂质的活性相,其包含与所述陶瓷催化剂载体化学相互作用且机械锚定在所述催化剂载体中的金属颗粒,使得各个颗粒的聚结和移动性限于相当于所述陶瓷催化剂载体的微晶体积的最大体积;所述金属颗粒的平均当量直径为
2-20nm。
2.根据权利要求1的装置,其特征在于排列由任选用化钆稳定化的氧化(Al2O3)或二氧化铈(CeO2),或任选用三氧化二钇稳定化的氧化锆(ZrO2),或尖晶石相或氧化镧(La2O3),或这些化合物中的一种或几种的混合物构成。
3.根据权利要求1或2的装置,其特征在于金属颗粒选自:
(i)选自钌、铑、钯、、锇、铱、铂的贵金属,或者这些贵金属中的一种、两种或三种的合金,或
(ii)选自镍、银、金、钴和的过渡金属,或者这些过渡金属中的一种、两种或三种的合金,或
(iii)这些贵金属中的一种、两种或三种和这些过渡金属中的一种、两种或三种的合金。
4.根据权利要求1-4中一项的装置,其特征在于化学相互作用选自电子相互作用和/或取向生长相互作用和/或部分包封相互作用。
5.根据权利要求1-4中一项的装置,其特征在于微晶的平均当量直径为5-15nm,且金属颗粒的平均当量直径为小于10nm。
6.根据权利要求1-5中一项的装置,其特征在于微晶排列最佳地为压实的六方形或面心立方堆栈,其中各个微晶与三维空间内不多于12个其它微晶点接触或准点接触。
7.来自热燃机的废气净化方法,其中所述废气循环通过根据权利要求1-5中任一项的装置。
8.根据权利要求7的净化方法,其特征在于热燃机为汽车发动机,特别是柴油机。
9.根据权利要求7的净化方法,其特征在于热燃机为汽车发动机,优选汽油机。

说明书全文

用于净化来自热机的废气的装置,其包含陶瓷载体以及化

学和机械锚定在载体中的活性相

[0001] 本发明涉及用于来自热燃机的废气的净化装置,其通常称为“催化转化器”,特别是用于汽车的,装置包含载体,至少一种催化剂沉积其上以化学破坏废气中的杂质。该装置的作用是通过将它们通过还原或化反应转化而至少部分消除废气中所含的污染气体,特别是氧化物、和氮氧化物。
[0002] 特别地,本发明公开包含陶瓷氧化物载体和活性金属颗粒的废气净化装置,为此,载体中的结构特征和颗粒的锚定与常规催化剂氧化物载体的那些相比改进性能。
[0003] 在不同的化学和石油化学工业应用与汽车发动机的操作条件之间观察到协同作用。观察到使用最类似于全负荷下操作发动机的方法的温度和气体气氛(H2、CO、CO2、残余CH4、H2O)的方法是蒸汽甲烷重整(SMR)方法。这对于活性相选择方面(贵金属、Ni等)的催化材料、氧化物载体和/或活性相降解机制、操作温度区(600-1000℃)以及一定程度上对于空间速度,特别是在规整SMR反应器-交换器的骨架中,是特别真实的。主要结果特别是非常类似的物理降解现象(引发纳米颗粒的聚结、沉积物的分层等的温度)。
[0004] 非均相气体-固体催化剂通常为无机材料,其由几种活性相分散在其上的至少一种氧合物或其它陶瓷载体组成,其通过基本阶段(吸附、离解、扩散、反应-重组、扩散、解吸)的重复且不间断的循环而将试剂化成产物。在一些情况下,载体不仅可物理地作用(大孔体积和大BET表面积以改进活性相的分散),而且化学地作用(例如以促进具体分子的吸附、离解、扩散和解吸)。催化剂在其整个使用寿命中的各个循环结束时通过恢复其初始状态而参与转化。催化剂改进/促进反应机制和相关反应速率,但不改变热动
[0005] 如果要使负载的催化剂的转化率最大化,则必须使试剂到达活性颗粒最大化。我们通过汇总非均相催化反应中的主要步骤而开始,以帮助理解如本文所开发的载体的优点。由分子A组成的气体通过催化床并在催化剂表面上反应以形成物种B气体。
[0006] 这些各个基本步骤为:
[0007] a)将试剂A输送(体积扩散)通过气体层直至催化剂的外表面,
