天线用磁性材料、以及天线和无线通信器械

申请号 CN201210062089.5 申请日 2012-03-09 公开(公告)号 CN102682947B 公开(公告)日 2015-08-05
申请人 TDK株式会社; 发明人 石仓友和; 村本充广; 原田明洋; 川崎克己; 黑田朋史;
摘要 本 发明 提供一种可以实现在高 频率 下可宽频带且高效率地使用且在生产性和经济性方面表现优良的小型天线等的天线用 磁性 材料、以及使用其的天线和无线通信器械。天线用磁性材料包含用通式(1):MA·Fe12-X·MBX·O19(式中,MA是选自Sr和Ba中的至少一种,MB是MC或MD,MC是选自Al、Cr、Sc和In中的至少一种,MD是选自Ti、Sn和Zr中的至少一种与选自Ni、Zn、Mn、Mg、Cu和Co中的至少一种的等量混合物,X是1以上5以下的数)表示的M型六方晶 铁 氧 体作为主相,并且,平均结晶粒径为5μm以上。
权利要求

1.一种天线用磁性材料,其特征在于,
包含用下述通式(1)表示的M型六方晶体作为主相,平均结晶粒径为5μm以上,MA·Fe12-X·MBX·O19···(1)
式中,MA是选自Sr和Ba中的至少一种,MB是MC或MD,MC是选自Al、Cr、Sc和In中的至少一种,MD是选自Ti、Sn和Zr中的至少一种与选自Ni、Zn、Mn、Mg、Cu和Co中的至少一种的等量混合物,X是1以上5以下的数,
自然共振频率f0(n)为5GHz以上,并且,磁畴壁共振频率f0(d·w)为0.8GHz以下。
2.根据权利要求1所述的天线用磁性材料,其特征在于,
进一步含有选自0.1~3质量%的SiO2、0.5~5质量%的CaO和0.5~8质量%的Bi2O3中的至少一种。
3.根据权利要求1或2所述的天线用磁性材料,其特征在于,
2GHz下的复相对磁导率实部为1.2以上,并且,2GHz下的磁损耗为0.01以下。
4.根据权利要求1或2所述的天线用磁性材料,其特征在于,
2GHz下的复相对介电常数实部为30以下,并且,2GHz下的介电损耗为0.05以下。
5.根据权利要求3所述的天线用磁性材料,其特征在于,
2GHz下的复相对介电常数实部为30以下,并且,2GHz下的介电损耗为0.05以下。
6.一种天线,其特征在于,
具备:
包含权利要求1~5中的任一项所述的天线用磁性材料的基底;
设置在所述基底的表面或内部的导体;以及
连接于所述导体并且对该导体供给电能的供电端子
7.根据权利要求6所述的天线,其特征在于,
所述基底是空隙率为1~40%的烧结体。
8.一种无线通信器械,其特征在于,
具备权利要求6或7所述的天线。

说明书全文

天线用磁性材料、以及天线和无线通信器械

技术领域

[0001] 本发明涉及适用于天线用途的磁性材料、以及使用其的天线和无线通信器械。

背景技术

[0002] 近年来,正在推进移动电话机和移动信息终端等的无线通信器械所使用的无线信号频率的高频化。例如,第一代移动电话机的使用频率为800MHz频带,相对于此,2001年以后开始服务的第三代移动电话机的使用频率变成2GHz频带,要求能够在包含GPS及蓝牙、无线LAN用途的GHz频带使用的天线。另外,伴随着无线通信器械的多功能化,对应于多种无线方式的多频带·模式化也正在发展,对于这样的无线通信器械所使用的天线而言,也要求可以在宽的频率频带下使用。再有,近来,伴随着无线通信器械的小型化,天线自身的进一步小型化也成为紧迫的课题。这样,对于近年的无线通信器械所使用的天线而言,热切地希望可实现高频率下的宽频带化和小型化的两者。
[0003] 与这样的技术相关,例如在专利文献1中记载了将通过适当地选择放射电极接地电极的形状而得到小型薄型化、高增益和宽频带特性作为目的的微带(micro-strip)构造的芯片型天线元件。另外,在专利文献2中记载了含有Y型体(ferrite)作为主相的六方晶铁氧体和使用其的天线。再有,在专利文献3中提出了作为电磁场结合调整体而使用将具有超顺磁性的磁性纳米粒子分散在非磁性的母材(matrix)中的复合磁性介电材料的天线。此外,在专利文献4中记载了以Co置换型的W型六方晶铁氧体作为主相的磁性氧化物分散于树脂而成的复合磁性材料和使用其的天线。此外,在专利文献5中记载了具备用由Y型、Z型或M型的铁氧体化合物组成的氧化物系磁性材料构成的绝缘体层的天线装置。
[0004] 专利文献
[0005] 专利文献1:日本专利第3625191号公报
[0006] 专利文献2:国际公开第2006/064839号小册子
[0007] 专利文献3:日本特开2008-228227号公报
[0008] 专利文献4:日本特开2010-238748号公报
[0009] 专利文献5:日本特开2005-278067号公报

