GaN基半导体结晶成长用多晶氮化基材及使用该基材的GaN基半导体的制造方法

申请号 CN201180035289.5 申请日 2011-09-26 公开(公告)号 CN103003920A 公开(公告)日 2013-03-27
申请人 株式会社东芝; 东芝高新材料公司; 发明人 小森田裕; 中山宪隆; 高浪健太郎;
摘要 本 发明 提供对使GaN结晶成长有效的多晶氮化 铝 基板 。其是用于使GaN基 半导体 晶粒成长的作为基板材料的多晶氮化铝基材,其特征在于,含有1~10 质量 %的 烧结 助剂成分,热传导率150W/m·K以上,且在基板表面没有最大直径超过200μm的凹部。
权利要求

1.GaN基半导体结晶成长用多晶氮化基材,其是用于使GaN基半导体晶粒成长的作为基板材料的多晶氮化铝基材,其特征在于,含有1~10质量%的烧结助剂成分,热传导率
150W/m·K以上,且基板表面没有最大直径超过200μm的凹部。
2.如权利要求1所述的多晶氮化铝基材,其中,上述烧结助剂成分含有选自稀土元素、稀土元素化物、及稀土元素铝氧化物构成的组中的至少一种以上。
3.如权利要求1或2所述的多晶氮化铝基材,其中,上述凹部为选自孔隙、AlN晶粒的脱粒、及烧结助剂成分的脱粒构成的组中的至少一种。
4.如权利要求1~3中任一项所述的多晶氮化铝基材,其中,上述凹部的最大直径为
50μm以下。
5.如权利要求1~4中任一项所述的多晶氮化铝基材,其中,上述多晶氮化铝基板的表面粗糙度(Ra)为0.1μm以下。
6.如权利要求1~5中任一项所述的多晶氮化铝基材,其中,上述多晶氮化铝基材含有氮化铝结晶和晶界相,上述氮化铝晶粒的平均粒径为7μm以下。
7.如权利要求1~6中任一项所述的多晶氮化铝基材,其中,上述基板的直径为50mm以上。
8.如权利要求1~7中任一项所述的多晶氮化铝基材,其中,在上述基板表面上,最大直径超过20μm的凹部在每1英寸×1英寸单位面积为0~1个。
9.如权利要求1~8中任一项所述的多晶氮化铝基材,其中,在上述基板表面的晶界相中,最大直径超过0.5μm的微孔隙在每10μm×10μm单位面积为0~1个。
10.GaN基半导体的制造方法,其用于制造GaN基半导体,其特征在于,包含:使用权利要求1~9中任一项所述的多晶氮化铝基材使GaN基半导体结晶成长。
11.如权利要求10所述的GaN基半导体的制造方法,其中,经由缓冲层使GaN基半导体结晶成长。
12.如权利要求10或11所述的GaN基半导体的制造方法,其中,GaN基半导体是由选自GaN、InGaN、AlGaN、及InAlGaN构成的组中的一种构成。

说明书全文

GaN基半导体结晶成长用多晶氮化基材及使用该基材的

GaN基半导体的制造方法

技术领域

[0001] 本发明涉及GaN基半导体结晶成长用多晶氮化铝基材及使用该基材的GaN基半导体的制造方法。

背景技术

[0002] 从环境问题及节能的观点触发,作为新光源的LED(发光二极管)及半导体激光器等光半导体器件及使用宽带隙半导体的功率器件(Power Device)的开发正在推进。
[0003] 作为用于这些器件的半导体,作为其构成层,GaN、InGaN、AlGaN、InAlGaN等氮化镓(GaN)基半导体备受关注并被使用。例如,在LED元件中,为层叠了多层GaN基等薄的层的构造。例如,在特开2004-111766号公报专利文献1)中,使用GaN层和GaAlN层的多层构造。通过如何高效且以均匀的厚度制造如此薄的半导体层,决定半导体元件的成品率。