[0008] b)使物种A扩散(体积或分子扩散(Knüdsen))通过催化剂的多孔晶格直至催化表面,
[0009] c)使物种A吸附在催化表面上,
[0010] d)使A反应以在存在于催化剂表面上的催化部位上形成B,
[0011] e)将产物B从表面上解吸,
[0012] f)使物种B扩散通过多孔晶格,
[0013] g)将产物B从催化剂的外表面输送(体积扩散)通过气体层直至气体流动。
[0014] 自2009年9月1日起可适用的欧洲标准EURO5(以及不久于2014年9月1日可适用的EURO6)责成机动车厂商急剧地限制有毒气体(CO、NOx、未燃烧烃)的排放。催化转化器的最佳化现在主要涉及催化剂(效率、使用寿命)的最佳化。
[0015] 作为提醒,催化转化器由不锈转化室组成,将废气引入所述室中。这些气体通过陶瓷结构,所述陶瓷结构通常由氧化物类型(堇青石、莫来石等)的陶瓷蜂窝状基质组成。所谓的三效催化剂(TWC)沉积于陶瓷基质(蜂窝形式)的壁上。催化剂促进试剂转化成产物的转化率。催化转化器的目标是通过将它们主要转化成、CO2和氮气而限制有毒气体(CO、NOx和未燃烧烃)的排放。
[0016] 通过定义,三效催化剂能够同时执行三种反应:
[0017] -氮氧化物还原成氮气和二氧化碳:2NO+2CO→N2+2CO2
[0018] -一氧化碳氧化成二氧化碳:2CO+O2→2CO2,和
[0019] -未燃烧烃(HC)氧化成二氧化碳和水:4CxHy+(4x+y)O2→4xCO2+2yH2O[0020] 氧化反应(要求高氧分压)和还原反应(低氧分压)增加约束条件。它们要求待加入燃料中的非常精确量的空气。置于废气上的λ(Lambda)探针测量氧气输出量。控制回路非常精确地控制空气/燃料比,将它保持在理想的值。
[0021] 应当指出:
[0022] -催化转化器仅在约250-300℃下有效起动。这就是为什么短程是有问题的。
[0023] -以下寄生反应可在高温下进行:2NO+CO→N2O+CO2
[0024] 用于汽车去污染的催化转化器的陶瓷结构通常为蜂窝状基质,且多数由堇青石(2MgO-2Al2O3-5SiO2)或莫来石组成。这些结构开发了具有20-40%的体积孔隙率的低比面2
积(几m/g)。
[0025] 氧化物为经典活性相载体:氧化,因为其在低温(<800℃)下的热化学稳定性,二元化铈,因为其与氧气的氧化还原性能,和氧化锆,因为其与铑的化学亲合性。长时间以2
来,提高比表面积的研究集中于γ、δ和θ形式的氧化铝(50-250m/g)。自那以后,制备
2
显示20-100m/g的二元化铈和氧化锆载体。然而,在所有情况下,载体在几个循环以后会热分解,从而引发比表面积下降、孔体积下降和金属纳米颗粒迁移/扩散/聚结现象的加速。氧化物载体通过加入元素如钇、钆、镧等以使氧化物载体在操作条件下的这些热分解现象最小化而稳定化。因此使用La-Al2O3、CeGdO、ZrYO、CeZrYO等,其限制热分解,但不使金属颗粒迁移/烧结现象最小化。
[0026] 已进行了许多关于三效催化剂减活的研究,但它们不考虑涉及堇青石结构的机械强度性能(由于震动而导致的破裂)的问题。减活现象可如图1所示分类。
[0027] 可逆减活现象在低温(<300℃)下进行:
[0028] -产物和试剂如CO2的物理吸着
[0029] -产物和试剂(例如在氧化物上的硫氧化物)的化学吸着
[0030] 在高温(600-1000℃)下发生的减活现象是不可逆的,通常为如下组分之间的反应:
[0031] -活性相载体氧化物的元素
[0032] -导致形成不想要的合金的贵金属
[0033] -贵金属和活性相氧化物载体(例如Rh3+离子迁移至γAl2O3结构中)。
