有序的中孔-纳米复合物的合成

申请号 CN200980132095.X 申请日 2009-08-12 公开(公告)号 CN102123967A 公开(公告)日 2011-07-13
申请人 康宁股份有限公司; 发明人 S·B·道斯; W·塞钠拉特纳;
摘要 本 发明 涉及制备有序中孔 碳 化 硅 (OMSiC)纳米复合物的方法,所述的方法使用前体组合物的 蒸发 引起的自装配,所述的前体组合物优选地包含酚 醛 树脂 、预 水 解 的原 硅酸 四乙酯、 表面活性剂 和丁醇。使前体混合物干燥、交联和加热形成具有有序的中等规模的孔的不连续区域的有序的中孔碳化硅材料。
权利要求

1.一种形成有序的中孔纳米复合物的方法,包括:
形成包含碳前体、化硅前体、表面活性剂和油的前体混合物;
干燥前体混合物并使碳和二氧化硅前体交联,形成表面活性剂基的自装配模板和通过模板定制的碳前体和二氧化硅前体基中等结构相;和
热处理前体,形成有序的中孔碳化硅纳米复合物。
2.如权利要求1所述的方法,其中,碳前体包括酚树脂,二氧化硅前体包括预解的原硅酸四乙酯,表面活性剂包括三嵌段共聚物。
3.如权利要求1所述的方法,其中,前体混合物的碳和硅的摩尔比大于3。
4.如权利要求1所述的方法,其中,前体混合物的碳和硅的摩尔比为约6-20。
5.如权利要求1所述的方法,其中,所述的油选自丁醇、对-二甲苯、辛烷、十六烷、己醇、戊醇、乙酸丁酯、 和1,3,5-三甲基苯。
6.如权利要求1所述的方法,它进一步包括在干燥前体混合物前水解二氧化硅前体。
7.如权利要求1所述的方法,其中,热处理步骤包括将干燥和交联的前体加热到约
900℃到1600℃。
8.如权利要求1所述的方法,其中,热处理步骤包括将干燥和交联的前体加热到约
1200℃到1600℃,使碳前体和二氧化硅前体碳化和碳热还原。
9.如权利要求1所述的方法,其中,热处理步骤包括(1)以约2℃/分钟的速率从室温加热到400°,(2)在400℃下保持约3小时,(3)以约1℃/分钟的速率从400℃加热到反应温度,(4)在升高的温度下保持3-12小时,和(5)冷却到室温。
10.如权利要求1所述的方法,其中,碳化硅纳米复合物包括β-SiC。
11.如权利要求1所述的方法,其中,碳化硅纳米复合物的总表面积为约400-900m2/g。
12.如权利要求1所述的方法,它还包括通过在含氧的环境中,将纳米复合材料加热到约600℃到700℃温度以从纳米复合材料中除去残留的碳。
13.权利要求1的方法制备的有序的中孔碳化硅纳米复合物。
14.一种有序的中孔碳化硅纳米复合物,包括:具有中等规模孔隙率的有序区域的碳化硅。
15.如权利要求14所述的有序的中孔碳化硅纳米复合物,其中,纳米复合物包括结晶碳化硅。
16.如权利要求14所述的有序的中孔碳化硅纳米复合物,其中,所述的纳米复合物包含β-SiC。
17.如权利要求14所述的有序的中孔碳化硅纳米复合物,其中,所述的纳米复合物基本上由β-SiC组成。
18.如权利要求14所述的有序的中孔碳化硅纳米复合物,其中,所述的纳米复合物包含具有六边形规则孔结构的多晶体β-SiC。

说明书全文

有序的中孔纳米复合物的合成

[0001] 优先权
[0002] 本申请要求了美国专利申请12/190,867(2008年8月13日提交,发明名称为“有序的中孔碳—硅纳米复合物的合成”)的优先权。
[0003] 背景和综述
[0004] 本发明涉及形成有序的中孔碳化硅纳米复合材料的方法。所述有序的中孔碳化硅纳米复合物使用性前体组合物制备,所述的前体组合物包含至少一种表面活性剂、油、碳前体和化硅前体。本发明的方法在合成期间能控制无机相,并可控制所得的纳米复合材料的中孔结构、大小、表面积和宏观形态。