[0004] 在氮化镓(GaN)基的半导体器件的制造中,通常使用外延成长法。作为外延基板,迄今为止使用蓝宝石或SiC基板,但问题是成本高(蓝宝石、SiC)。特别是由于蓝宝石基板及SiC基板为单晶,所以难以将基板尺寸大型化。另外,近年来,为提高半导体芯片的取得数量,期望增大蓝宝石基板使GaN层成长。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1:特开2004-111766号公报

发明内容

[0008] 发明所要解决的课题
[0009] 在基板上成长GaN(氮化镓)基结晶的情况下,问题是基板表面的凹凸。如果表面的凹凸大,则在使GaN基结晶成长时,存在结晶的脱离等GaN不能均匀地结晶成长的问题。因此,本发明的目的在于,获得用于得到氮化镓基结晶的、廉价且表面凹凸少的基板。
[0010] 用于解决课题的手段
[0011] 本发明提供GaN基半导体结晶成长用多晶氮化铝基材,其是用于使GaN基半导体晶粒成长的作为基板材料的多晶氮化铝基材,其特征在于,含有1~10质量%的烧结助剂成分,热传导率150W/m·K以上,且基板表面没有最大直径超过200μm的凹部。
[0012] 另外,根据本发明的方式,优选烧结助剂成分含有选自稀土元素、稀土元素化物、及稀土元素铝氧化物构成的组中的至少一种以上。
[0013] 另外,根据本发明的方式,优选上述凹部为选自孔隙、AlN晶粒的脱粒、及烧结助剂成分的脱粒构成的组中的至少一种。
[0014] 另外,根据本发明的方式,优选上述凹部的最大直径为50μm以下。
[0015] 另外,根据本发明的方式,优选多晶氮化铝基板的表面粗糙度(Ra)为0.1μm以下。
[0016] 另外,根据本发明的方式,优选多晶氮化铝基材含有氮化铝结晶和晶界相,上述氮化铝晶粒的平均粒径为7μm以下。
[0017] 另外,根据本发明的方式,优选上述基板的直径为50mm以上。
[0018] 另外,根据本发明的方式,优选在上述基板表面上,最大直径超过20μm的凹部在每1英寸×1英寸单位面积为0~1个。
[0019] 另外,根据本发明的方式,优选在上述基板表面的晶界相中,最大直径超过0.5μm的微孔隙在每1英寸×1英寸单位面积为0~1个。
[0020] 另外,本发明其它方式提供GaN基半导体的制造方法,其用于制造GaN基半导体,其特征在于,包含:使用所述的多晶氮化铝基材使GaN基半导体结晶成长。
[0021] 另外,根据本发明的方式,优选经由缓冲层使GaN基半导体结晶成长。
[0022] 另外,根据本发明的方式,优选GaN基半导体由选自GaN、InGaN、AlGaN、及InAlGaN构成的组中的一种构成。
[0023] 发明效果
[0024] 根据本发明,能够提供表面凹凸小的多晶氮化铝基板。另外,通过使用本发明的多晶氮化铝基板制造GaN基半导体,能够成品率好地得到GaN基半导体。附图说明
[0025] 图1是表示本发明的GaN基半导体结晶成长用多晶氮化铝基材之一例的图。
[0026] 图2是表示GaN基半导体的制造工序之一例的概略剖面图。

具体实施方式

[0027] 本发明的多晶氮化铝基板为用于使GaN基半导体结晶成长的作为基板材料的多晶氮化铝基材,其特征在于,含有1~10质量%的烧结助剂成分,热传导率150W/m·K以上,且基板表面没有最大直径超过200μm的凹部。