[0034] 然而,对高温催化剂的性能具有最大影响的现象为(i)活性相载体氧化物的烧结,和(ii)活性相金属颗粒的聚结(纳米颗粒扩散/分离/聚结现象),其中第二种现象通过第一种现象促进,如蒸汽甲烷重整(SMR)方法中的情况。
[0035] 因而,产生这一问题:提供用于净化来自热燃机的废气的装置,所述装置包含改进催化剂,所述催化剂能够将活性相纳米颗粒在类似于蒸汽甲烷重整期间所遭遇那些的条件下稳定化以改进其性能。
[0036] 根据本发明的一种解决方法是用于来自热燃机的废气净化装置,所述装置包含:
[0037] -陶瓷催化剂载体,其包含具有相同尺寸、相同等直径形态和相同化学组成,或者近似相同尺寸、相同等直径形态和相同化学组成的微晶排列,其中各个微晶与周围微晶点接触或准点接触;和
[0038] -用于化学破坏废气中的杂质的活性相,其包含机械锚定在所述催化剂载体中的金属颗粒,使得各个颗粒的聚结和移动性限于相当于所述陶瓷催化剂载体的微晶体积的最大体积。
[0039] 所提出的解决方法的第一优点涉及活性相的超细碎中孔陶瓷催化剂载体。该载体2
因为其组分纳米颗粒的尺寸及其排列而显示大于或等于20m/g的大有效比面积。此外,载体在催化转化器的操作条件下是稳定的;换言之,载体在包含废气(CO、H2O、NO、N2、CxHy、O2、N2O...)混合物的气氛中在600-1000℃的温度下是稳定的。该热稳定性直接涉及合成材料的微结构(具有相同尺寸、相同等直径形态和相同化学组成,或者近似相同尺寸、相同等直径形态和相同化学组成的微晶排列,其中各个微晶与周围微晶点接触或准点接触)并涉及相关合成方法。
[0040] 催化剂载体的特定结构对金属纳米颗粒的稳定性具有直接影响。微晶排列和孔隙率足以发展所述金属纳米颗粒在载体表面上的机械锚定。
[0041] 同时,因此所得活性相的优异分散可产生所用贵金属的量的大的减少而不损失任何催化性能。
[0042] 图2显示金属颗粒被陶瓷催化剂载体机械阻塞。首先,非常清楚的是基本活性颗粒不大于载体微晶的尺寸。其次,其在高温和富蒸汽气氛的组合作用下的移动仍限于两个微晶之间的间隔实现的势阱。箭头表示金属颗粒的唯一可能移动。
[0043] 最后,指出通过陶瓷催化剂载体产生的机械阻塞限制可能的活性颗粒聚结。
[0044] 此外,本发明催化剂使金属/陶瓷催化剂载体相互作用最大化。
[0045] 金属颗粒与催化剂载体之间的化学键主要是共价或离子的。相互作用则是电子的。电荷转移可在活性相的金属原子与载体氧化物的氧原子或表面阳离子之间进行。
[0046] 包封的起因是表面能的最小化。该现象在金属的表面能高且氧化物的表面能低时发生。
[0047] 图3和4显示该现象。
[0048] TEM(透射电子显微镜)显示微晶实际上是单晶。具有由单晶实体组成的载体这一事实引进了取向生长型相互作用的想法。高分辨率透射电子显微镜的使用使得可观察金属/陶瓷催化剂载体相互作用,因此推断发生这类相互作用。应当指出如果它们具有相容的目参数或对称的话,则取向生长相互作用可在两个晶格之间发生。图5显示取向生长相互作用。
[0049] 本发明装置取决于情况可具有一种或多种以下特征:
[0050] -所述排列由任选用镧、铈或锆稳定化的氧化铝(Al2O3)构成,或者由任选用氧化钆稳定化的二元化铈(CeO2)构成,或者由任选用三氧化二钇稳定化的氧化锆(ZrO2)构成,或者由尖晶石相或氧化镧(La2O3)或者这些化合物中的一种或几种的混合物构成;
[0051] -金属颗粒选自:
[0052] (i)选自钌、铑、钯、、锇、铱、铂的贵金属,或者这些贵金属中的一种、两种或三种的合金,或
[0053] (ii)选自镍、银、金、钴和的过渡金属,或者这些过渡金属中的一种、两种或三种的合金,或
[0054] (iii)这些贵金属中的一种、两种或三种和这些过渡金属中的一种、两种或三种的合金。