[0005] 非氧化陶瓷由于其具有有利的电、机械和其它功能性质而成为备受关注的研究对象。例如,碳化硅(SiC)是一种具有高温机械稳定性、高硬度和优秀热导性的半导体材料。由于其化学惰性并能耐受苛刻的环境,它可用作催化剂载体。但是,市售的碳化硅的比表面积低,这使其不适合用于催化剂领域。结果,需要开发出能制造出具有高表面积的碳化硅的新方法。
[0006] 制备高表面积碳化硅的一种技术涉及用SiC前体渗透入高表面积二氧化硅,然后通过使用HF蚀刻除去二氧化物模板。该方法的例子涉及使碳化硅前体进行化学蒸汽或液体渗透,或者使纳米大小的二氧化硅球体渗入模板。这类方法可用来形成具有无序结构的高表面积碳化硅。
[0007] 用于制备高表面积碳化硅的另一种技术涉及将二氧化硅前体渗入多孔碳基底。通过设计C/SiO2摩尔比,可形成多孔、无序、结晶SiC纳米颗粒和纳米纤维
[0008] 如前所述,人们对于制备包含开口(高表面积)框架的有序、多孔碳化硅材料很有兴趣。除了催化剂外,这类材料可用于燃料电池太阳能电池,并可用于包括吸收和/或分离化学的领域。由于极为需要这些材料的结构和形式的多样性,有利的是提供具有提高的加工性能的经济的合成途径。
[0009] 根据本发明,申请人出乎意料地发现通过下列步骤可制备有序的中孔碳化硅材料:形成包含碳和硅前体、非离子表面活性剂和油(如水—不混溶液体)的水性前体混合物,使前体混合物干燥和交联形成中间体产品,加热交联的中间体。加热过程驱动三种反应:1)碳前体的碳化,2)二氧化硅前体的缩合,和3)前体的碳热还原来形成碳化硅。
[0010] 在制备前体混合物后,但在使碳和硅前体交联前,表面活性剂自装配形成前体的模板,它围定了中等规模的液晶相,在加热和除去表面活性剂时,所述的液晶相形成包含中等规模孔隙的有序的碳化硅复合材料区域。
[0011] 有序的中孔碳化硅纳米复合材料包含三维有序和互连排列、孔径范围为约2-50nm2
的孔阵列。这些材料的BET比表面积可高达约2200m/g,在惰性气氛下通常显示出优秀的热稳定性,具有强的耐酸性和耐性。
[0012] 从如下的详述中可以看出本发明的其它特征和优点,这对于所属技术领域的技术人员来说,通过实施本文所述的本发明包括详述部份、权利要求书和附图,可使其部分变得明显易懂。
[0013] 应当明白,前述的一般描述和后续的详述仅用于提供理解本发明的性质和特征和的总观和框架。附图用来对本发明作进一步的理解,它们构成了本说明书的一部份。附图显示了本发明的各种实施方案,和说明书一起用来揭示本发明的原理和操作。
[0014] 附图简述
[0015] 图1显示在(a)900℃或(b)1600℃下加热后有序中孔SiC样品的广(wide angle)XRD图。
[0016] 图2显示在(a)900℃或(b)1600℃下加热后有序中孔SiC样品的低角度(low angle)XRD图。
[0017] 图3显示在1300℃或1450℃下加热后有序中孔SiC样品的(a)低角度和(b)广角XRD图。
[0018] 图4是在600℃、900℃或1600℃下加热后有序中孔SiC样品的29Si MAS NMR光谱图。
[0019] 图5显示在不同碳热的条件下形成的有序中孔SiC样品的SEM显微图。
[0020] 发明详述
[0021] 本发明一般涉及通过蒸发引发的自装配(evaporation-induced self-assembly)形成有序中孔碳—硅纳米复合物的方法。优选的方法涉及热处理包含酚树脂作为碳前体、预水解的原硅酸四乙酯(TEOS)作为无机(硅)前体、三嵌段共聚物作为表面活性剂和丁醇作为油相的配方。
[0022] 根据本发明的方法可以得到具有有序孔结构的纳米复合物,其中配方中碳/硅含量可通过调节酚醛树脂/原硅酸四乙酯的质量比来改变。