[0028] 本发明的多晶氮化铝基板含有1~10质量%的烧结助剂成分。烧结助剂优选为稀土元素的氧化物。通过将烧结助剂粉末和氮化铝粉末混合并烧结,能够得到多晶氮化铝基板。
[0029] 另外,添加的烧结助剂在烧结后成为烧结助剂成分。该烧结助剂成分优选含有选自稀土元素、稀土元素氧化物、及稀土元素铝氧化物构成的组中的至少一种以上。作为烧结助剂,例如在使用氧化钇(Y2O3)的情况下,烧结助剂成分为单独Y、Y2O3、或Y-Al-O化合物中的任一种以上。此外,作为Y-Al-O化合物,可例举YAG、YAM、YAL,均可通过XRD分析来鉴定。
[0030] 多晶氮化铝基板中含有的烧结助剂成分不足1质量%时,致密化不充分,成为气孔多的烧结体(多晶氮化铝基板)。另一方面,超过10质量%时,烧结助剂成分过多,热传导率降低。烧结助剂成分的优选的含量为2~6质量%。
[0031] 另外,多晶氮化铝基板的热传导率为150W/m·K以上。如果热传导率具有150W/m·K以上的高热传导率,则在使GaN基半导体结晶成长时,放热性变良好,能够进行均匀的结晶成长。
[0032] 另外,本发明的多晶氮化铝基板的特征在于,在基板表面没有最大直径超过200μm的凹部。基板表面的凹部为孔隙、AlN晶粒的脱粒、或烧结助剂成分的脱粒的任一种。孔隙为气孔,如果为相对密度99.0%以上、进而99.5%以上的致密化的基板,则孔隙变小。另外,要提高密度,使用烧结助剂并由烧结助剂成分充填AlN晶粒彼此之间的晶界是有效的。
[0033] 予以说明,相对密度以阿基米德法的实测值除以通过计算求出的理论密度所得的值(=(实测值/理论密度)×100%)表示。另外,理论密度的求法中,例如在作为烧结助剂3
使用3质量%的Y2O3时,如果将AlN的理论密度设为3.3g/cm、Y2O3的理论密度设为5.03g/
3 3
cm,则以3.3×0.97+5.03×0.03=3.3519g/cm 为理论密度。添加的烧结助剂在烧结后变成烧结助剂成分,理论密度的求法通过上述那样的稀土元素的氧化物换算来对应。
[0034] 另外,作为基板表面形成凹部的东西,可例举AlN晶粒的脱粒、烧结助剂成分的脱粒。为防止AlN晶粒的脱粒,可例举烧结助剂成分带来的晶界的强化。因此,如上述,烧结助剂成分优选含有1~10质量%。另一方面,烧结助剂成分过多时,在研磨基板表面时容易引起烧结助剂成分的脱粒。
[0035] 多晶氮化铝基板的表面粗糙度(Ra)为0.1μm以下,优选为0.05μm以下。另外,基板表面优选偏度(Rsk)达到+0.5~-0.5为平坦。由于基板表面为平坦且没有大的凹部,所以GaN基半导体的结晶成长的成品率提高。为进一步提高成品率,优选基板表面的凹部的最大直径为50μm以下。最优选基板表面没有凹部,但通过作为烧结体的多晶氮化铝基板制作该基板是困难的,如何制造凹部小的基板至为重要。因此,在本发明中,在基板表面最大直径超过20μm的凹部优选每1英寸×1英寸单位面积为0~1个。通过使最大直径超过20μm的凹部为每1英寸×1英寸单位面积为0~1个,在GaN基半导体的结晶成长工序中,不仅防止膜剥离,而且还得到GaN基半导体的防翘曲的效果。予以说明,最大直径超过20μm的凹部通过用金属显微镜放大观察基板表面,可以测定每单位面积的个数。通过金属显微镜观察,能够在基板表面观察三处1英寸×1英寸单位面积,可以确认没有超过200μm的凹部、进而确认超过20μm的凹部在0~1个的范围内。