[0055] -化学相互作用选自电子相互作用和/或取向生长相互作用和/或部分包封相互作用;
[0056] -微晶的平均当量直径为2-20nm,优选5-15nm,且金属颗粒的平均当量直径为2-20nm,优选小于10nm;
[0057] -活性相载体微晶的排列最佳地为压实的六方形或面心立方堆栈,其中各个微晶与三维空间内不多于12个其它微晶点接触或准点接触。
[0058] 优选,本发明净化装置中所用催化(基质+催化剂)组件可包含具有各种结构的基质,例如具有陶瓷或金属或陶瓷涂覆金属性质的细胞状结构、圆筒、单、蜂窝状结构、球、多鳞片结构反应器-交换器(μ反应器)等,其上沉积有活性相载体(罩面层)。
[0059] 本发明还涉及来自热燃机的废气净化方法,其中所述废气循环通过本发明装置。
[0060] 热燃机优选为汽车发动机,特别是柴油机或汽油机。
[0061] 我们现在详细地描述如何合成本发明净化装置中所用陶瓷载体-活性相组件(催化剂)。
[0062] 制备陶瓷载体-活性相组件的方法可包括如下步骤:
[0063] a)制备陶瓷催化剂载体,所述载体包含具有相同尺寸、相同形态和相同化学组成,或者近似相同尺寸、形态和相同化学组成的微晶排列,其中各个微晶与周围微晶点接触或准点接触;
[0064] b)将陶瓷催化剂载体用金属活性相的前体溶液浸渍;
[0065] c)在空气下在350-1000℃的温度下,优选在450-700℃的温度下,甚至更优选在500℃的温度下煅烧浸渍的催化剂以得到具有沉积于陶瓷催化剂载体表面上的氧化活性相的一种;和
[0066] d)任选将氧化活性相在300-1000℃下,优选在300-600℃的温度下,甚至更优选在300℃的温度下还原。
[0067] 应当指出该方法可包括一种或多种以下特征:
[0068] -浸渍步骤b)在整个5-60分钟期间在真空中进行;
[0069] -在步骤b)中,活性相溶液为硝酸铑溶液(Rh(NO3)3,2H2O)或者硝酸镍(Ni(NO3)2,6H2O)或硝酸钯(Pd(NO3)3,2H2O)或硝酸铂(Pt(NO3)x),yH2O)的溶液或这些溶液的混合物。
也可使用含有贵金属(Rh、Pt、Ir、Ru、Re、Pd)和/或过渡金属(Ni、Cu、Co、...)的碳酸盐、氯化物前体等或者各种前体(硝酸盐、碳酸盐等)的混合物;
[0070] -在步骤d)以后,所述方法还可包括在操作条件或类似于催化剂的操作条件的条件下的老化步骤e)。第一操作循环(停止/起动)可认为是老化步骤。
[0071] 本发明净化装置中所用陶瓷载体-活性相组件的制备方法的步骤a)中所述陶瓷催化剂载体可使用两种方法制备。
[0072] 第一种方法会导致包含基质和在所述基质表面上的膜的陶瓷催化剂载体,所述载体包含具有相同尺寸、相同等直径形态和相同化学组成,或者近似相同尺寸、相同等直径形态和相同化学组成的微晶排列,其中各个微晶与周围微晶点接触或准点接触。
[0073] 第二种方法会导致包含团粒的陶瓷催化剂载体,所述载体包含具有相同尺寸、相同等直径形态和相同化学组成,或者近似相同尺寸、相同等直径形态和相同化学组成的微晶排列,其中各个微晶与围绕它的微晶点接触或准点接触。
[0074] 应当指出团粒为近似球形的。
[0075] 制备该陶瓷催化剂载体的第一种方法包括如下步骤:
[0076] i)制备溶胶,所述溶胶包含铝和/或镁和/或铈和/或锆和/或钇和/或钆和/或镧硝酸盐和/或碳酸盐、表面活性剂溶剂如水、乙醇
[0077] ii)将基质浸入步骤i)中制备的溶胶中;
[0078] iii)将用溶胶浸渍的基质干燥以得到包含被胶凝膜覆盖的基质的胶凝复合材料;和
[0079] iv)将步骤iii)中胶凝的复合材料在空气中在通常500-1000℃的温度下煅烧。
[0080] 优选用于陶瓷催化剂载体的这一第一制备方法中的基质由致密氧化铝构成。