发明内容

[0010] 发明所要解决的问题
[0011] 在此,与天线的小型化相关,电磁波波长缩短率等于传送介质中的相位速度的降低率,由于该相位速度理论上与介质的相对磁导率和相对介电常数的积的平方根成反比例,因此,一般来说,通过使用磁导率和/或介电常数与真空中相比更大的材料作为天线的基材和母材,可以缩短在该天线中传播的电磁波的波长,从而可以谋求其小型化。具体而言,通过磁性材料内的电磁波(电波)的波长λ用 表示(波长缩短效果)。这里,因子μ′r表示磁性材料的复相对磁导率μr的实部,因子ε′r表示磁性材料的复相对介电常数εr的实部。还有,这里的“波长缩短率”是用“在传送介质传播的电磁波的波长/真空中的电磁波的波长”所表示的值,该值越小,表示波长缩短效果越好。
[0012] 与此相关,例如,在专利文献1中存在与通过提高相对介电常数而实现的天线的小型化相关的记载。然而,在专利文献1记载的天线中使用相对介电常数大的基材的情况下,得到高效率的频率频带狭小,其结果,可使用的频率频带被限制到不适合的程度。
[0013] 另外,如果使用专利文献2所记载的Y型六方晶铁氧体那样的磁性材料,则在GHz以上的高频率频带下的磁损耗会变得过大,在这样的情况下,可使用的频率频带被限制到不适合的程度。
[0014] 再有,由于在专利文献3所记载的天线中,所使用的磁性纳米粒子的粒径如字面上那样是纳米级的,因此,向作为其分散剂的树脂材料的分散性不充分,另外,由于难以进行高填充,导致难以得到充分的天线性能。另外,由于在操作性方面较差,而且导致制造成本的增加,因此,很难说这样的磁性纳米粒子适于产品的量产。
[0015] 另一方面,由本申请人得到的专利文献4所记载的复合磁性材料,使用W型铁氧体,因此,具有能够减小高频率下的磁损耗和介电损耗的优点。然而,由于W型铁氧体的磁导率比较小,另外,为了采用将W型铁氧体与树脂混合而形成的复合体而进一步降低作为整体的磁导率,因此,专利文献4所记载的复合磁性材料,从充分减小上述波长缩短率而谋求天线的更加小型化的观点看,可能存在不充分的情况。
[0016] 另一方面,在专利文献5中,如上所述,公开了各种组成的铁氧体作为天线的材料,然而,这些详细的材料物性并不清楚,一般而言,使用这样的材料的天线也被认为在GHz以上的高频率频带下的磁损耗大到了不适合程度。
[0017] 因此,本发明是有鉴于上述情况而完成的发明,其目的在于,提供一种可以实现在高频率下可宽频带且高效率地使用、再有、在制造时的操作性和经济性方面表现优良、且适用于量产的小型天线的天线用磁性材料、以及使用其的天线和无线通信器械。
[0018] 解决课题的技术手段
[0019] 为了解决上述课题,本发明人们着眼于具有特定的结晶构造的铁氧体的组成和物性等而反复研究,其结果,发现了对上述课题有效的解决手段,从而完成本发明。
[0020] 即,本发明的天线用磁性材料,包含用下述通式(1)表示的M型六方晶铁氧体作为主相,并且,平均结晶粒径为5μm以上。
[0021] MA·Fe12-X·MBX·O19…(1)
[0022] 在上述通式(1)中,“MA”表示选自Sr和Ba中的至少一种的金属元素,“MB”表示MC或MD,“MC”表示选自Al、Cr、Sc和In中的至少一种的金属元素,“MD”表示选自Ti、Sn和Zr中的至少一种的金属元素与选自Ni、Zn、Mn、Mg、Cu和Co中的至少一种的金属元素的等摩尔量混合物。X是1以上5以下的数(例如,1、1.5、2、3……5等)。
[0023] 还有,在上述中,“主相”是指作为磁性粉末中主要的成分(相对于粒子整体的比率超过50质量%的成分)而含有的相。另外,“平均结晶粒径”是通过在后述的实施例中具体描述的方法测定的中位数直径D50%。
[0024] 本发明人们在测定了使用具有这样的构成的天线用磁性材料制作的天线的特性之后,确认了该天线与现有的天线相比,不仅在高频率下的有效的频带宽度和效率方面表现优良,而且可充分地小型化。实现这样的有利效果的作用机制的详细情况还未清楚,但可以推定为例如如下所述。但是,作用并不限定于此(下同)。