[0036] 另外,在本发明中,在上述基板表面的晶界相中,最大直径超过0.5μm的微孔隙优选每10μm×10μm单位面积为0~1个。通过抑制微孔隙,不仅防止GaN基半导体的结晶成长工序中膜剥离,而且得到GaN基半导体的防翘曲的效果。进而,能够防止GaN基半导体的微细的凹凸,能够提高GaN基半导体的成品率。另外,微孔隙的孔径及其数量可通过SEM(扫描电子显微镜)观察来测定。在SEM照片的视野小于10μm×10μm的情况下,多次测定到合计为10μm×10μm。在任意三处(以10μm×10μm为三处)进行该作业,设为每单位面积的微孔隙的个数。
[0037] 多晶氮化铝基板含有氮化铝结晶和晶界相,但优选氮化铝晶粒的平均粒径为7μm以下。形成多晶氮化铝基板的表面凹部的要因是孔隙、AlN晶粒的脱粒、及烧结助剂成分的脱粒。为减小这些要因,如果将氮化铝晶粒的平均粒径减小至7μm以下,则氮化铝晶粒彼此之间的3重点变小,容易在晶界中充填烧结助剂成分。另外,通过在小的晶界中充填烧结助剂成分,即使引起超微凹部的原因的烧结助剂成分的脱粒,也难以成为超过200μm的大的脱粒。同样,如果将氮化铝晶粒的平均粒径减小至7μm以下,则也难以成为氮化铝晶粒的脱粒超过200μm的大的脱粒。其结果是,即使实施表面粗糙度(Ra)为0.1μm以下,进而Ra为0.05μm以下的镜面加工,也能够制成凹部的最大直径为200μm以下(没有超过200μm的粒子)、进而为50μm以下的基板。予以说明,氮化铝晶粒的平均粒径的下限没有特别限定,但优选为平均粒径1μm以上。平均粒径不足1μm时,原料粉末必须使用粒径小的粉末,导致原料成本的增加。
[0038] 本发明的多晶氮化铝基板也可以与直径L为50mm以上、进而为100mm以上那样的大型基板对应。换而言之,即使为直径L为50mm以上、进而100mm以上的基板,也能够提供没有最大直径超过200μm的凹部的基板。在现有的蓝宝石基板或SiC基板中,因为是单晶基板,所以难以提供这样的大型基板,并且预计到大幅的成本升高。予以说明,直径的上限没有特别限定,但考虑制造的容易度,优选直径L为300mm以下。予以说明,图1中以圆盘状表示,但结晶成长面也可以为四形、长方形。
[0039] 另外,基板的厚度W优选为0.3~1.5mm,更优选为0.5~1.0mm。基板为超过1.5mm的厚度时,放热性变差。另一方面,比0.3mm薄时,基板的强度不充分,操作性降低。
[0040] 如果为以上那样的多晶氮化铝基板,则能够抑制结晶成长时的凹部带来的不均匀的问题,因此,可以大幅提高成品率。这样的多晶氮化铝基板作为用于使GaN基半导体晶粒成长的基板材料是有效的。
[0041] 以下,对使用上述的多晶氮化铝基板来制造GaN基半导体的方法进行说明。图2是表示GaN基半导体的制造工序之一例的概略剖面图。图中,1为多晶氮化铝基材,2为GaN基半导体层,3为缓冲层。首先,在多晶氮化铝基板1上形成缓冲层。缓冲层优选为与GaN基半导体层相同的材质。其次,使GaN基半导体在缓冲层上结晶成长。
[0042] GaN基半导体优选为选自GaN、InGaN、AlGaN、及InAlGaN构成的组中的一种。均将GaN设为基体。GaN基半导体的结晶成长工序中,在基座(未图示)上配置多晶氮化铝基板1,以500~600℃通过有机金属气相成长法(MOCVD法)流过TMG气体(三甲基镓气)、气,形成GaN缓冲层。其次,在1000~1100℃使GaN层的膜厚加厚(结晶成长)。MOCVD法是在