[0023] 在氮气(或氩气)、900℃下热处理纳米复合物得到大部分无定形碳和SiO2,但在超过1300℃下加工,形成包含多晶β-碳化硅和少量无定形碳的有序中孔碳化硅(OMSiC)。在1600℃下热处理产生带有最少量残留碳的多晶β-碳化硅。有利的是,由稳定的中等规模d-间隔和未改变的归一化的质量证明,在SiO2转化为SiC(从900℃到1600℃)期间,孔结构不发生改变。
[0024] 本文使用的碳化指将有机物质通过高温分解转化为碳或含碳的残留物。碳热还原指在升高的温度下通过与碳发生反应来还原物质。
[0025] 根据本发明的方法,所得的OMSiC复制原始的中孔C/SiO2结构,这能得到大范围的OMSiC结构。残留的碳可通过在空气中煅烧来除去,得到带有有序孔排列的灰白色的结晶β-碳化硅。
[0026] 与常规纳米复合物合成方法相比,本发明的这些及其它方面和优点如下综述:
[0027] ●本发明的方法不需要使用无机模板,这可减少制备步骤和生产这些材料中涉及的成本。通过消除对无机模板的使用,该方法不依赖于强碱和/或HF蚀刻。
[0028] ●在900℃-1600℃温度范围内进行碳热还原显示出稳定的中等规模d-间隔和不改变的质量(归一化到表面积和孔体积)。这支持这样的结论,所得的OMSiC复制了原始中孔C/SiO2结构。这类复制使OMSiC结构在大范围里具有优秀的加工挠性,并可控制结构的发展。
[0029] ●通过碳热还原的中孔的热稳定性与中孔难熔金属氧化物的研究完全不同,在中孔难熔金属氧化物的研究中,结晶相转换(如锐矿到二氧化钛中的金红石)或简单的细粒生长会对中孔结构产生了损伤。
[0030] ●可在约1200-1600℃的加工温度下通过在氩气中加热前体混合物,得到带有六边形有序孔结构的多晶β-碳化硅。
[0031] ●可在约1300-1600℃的加工温度下通过在N2中加热前体混合物,得到带有六边形有序孔结构的多晶β-碳化硅和晶体SixNy(50%)。
[0032] ●通过将前体混合物加热到约1600℃可制备高表面积(600-800m2/g)、有序中孔碳化硅材料。
[0033] ●通过在氧气(如空气)中煅烧来除去残留的碳,得到灰白色的结晶β—碳化硅,同时保留有序孔结构和高表面积。
[0034] ●通过实验和工艺变化,如前体混合物的组成、溶剂的选择、湿度、交联条件、碳化、碳热和碳化后条件的改变来控制碳化硅中孔结构。本发明的其它方面和优点作如下揭示:
[0035] 材料
[0036] 在OMSiC纳米复合材料中,可以使用一些不同的起始配方来形成六边形有序的孔结构,其中通过调节酚醛树脂/原硅酸四乙酯(TEOS)的质量比来改变碳/硅含量。
[0037] 用于本发明方法的前体混合物包括,例如,碳前体,无机(Si)前体,表面活性剂和油。优选的碳前体是510D50酚醛树脂(Georgia Pacific(佐治亚太平洋公司)),它包含两种不同分子量的种类(GPC数据,Mn~2800和~1060)。其它合适的水溶性碳前体包括其它的酚醛树脂,热固性碳水化合物,聚乙烯醇,间苯二酚-甲醛,肽两亲物,类脂和其它生物形成材料。优选的硅前体包括TEOS和其它聚碳硅烷(polycarbosilanes)。
[0038] 有用的表面活性剂是购自巴斯夫公司(BASF,Inc)的PEOy-PPOx-PEOy三嵌段共聚TM物。具体是Pluronic F127(x=106,y=70)被用于本发明方法中。其它的非离子表面活TM TM TM
性剂包括Pluronic P123(x=20,y=70),Pluronic F103(x=17,y=60),Pluronic TM TM
F108(x=127,y=50),Pluronic F88(x=104,y=39)和Pluronic F65(x=19,y=
29)。前体混合物可包括一种或多种表面活性剂。