[0025] 在含有上述组成的铁氧体且平均结晶粒径为5μm以上的天线用磁性材料中,作为主相的M型六方晶铁氧体除了主成分金属(上述MA和Fe)之外,还含有副成分金属(上述MB),因此,降低了阻碍磁矩(magnetic moment)的方位转换的结晶磁各向异性能量的壁垒,由此,自然共振频率f0(n)向更低的频率侧迁移(shift),即,进一步提高了复相对磁导率的实部μ′r。更具体而言,自然共振出现在5GHz左右以上的频率频带,充分地抑制了因在不到其的频率下的自然共振而引起的磁损耗。另外,由于天线用磁性材料充分地结晶生长,以特别使平均结晶粒径变成5μm以上,因此,磁畴壁的共振在更低的频率的交流磁场中变得显著,即,磁畴壁共振频率f0(d·w)向更低的频率侧迁移。更具体而言,磁畴壁共振出现在1GHz左右以下的频率频带,从而能够充分地抑制因超过其的频率下的磁畴壁共振而引起的磁损耗。从这些结果可以推测,在整个1~5GHz左右的宽的高频率频带,有效地降低了磁导率的损耗系数tanδμ(复相对磁导率μr的虚部μ″r/复相对磁导率μr的实部μ′r),从而能够有效地抑制因磁损耗的增大所引起的效率的过度降低。
[0026] 另外,此时,由于如上所述相对磁导率实部变得更大,因此,材料整体的磁导率和介电常数的积与现有相比变大,由此,有效地提高了波长缩短效果而能够缩短接收对象的电磁波的波长,其结果,可以谋求天线的小型化。与此同时,由于在材料阶段的粉体粒径充分大至1μm左右,因此,与使用上述现有的磁性纳米粒子的情况相比,在操作性方面表现优良,能够防止天线制造时的成本的增大,其结果,可以显著地提高制品的量产性和经济性。
[0027] 在以上的点中,该天线用磁性材料优选为,自然共振频率f0(n)为5GHz以上,并且,磁畴壁共振频率f0(d·w)为0.8GHz以下。另外,该天线用磁性材料优选为,例如在2GHz下的复相对磁导率的实部(μ′r)为1.2以上,并且,磁损耗(磁导率的损耗系数tanδμ)为0.01以下。再有,该天线用磁性材料优选为,例如在2GHz下的复相对介电常数的实部(ε′r)为30以下,并且,介电损耗(介电常数的损耗系数tanδε)为0.05以下。
[0028] 再有,本发明的天线用磁性材料可以进一步含有选自0.1~3质量%的SiO2、0.5~5质量%的CaO和0.5~8质量%的Bi2O3中的至少一种。这里,“质量%”表示相对于磁性成分的合计量的含有比率(SI单位标准),与重量基准(重量%,Wt%)实质上相同(下同)。通过按照这样的含有比率含有作为副成分的这些化合物,从而具有促进结晶粒生长或者使结晶粒生长容易均匀化的优点。
[0029] 另外,本发明的天线,是可以使用本发明的天线用磁性材料而有效地制造的天线,具备含有该磁性材料的基底、设置在该基底的表面或内部的导体、连接于该导体且用于对该导体供给电能的供电端子。再有,从进一步降低作为天线整体的介电常数的观点看,当天线的至少一部分(例如作为由天线用磁性材料形成的基底的烧结体)是多孔质时,是有用的。这样,可以进一步降低天线的基底甚至该天线的介电常数,从而可以进一步减少介电损耗,由此,可以进一步提高天线的效率。这里,从特别提高天线效率的观点看,所述基底优选为,空隙率为1~40%的烧结体。
[0030] 此外,本发明的无线通信器械的特征在于,是使用本发明的天线而有效地得到的无线通信器械,具备上述本发明的天线。
[0031] 发明的效果
[0032] 根据本发明的天线用磁性材料,含有特定的M型六方晶铁氧体作为主相,并且,平均结晶粒径为5μm以上,因此,能够在高频率下维持足够宽的频带宽度,并能够缩短接收对象的电磁波的波长而谋求天线和具备其的无线通信器械的小型化,再有,由于制造工序中的操作容易(操作(handling)性好),因此,也非常适用于量产,其结果,能够提高使用其的天线和无线通信器械的特性、生产性和经济性。附图说明
[0033] 图1是概念性地表示使用实施方式的天线用磁性材料而形成的天线的优选的一个实施方式的构成的立体图。
[0034] 图2是表示具备使用了实施方式的天线用磁性材料的天线的无线通信器械的优选的一个实施方式的概略构成的平面图。
[0035] 符号的说明:
[0036] 1…天线、2…基底、4…导体、6…供电端子、10…移动电话机(无线通信器械)、10CA…第1筐体、10CB…第2筐体、11…第1天线(天线)、12…第2天线(天线)、13…铰合部。