500~1100℃的高温下进行,因此,当基板表面存在大的凹部时,GaN膜厚产生偏差。特别是,1100℃的高温到600℃的冷却工序中的基板的膨胀或收缩反而带来影响。基板的表面凹凸大时,容易产生GaN膜的膜剥离等问题。本发明的多晶氮化铝基板中,由于凹部的最大直径小至200μm以下,所以能够大幅抑制膜剥离等问题。因此,即使将多晶氮化铝基板大型化至直径50mm以上,也能够抑制膜剥离的问题。其结果是,由于能够使GaN基半导体在大的范围(面积)成长,所以能够一次取得多个发光元件,量产性提高。予以说明,在制造LED或半导体激光器等发光元件的情况下,不用说要进行GaN基半导体层或绝缘层等各种层的形成或蚀刻等进行制造。另外,在制造发光元件时不需要多晶氮化铝基板的情况下,除去也没关系。如果是具备晶界相的多晶氮化铝基板,则通过溶液等容易地除去。另外,也可以进行削除。
[0043] 其次,对本发明的多晶氮化铝基板的制造方法进行说明。对本发明的多晶氮化铝基板的制造方法没有特别限定,但作为成品率好的制造的方法可例举如下方法。
[0044] 首先,作为原料粉末准备氮化铝粉末。氮化铝粉末优选为平均粒径0.6~2μm。平均粒径不足0.6μm时,粒径过细,担心氮化铝粉末的价格变高。另外,超过2μm时,烧结后的氮化铝结晶的平均粒径超过7μm的可能性高。更优选可以使用平均粒径1.0~1.5μm的氮化铝粉末。另外,氮化铝粉末中的氧含量优选为0.6~2质量%。另外,氮化铝粉末的杂质氧量优选为0.5~2质量%。杂质氧量不足0.5质量%的高纯度AlN粉末的成本高。另一方面,杂质氧量超过2质量%时,热传导率容易不足150W/m·K。
[0045] 其次,作为烧结助剂,选择由Ca、Y、La、Ce、Nd、Pr,Eu、Gd、Dy、Ho,Er、Yb、及Lu构成的组中的至少一种构成的氧化物,作为氧化物粉末混合1~10质量%。作为烧结助剂,优选为稀土元素氧化物,更优选为氧化钇(Y2O3)。
[0046] 另外,烧结助剂粉末的平均粒径优选为0.6~2μm。如果氮化铝粉末和烧结助剂粉末的平均粒径为同平,则容易均匀地混合原料粉末。
[0047] 其次,将氮化铝粉末、烧结助剂粉末、粘合剂溶剂、根据需要的分散材料等混合,制备原料浆料。
[0048] 接着,使用制备的原料浆料制作成形体。成形体的制作方法可例举使用刮匀涂装法(doctor brade method)的片材成形、通过模具将由浆料制作的造粒粉成形的挤压成形。如果是刮匀涂装法,则容易制作直径50mm以上、进而100mm以上的大型的成形体。另外,在成形体为片材状的情况下,也可以根据需要加工成形体,制作圆盘状的成形体。
[0049] 其次,将成形体脱脂后,实施烧结的工序。烧结温度优选以1600~1900℃进行。另外,烧结优选在惰性气氛中进行。
[0050] 对这样得到的烧结体的GaN基半导体形成面实施镜面加工。表面加工使用金刚石磨石以表面粗糙度Ra0.1μm以下、优选为0.05μm以下的方式进行研磨。另外,根据需要也可以进行将侧面或背面的形状整形的加工。
[0051] 作为抑制AlN晶粒及烧结助剂成分的脱粒发生的方法,可例举2阶段研磨加工。2阶段研磨是指在实施镜面加工时,首先在用#180~#325的磨石进行中精加工后,用#325以上(优选为#325~#400)的细的磨石进行研磨。通过进行这样的2阶段研磨加工,可以使基板表面的凹部为200μm以下(没有超过200μm的凹部)。进而,可以使基板表面的偏度(Rsk)为-0.5~+0.5的范围。