[0039] 表面活性剂作为碳和硅前体的临时的、可除去的有机模板。掺入前体混合物中的水和油添加剂的量可用来操纵表面活性剂通过其液晶相的自装配,结果,就操纵了所得碳化硅材料的结构和性质。具体是,前体混合物的化学性质可用来控制,例如孔径和孔体积。
[0040] 在包含PEOy-PPOx-PEOy三嵌段共聚物的前体混合物中,油作为PPO嵌段的溶胀剂。加入油相将来自两相系统的水性混合物变为三相系统。油相也扩展了水、表面活性剂和前体组合物的范围,在该范围里特定的中间结构是稳定的。油在前体混合物中的浓度可用来控制胶束结构的疏水部份的溶胀,也可用来控制所得的有序中孔碳化硅的孔大小和孔的中间结构。
[0041] 油的一个例子是丁醇。但是,代替丁醇的或除了丁醇外,其它合适的油包括对-二甲苯、辛烷、十六烷、己醇、戊醇、乙酸丁酯、 和1,3,5-三甲基苯。
[0042] 水可作为用来引发水解或作为水解反应产物的酸的稀释剂间接地加到前体混合物中。
[0043] 在包含PEOy-PPOx-PEOy三嵌段共聚物的前体混合物中,水(若存在)与PEO嵌段相互作用,且通过溶胀含有碳和/或硅前体的相来影响表面活性剂模板的自装配。前体混合物中水的浓度可用来控制交联材料和热处理后产物中中孔通道的装配。
[0044] 合成
[0045] 在一个实施方案中,硅碳纳米复合材料可用下列方法制备。这样制备配方210:首先将3.7g F127加到无水乙醇(~9ml)中,并加热搅拌直至表面活性剂至少部分溶解。接着,慢慢加入3ml酚醛树脂然后激烈搅拌。接着,向混合物中加入1.5ml丁醇,然后继续搅拌。
[0046] 在一独立的瓶中,使1.9ml TEOS与无水乙醇(~1ml)和0.1ml 1.57N HCl混合。使TEOS溶液老化20分钟来水解TEOS,然后使两种溶液混合。合并的混合物在室温下搅拌
20-30分钟,然后倒入坩锅,在室温下干燥至少12小时,接着在150℃下交联24小时。
[0047] 在带有多步骤温度程序的高温管炉(Deltech Inc(德尔特科公司),美国科罗拉多丹佛)里,在氧化坩锅中进行碳化和碳热还原。温度程序的一个例子包括:(1)以约2℃/分钟的速率从室温加热到400°,(2)在400℃下保持3小时,(3)以约1℃/分钟的速率从400℃加热到碳化(或碳热还原),(4)在升高的温度下保持3-12小时,和(5)冷却到室温。若样品含有残留的碳,使它们在空气中进一步加热,或在650℃下的控制的气氛下氧化残留的碳材料。每个配方通常在900,1300,1450或1600℃和流动的N2下进行热处理。
如上所述,用N2(与Ar相反)可能会形成氮化硅。
[0048] 通过使二氧化硅组分碳热还原,有序的中孔碳/SiO2复合物形成了SiC。还原在约1300℃开始,在约1450℃下结晶性增加,在约1600℃下形成极为有序的β-SiC。根据反应条件,也可形成α-SiC多形体。
[0049] 有利的是,在有序的中孔碳(OMC)/SiO2转化为SiC期间,以稳定的中等规模d-间隔和每个样品的未改变归一化的质量作为证据表明,其孔结构没有发生改变。因此,所得的OMSiC仍然是原始的中孔C/SiO2结构。通过另外处理这样形成的OMSiC材料可除去任何残留的碳来形成纯的SiC,它仍然保留有序的中孔微结构。
[0050] 碳/二氧化硅比的效应
[0051] 将上述制备的配方在900或1600℃下进行热处理,分析其中的碳和二氧化硅含量。表1显示了原始的组成,它基于Pluronic F127,酚醛树脂,预水解的TEOS和丁醇。从元素分析数据中计算出热处理后的C/SiO2摩尔比。从表1中列出的C/SiO2值可以看出,碳与二氧化硅的比>3,即在约6-20。
[0052] 表1 Si-C配方和热处理后的元素分析
[0053]
[0054] 对于碳/二氧化硅比大于3,根据反应式
[0055] SiO2(固体)+3C(固体)—→SiC(固体)+2CO(气体)