[0081] 陶瓷催化剂载体的第二制备方法包括如下步骤:
[0082] i)制备溶胶,所述溶胶包含铝和/或镁和/或铈和/或锆和/或钇和/或钆和/或镧硝酸盐和/或碳酸盐、表面活性剂和溶剂如水、乙醇和氨;
[0083] ii)将溶胶在热空气流下雾化以将溶剂蒸发并形成微米级粉末;
[0084] iii)将粉末在500-1000℃的温度下煅烧。
[0085] 两种陶瓷催化剂载体制备方法中制备的溶胶优选包含四种主要组分:
[0086] -无机前体:由于成本限制原因,我们选择使用镁和铝、铈、锆、钇硝酸盐或这些硝酸盐的混合物。其它无机前体(碳酸盐、磺酸盐、氯化物等)可单独或混合地用于该方法中。实施例中硝酸盐的化学计量可在将其溶于渗透水中以前通过感应耦合等离子体(ICP)验证。
[0087] -表面活性剂。可使用EO-PO-EO类型的Pluronic F127三嵌段共聚物。它具有两个亲水性嵌段(EO)和中心疏水性嵌段(PO)。
[0088] -溶剂(无水乙醇)。
[0089] -NH3.H2O(28质量%)。将表面活性剂溶于氨溶液中,这在亲水性嵌段与无机物种之间产生氢键。
[0090] 第一步骤由将表面活性剂(0.9g)溶于无水乙醇(23mL)和氨溶液(4.5mL)中组成。然后将混合物在回流下加热1小时。然后将先前制备的硝酸盐溶液(20mL)逐滴加入混合物中。将整体在回流下加热1小时,然后冷却至环境温度。将因此合成的溶胶在通干燥烘箱中老化,其中精确地控制环境温度(20℃)。
[0091] 在第一合成方法的情况下,浸渍由将基质浸入溶胶中,然后将其以恒定速度除去组成。我们研究所用基质为在空气中在1700℃下烧结1小时30分钟的氧化铝板(基质的相对密度=理论密度的97%)。本发明适用于具有各种结构的基质,例如陶瓷或金属类型或陶瓷涂覆金属类型且所述载体可沉积其上(罩面层)的细胞状结构、圆筒、单块、蜂窝状结构、球、多鳞片结构反应器-交换器(μ反应器)等。
[0092] 当除去基质时,基质的移动输送液体,形成表面层。该层分成两层,内部随着基质移动,同时外部降至插孔中。溶剂的逐渐蒸发导致基质表面上膜的形成。
[0093] 所得沉积物的厚度可作为溶胶粘度和拉引速率的函数评估(方程式1):
[0094] 方程式1:e∞κv2/3
[0095] 其中κ为沉积常数,其取决于溶胶的粘度和密度和液体-蒸气表面张力,且v表示拉引速率。
[0096] 因此,当拉引速率提高时,沉积物厚度提高。
[0097] 然后将浸渍的基质在30-70℃下烘箱干燥几小时。然后形成凝胶。将基质在空气中煅烧可消除硝酸盐,还分解表面活性剂,因此释放孔隙率。
[0098] 在第二合成方法的情况下,雾化技术可通过使用热介质将溶胶转化成固体干形式(粉末)(图6)。
[0099] 原理基于在室4中在热气流2下将细滴喷雾在溶胶3上以将溶剂蒸发。所得粉末通过热流5输送直至旋风器6,所述旋风器将空气7与粉末8分离。
[0100] 在本发明范围内可使用的仪器为Büchi制造的具有参考“190Mini Spray Dryer”的商业型号。
[0101] 将雾化结束时回收的粉末在烘箱中在70℃下干燥,然后煅烧。
[0102] 在900℃下煅烧破坏在500℃下存在的沉积物的中孔结构。相(该实施例中尖晶石)的结晶导致孔隙率的局部瓦解。然而,结果是本发明陶瓷催化剂载体,换言之具有彼此点接触的几乎球形颗粒的超细碎且高度多孔沉积物(图7)。图7显示3个不同放大倍数的催化剂载体的3个高分辨率SEM显微照片。
[0103] 具有约10nm尺寸的这些活性相载体颗粒具有集中在约12nm的非常窄粒度分级分布。微晶,在该实施例中尖晶石的平均尺寸为12nm(通过小X射线衍射测量,图8)。该尺寸相当于在扫描电子显微镜中观察到的基本粒子的尺寸,表明基本粒子为单晶的。