[0052] 作为得到基板表面没有最大直径超过200μm的凹部这样的多晶氮化铝基板的方法,可例举以下的方法,但不限于此。例如,可例举使原料浆料通过开孔20~100μm的网眼。特别是使原料浆料多次通过网眼是有效的。由此,能够除去成为超过原料浆料中的20μm的凹部的原因的凝集体。
[0053] 作为其它方法,可例举将原料浆料进行脱气处理。通过进行脱气处理,能够除去原料浆料中的气泡。原料浆料中的气泡在烧结后成为凹部的原因,因此,原料浆料的脱气处理是有效的。予以说明,脱气处理的优选条件为以真空度4~6kPa进行10分钟以上2小时以下。
[0054] 另外,作为其它方法,可例举在烧结工序中使用气氛加压烧结法。在模具烧结法中,容易受到模具的表面状态的影响。如果是气氛加压,则可以负载气氛所致的均匀的压,因此,容易得到作为烧结体的多晶氮化铝基板的表面状态平坦的烧结体。予以说明,气氛的压力优选确保在3~8kPa。
[0055] 进而,作为其它方法,可例举通过#325以上的研磨加工工序的加工将多晶氮化铝基板的表面沿厚度方向研磨20μm以上的方法。多晶氮化铝基板通过烧结工序,容易在基板表面渗出烧结助剂成分。因此,通过将表面研磨20μm以上而能够除去渗出的烧结助剂成分。另外,也可以与上述的2阶段的研磨工序组合。而且,也可以将上述四种方法组合使用。
[0056] 另外,为实现晶界相中最大直径超过0.5μm的微孔隙在每10μm×10μm单位面积为0~1个,将上述四种方法组合两种以上使用是有效的。特别是优选将作为第一种方法的通过网眼和作为第三种方法的气氛加压烧结法组合。
[0057] 实施例
[0058] 实施例1~5及比较例1
[0059] 将氮化铝粉末(平均粒径1μm、氧含量1.0质量%)和氧化钇(Y2O3)粉末(平均粒径1μm)以表1所示的比例混合,制备原料粉末。
[0060] 在混合中,在甲苯乙醇等溶剂中添加原料粉,之后,进一步添加有机粘合剂和塑化剂进行混合,制备原料浆料。使用得到的原料浆料通过刮匀涂装法成形厚度1.2mm的生料片材。将该生料片材裁断为长170mm×宽170mm后进行脱脂,以1700~1850℃×3~5小时在氮中进行烧结,得到各多晶氮化铝基板。其次,对得到的多晶氮化铝基板以表1所示的条件进行镜面加工,由此制作实施例1~5及比较例1的多晶氮化铝基板。
[0061] [表1]
[0062]
[0063] 对各多晶氮化铝基板测定了热传导率、基板表面的凹部的最大直径、基板表面的偏度(Rsk)、AlN晶粒的平均粒径、烧结助剂成分、及相对密度。热传导率通过激光闪光法(laser flash method)测定。就基板表面的凹部的最大直径而言,拍摄基板表面的500μm×500μm单位面积的放大照片,测定在此所照的凹部的最长的对角线的长度。在基板表面的任意的5处进行该作业,将最大的值设为“凹部的最大直径”。另外,偏度(Rsk)通过表面粗糙度计求出。另外,就AlN晶粒的平均粒径而言,拍摄任意的截面照片
100μm×100μm的放大照片,通过线截断法进行测定。另外,通过XRD分析烧结助剂成分。
另外,相对密度通过(阿基米德法的实测值/根据组成通过计算求出的理论值)×100(%)求得。表2表示其结果。
[0064] [表2]
[0065]
[0066] 根据表1,如实施例1~5,通过进行2阶段研磨,可以使基板表面的凹部的最大直径为200μm以下(没有超过200μm的)。另一方面,在比较例1中,由于不能进行2阶段研磨,因此,引起AlN晶粒的脱粒及烧结助剂成分的脱粒,形成大的凹部。