[0056] 碳含量足以进行用于这些组合物的二氧化硅的碳热还原。
[0057] 在碳热还原期间从化学计量的C/SiO2混合物失去CO会使质量损失~59%,而Si含量增加30到70%。在表1中列出的富碳样品中,将处理温度增加到1600℃,可使Si含量增加约60-65%。假设加热时没有硅损失(由于SiO(气体)的形成),这表明,在高温处理期间,复合物质量减少35-40%。
[0058] X-射线衍射
[0059] 图1显示OMSiC配方209-211的广角XRD反射,所述配方在(a)900或(b)1600℃下加热3小时。在900℃处理后(图1(a)),没有观察到明显的SiC衍射峰,但可以清楚地看出有无定形碳的存在。相反的是,当材料加热到1600℃(图1(b))时,检测到结晶SiC。可以清楚地观察到三个衍射峰的2θ值为35.6°,41.4°和59.9,这表明β-SiC的(111)、(200)和(220)面。在1600℃处理后也可检测到这三种配方的残留的无定形碳。
[0060] 图2显示图1所示OMSiC样品的低角粉末XRD图。数据表明,样品的孔结构在中等规模上是有序的,在93-100nm的d-间隔处有强烈的低角峰。对于每个配方,经900℃或1600℃处理后的样品其在低角XRD中的(100)峰的位置仍然存在。这显示在热处理碳和二氧化硅前体期间中孔结构具有杰出的耐热性。
[0061] 也进行了一些其它热处理温度低于1600℃的试验来更好地显示结晶碳化硅的形成机理。图3显示210配方的(a)低角XRD和(b)广角XRD,这是在N2中加热到1300℃或1450℃达3小时,然后任选地在N2/O2混合物中在650℃下煅烧进行处理。
[0062] 根据低角XRD反射,OMSiC-1300和1450在所有的温度下显示极高的中孔有序性。广角XRD图显示,在温度高于1300℃时可观察到晶体SiC。在温度达到~1450℃时,β-SiC的衍射峰更强,这表明β-SiC是中孔SiC的主要构成物。在2θ值35.6°,41.4°,59.9°和72°处可以清楚地观察到四个衍射峰,这表示β-SiC的(111),(200),(220)和(311)面。基于XRD数据,升高碳热温度能明显改善SiC晶格的结晶性,对中孔有序性几乎没有影响。
[0063] 在N2中进行碳化/碳热反应后,可任选地在N2/O2(2%)混合物中在650℃下,在受控的气氛下进行煅烧达8小时的步骤,以除去残留的碳。煅烧步骤的一个例子包括在含氧的环境中加热碳化后、碳热还原后的样品达约600和700℃温度。用低水平O2处理后,样品的颜色从黑色变为灰白色,广角XRD显示1450℃样品中有明显的β-SiC形成。进一步参见图3,在1300和1450℃的碳热还原步骤期间形成了一些氮化硅(Si3N4)。
[0064] NMR
[0065] 图4(a)显示出在流动的N2,在(i)600,(ii)900和(iii)1600℃下热处理样品得到29
的 Si MAS NMR质谱。图4(b)显示600℃样品的扩展光谱,高斯型适配(Gaussian fits)由虚线表示。在该低温处理中,只有被检测的硅样本在-105ppm附近有共振(参见图4a中的(i)和(ii))。该峰归属于二氧化硅环境。图4(a)中的600℃样品显示出其它的细小结构,当如图4(b)那样扩展,它符合三个高斯共振的总和。这三个峰处于-111,-102和-94ppm处的化学位移,各自对应于具有0、1和2个硅烷醇的二氧化硅。
[0066] 在较高的处理温度下,出现了化学位移在-20ppm处的单个新共振(参见图4a的(iii))。该共振属于SiC,表示该材料中存在的所有硅基本上都从氧化物转化成了碳化物。
[0067] 与上述针对XRD数据的讨论相一致,在1450℃的氮气中加热的样品中也检测到氮29