[0104] 小角X射线衍射(0.5-6°的角度2θ值):我们可使用该技术以测定催化剂载体的微晶尺寸。该研究中所用基于Debye-Scherrer几何的衍射计装配有曲面位置灵敏检测器(Inel CPS120),将试样放在所述检测器的中心。试样为溶胶浸涂其上的单晶蓝宝石基质。使用Scherrer公式以关联半高衍射峰宽度与微晶尺寸(方程式2)。
[0105] 方程式2:
[0106] D为微晶尺寸(nm)
[0107] λ为Cu的Kα线的波长
[0108] β为半高线的宽度(以拉德表示)
[0109] θ为衍射角。
[0110] 在本发明催化剂制备方法中,然后将陶瓷催化剂载体用Rh和/或Pt和/或Pd和/或Ni前体溶液浸渍。所研究的催化剂为用于催化转化器中的三效催化剂。
[0111] 在包含铑的活性相的情况下,通过尖晶石载体(称为AlMg+Rh的催化剂)进行的浸渍在真空中进行15分钟。选择Rh的硝酸盐(Rh(NO3)3,2H2O)作为Rh的无机前体。
[0112] 硝酸盐溶液中的Rh浓度固定为0.1g/L。在浸渍以后,将催化剂在空气中在500℃下煅烧4小时。在该阶段,我们使氧化铑沉积在超细碎中孔载体表面上。将活性相在Ar-H2(3体积%)下在300℃下还原1小时。
[0113] 通过透射电子显微镜观察载体表面上的尺寸和金属分散(图9a)。这些观察显示具有约1nm尺寸的基本状态中Rh颗粒的存在。这些小颗粒围绕载体中的尖晶石颗粒富集。
[0114] 在老化以模拟该催化剂在催化转化器中的条件(900℃,48小时)以后,Rh颗粒聚结至5nm的尺寸(图9b)。在该阶段,Rh颗粒在尖晶石载体颗粒上稳定化,这强力地降低催化剂操作期间金属颗粒未来聚结的可能性。
[0115] 在包含镍的活性相(称为AlMg+Ni的催化剂)的情况下,将载体用硝酸镍溶液(Ni(NO3)2,6H2O)浸渍。该溶液中的Ni浓度可固定为5g/L。在浸渍以后,可将催化剂在空气中在500℃下煅烧4小时,然后在Ar-H2(3体积%)下在700℃下还原2小时。
[0116] 用AlMg+Ni催化剂得到类似于用AlMg+Rh催化剂得到的那些的结果。
[0117] 在包含铑、铂和钯的活性相(称为AlMg+RhPtPd的催化剂)的情况下,将载体用含有所述元素的硝酸盐溶液浸渍。
[0118] 应当指出关于超细碎中孔陶瓷载体的研究仅涉及尖晶石(MgAl2O4)。两种所述载体合成方法可例如推广至任选掺有钆的二元化铈或任选掺有三氧化二钇的氧化锆。
[0119] 本发明催化剂随时间过去而稳定化。
[0120] 将AlMg+Rh催化剂在暴露于约650℃的温度下以及使另一试样暴露于约850℃的温度下以后老化20天。
[0121] 通过扫描电子显微镜观察老化以后催化剂的微结构。由于用于两个温度的板是类似的,我们呈现暴露于在850℃下老化的催化剂的特征(图10)。气氛非常类似于催化转化器中的气氛。
[0122] 在老化以后保存超细碎尖晶石相载体(陶瓷催化剂载体)且尖晶石颗粒尺寸的提高非常有限。
[0123] 老化以后的金属颗粒尺寸总体上保持小于或等于尖晶石载体的基本微晶尺寸。
[0124] 在这些显微照片上证明开发超细碎载体以促进活性相的机械锚定的优点(图9a)。在该图中,我们看出超细碎沉积物上的金属分散比未涂覆沉积物的氧化铝颗粒上的更好,在图中的左方可见。不可能将金属颗粒机械锚定在不存在沉积物且自然聚结的位置。
[0125] 本发明催化剂优选用于汽车去污染用催化转化器中的三效催化剂(TWC)。
[0126] 在该研究的框架中,反应涉及废气的去污染。本发明可延伸至非均相催化中的各种应用,条件是活性相适于在基于尖晶石、氧化铝、二氧化铈、氧化锆(任选用钇稳定化)或这些化合物的混合物的超细碎陶瓷催化剂载体上的所需催化反应(SMR、化学、石油化学、环境反应等)。
QQ群二维码
意见反馈