[0067] 另外,对实施例1~5及比较例1的多晶氮化铝基板进行了XRD分析的结果是,作为烧结助剂成分,检测到YAG相(Y3Al5O12)或YAP相(YAlO3)这样的复合氧化物。
[0068] (实施例1A~5A、比较例1A)
[0069] 将实施例1~5及比较例1的多晶氮化铝基板加工成直径2英寸(50.8mm)×厚度1mm、表面粗糙度(Ra)为0.01μm的圆盘状。使用各试样使GaN半导体结晶成长。
[0070] 在MOCVD装置内的基座上配置试样(多晶氮化铝基板),在500~600℃通过有机金属气相成长法(MOCVD法)流过TMG气体(三甲基镓气)、氨气,形成GaN缓冲层。其次,在1000~1100℃使GaN层的膜厚加厚(结晶成长)。缓冲层为0.02μm,最终的GaN层的厚度为3μm。另外,GaN层被设于多晶氮化铝基板表面(直径2英寸)。
[0071] 测定得到的GaN基半导体的膜剥离的有无。就膜而言,将无膜剥离的不良的试样(在下一工序使用)由“○”表示,将一部分不良产生的试样由“△”表示,就膜而言,将因膜剥离的不良而导致不良的试样(下一工序中不使用)由“×”表示。表3表示其结果。
[0072] [表3]
[0073]多晶氮化铝基板 膜剥离的有无
实施例1A 实施例1 △
实施例2A 实施例2 △
实施例3A 实施例3 ○
实施例4A 实施例4 ○
实施例5A 实施例5 ○
比较例1A 比较例1 ×
[0074] 可知为得到膜剥离少的GaN单晶,多晶氮化铝基板的表面凹部的最大直径为200μm以下、进而为50μm以下至为重要。另外,实施例1~5的多晶氮化铝基板由于热传导率高达150W/m/K以上,所以放热性良好,可以认为这一点也对能够抑制膜剥离的不良的效果有效。其结果能够高效地制造LED或半导体激光器等发光元件。
[0075] 实施例6~10
[0076] 将氮化铝粉末(平均粒径0.8μm、氧含量1.0质量%)97质量%和氧化钇(Y2O3)粉末(平均粒径1.2μm)3质量%混合,制备原料粉末。
[0077] 在混合时,在甲苯、乙醇等溶剂中添加原料粉,之后,进一步添加有机粘合剂和塑化剂进行混合,制备原料浆料。使用得到的原料浆料通过刮匀涂装法成形厚度1.2mm的生料片材。将该生料片材裁断为长170mm×宽170mm后进行脱脂,以1700~1850℃×3~5小时在压力2kPa的氮中进行烧结,得到各多晶氮化铝基板。其次,对得到的多晶氮化铝基板实施#300的金刚石磨石的第一研磨加工工序、及#500
[0078] 的金刚石磨石的第二研磨加工工序,由此制作实施例6的多晶氮化铝基板。予以说明,第二研磨加工工序中为厚度至10μm。得到的基板的表面粗糙度为Ra0.01μm。
[0079] 在实施例6的多晶氮化铝基板的制造工序中,使原料浆料通过开孔60μm的网眼后,通过开孔30μm的网眼,除此之外,与实施例6相同,制作实施例7的多晶氮化铝基板。
[0080] 实施例6的多晶氮化铝基板的制造工序中,将烧结工序中的窒素气体的气氛压力设为6kPa,除此之外,与实施例6相同,制作实施例8的多晶氮化铝基板。
[0081] 实施例7的多晶氮化铝基板的制造工序中,将烧结工序中的窒素气体的气氛压力设为6kPa,除此之外,与实施例7相同,制作实施例9的多晶氮化铝基板。予以说明,实施例9的多晶氮化铝基板的制造工序是将原料浆料的通过网眼工序和气氛加压烧结工序组合。