化硅(Si3N4)。对于这些材料中的一些来说,Si3N4含量,如-48ppm左右的 Si NMR共振所示,可能抑制碳化硅的形成。
[0068] 物理吸附
[0069] 表2显示了在900和1600℃下加热的三种配方(配方209、210和211)的氮和氩(N2和Ar)的物理吸附测定结果。表1显示了这些样品不同的OMC/SiO2比。根据物理吸2
附数据,这些材料具有高的比表面积,对于OMSiC-900是400-500m/g,对于OMSiC-1600是
2
600-900m/g。
[0070] 在碳化/碳热还原在1600℃下进行的实施方案中,在900℃-1600℃温度范围里样品的质量损失为35-40%。针对质量损失进行归一化(normalizing),测定的表面积与在碳热还原过程中稳定的孔尺寸是一致的。参见表2,这些材料也具有窄的孔径分布,其平均吸附孔径为3.9-4.9nm(N2吸附)和5.6-5.9nm(Ar吸附)。
[0071] 在C/SiO2摩尔比范围5.7/1到10.5/1中,当比较吸附等温线的滞后环和孔大小分布数据时,在900℃下加热的样品的孔窗口大小大致相等。峰值孔大小在4.8到5.8nm之间稍有改变,这表明孔结构的差异很小。但是,峰吸附孔大小随着碳热温度的增加而增加(参见表2中的N2数据)。由于来自XRD的d-间隔没有任何明显的改变,因此可以相信,随着碳热温度的增加,孔壁的厚度降低了。
[0072] 在表2中,BJH指表面积(SA),孔体积(PV)和孔径(PD)数据,它们根据巴莱特(Barrett)、乔埃纳(Joyner)和哈仑达(Halenda)模型计算得到。表面积(SA)数据(单位2
为m/g)在表中以解吸累计表面积(DCSA)和吸附累计表面积(ACSA)形式出现。相似的是,孔体积数据(单位:cc/g)在表中以解吸累计孔体积(DCPV)和吸附累计孔体积(ACPV)形式出现。同样在表中的还有BJH吸附孔径(APD)(单位:埃)和BJH最大孔径(MPD)(单位:
埃)。
[0073] 表2:氮和氩物理吸附数据
[0074]
[0075] SEM/TEM
[0076] 用电子扫描显微镜(SEM)来评价样品209,210和211。209和211都是粉末,而210则是冲压的粉末的破裂表面。图5(a)和(b)显示了两种配方(左侧图像系列的210,和右侧图像系列的211)的SEM显微图和它们相应的傅立叶(Fourier)转换,它们各自在900℃下处理(图5(a))和1600℃下处理(图5(b))。
[0077] SEM数据显示出在OMSiC-900和1600℃下处理的样品中有序的孔结构,其傅立叶转换图像符合对称的六边形孔。所有这些样品具有六边形孔结构,但是,如SEM观察到的并可由相流程来预测,样品210和211中的结构有序性更好。孔大小在4.5-5nm范围。
[0078] 从样品210-900分析横截面破裂显示了另外的相。与材料中的剩余物相比,该相富含硅。但是,孔方向仍然同样穿越相边界。
[0079] 当碳热还原后再进行空气中煅烧的步骤时,对样品210和211使用透射电子显微镜(TEM)。由于这些样品是非导体,所以不可使用传统的SEM图像。图5(c)显示在透射条件下从空气处理的OMSiC样品(1450℃下处理,然后在N2/O2(2%)、650℃下处理8小时)中获取的图像。
[0080] 作为碳化硅的替代,通过用合适的无机前体替代二氧化硅前体,所揭示的方法可很容易地适用于其它金属碳化物(如TiC、TaC、WC或W2C)。
[0081] 所属技术领域的技术人员可以清楚地了解对本发明可有各种修饰和改变而不违背本发明的精神和范围。由于所属技术领域的技术人员可对掺入了本发明的精神和实质的所揭示的实施方案进行修饰组合、亚组合和改变,本发明应当包括所附权利要求范畴里的每个技术方案和它们的等同物。
QQ群二维码
意见反馈