[0082] 实施例6的多晶氮化铝基板的制造工序中,使用将原料浆料以5kPa进行20分钟真空脱气的原料浆料,将烧结工序中的窒素气体的气氛压力设为5kPa,除此之外,与实施例6相同,制作实施例10的多晶氮化铝基板。
[0083] 对于如上得到的实施例6~10的各多晶氮化铝基板,与实施例1同样地求出相对密度、基板表面的偏度Rsk、热传导率、AlN晶粒的平均结晶粒径、基板表面的凹部的最大直径。表4表示其结果。
[0084] [表4]
[0085]
[0086] 其次,求出基板表面的超过20μm的凹部的个数、晶界相中的超过0.5μm的微孔隙的个数。超过20μm的凹部的个数通过金属显微镜观察基板表面的单位面积1英寸×1英寸,求出在此所照的超过20μm的凹部的个数。在任意三处进行该作业,将最多的个数设为“1英寸×1英寸单位面积”的超过20μm的凹部的个数。
[0087] 另外,就晶界相中的超过0.5μm的微孔隙的个数而言,通过SEM观察基板表面,调查晶界相中存在的超过0.5μm的微孔隙的个数。具体而言,通过SEM照片拍摄10μm×10μm,调查在此所照的最大直径超过0.5μm的微孔隙的个数。在任意三处进行该作业,将最多的个数设为“10μm×10μm单位面积”的超过0.5μm的微孔隙的个数。表5表示其结果。
[0088] [表5]
[0089]
[0090] 与实施例6的多晶氮化铝基板进行比较,实施例7~10的多晶氮化铝基板的最大凹部为20μm以下,因此,没有超过20μm的凹部。另外,由于采用了用于抑制超过0.5μm的微孔隙的方法,所以每10μm×10μm单位面积的个数为0~1个。特别是,在将用于抑制超过0.5μm的微孔隙的方法组合两种以上的实施例9及实施例10的多晶氮化铝基板中,能够使超过0.5μm的微孔隙的个数为零。
[0091] (实施例6A~10A)
[0092] 将实施例6~10的多晶氮化铝基板加工成直径6英寸(152.4mm)×厚度1mm、表面粗糙度(Ra)为0.01μm的圆盘状。使用各试样使GaN半导体结晶成长。
[0093] 在MOCVD装置内的基座上配置试样(多晶氮化铝基板),在500~600℃通过有机金属气相成长法(MOCVD法)流过TMG气体(三甲基镓气)、氨气,形成GaN缓冲层。其次,在1000~1100℃使GaN层的膜厚加厚(结晶成长)。缓冲层为0.02μm,最终的GaN层的厚度为3μm。另外,GaN层设于多晶氮化铝基板表面(直径6英寸)。
[0094] 与实施例1A同样地测定得到的GaN基半导体的膜剥离的有无。另外,测定得到的GaN基半导体的翘曲的有无。就翘曲量而言,测定直径6英寸的翘曲量,将该值换算为每1英寸的翘曲。将每1英寸的翘曲量超过20μm且30μm以下的设为“△”,将超过10μm且20μm以下的设为“○”,将10μm以下的设为“◎”。表6表示其结果。予以说明,不用说翘曲量越小越好。
[0095] [表6]
[0096]
[0097] 如表5及5表明,通过减少超过20μm的凹部的个数及晶界相中的超过0.5μm的微孔隙的个数,不仅没有膜剥离,而且翘曲量也能够减小。由此,可知能够提高GaN基半导体的成品率。
[0098] 符号说明
[0099] 1···多晶氮化铝基材
[0100] 2···GaN基半导体层
[0101] 3···缓冲层
[0102] L···多晶氮化铝基材的直径
[0103] W···多晶氮化铝基材的厚度
QQ群二维码
意见反馈