具体实施方式

[0037] 以下,对本发明的实施方式进行详细的说明。还有,上下左右等的位置关系,除非另有说明,均基于图面所示的位置关系。另外,图面的尺寸比率不限定于图示的比率。再有,以下的实施方式是用于说明本发明的例示,目的不在于将本发明仅限定于该实施方式。此外,在不偏离本发明的要旨的情况下,可以对本发明进行各种变形
[0038] (天线用磁性材料)
[0039] 本实施方式的天线用磁性材料含有M型六方晶铁氧体作为主相,并且,平均结晶粒径D50为5μm以上。该M型六方晶铁氧体用下式(1)表示:
[0040] MA·Fe12-X·MBX·O19…(1)
[0041] 式中,“MA”表示选自Sr和Ba中的至少一种的金属元素,“MB”表示MC或MD,“MC”表示选自Al、Cr、Sc和In中的至少一种的金属元素,“MD”表示选自Ti、Sn和Zr中的至少一种的金属元素与选自Ni、Zn、Mn、Mg、Cu和Co中的至少一种的金属元素的等摩尔量混合物。X是1以上5以下的数。
[0042] 另外,本实施方式的天线用磁性材料,优选由上式(1)所表示的M型六方晶铁氧体的单相组成,但是,在不减损上述作用效果的范围下,也可以含有与该M型六方晶铁氧体不同的相。此外,除了含有M型六方晶铁氧体作为主相的磁性成分以外,还可以进一步含有选自SiO2、CaO和Bi2O3中的至少一种,在这种情况下,这些成分的含有比率并没有特别的限定,但按该顺序分别优选为0.1~3质量%、0.5~5质量%和0.5~8质量%。
[0043] 根据如上所述组成的天线用磁性材料,通过作为主相含有的M型六方晶铁氧体除了主成分金属(上述MA和Fe)之外还包含副成分金属(MB),从而进一步提高了复相对磁导率的实部,并充分地进行结晶生长,以使平均结晶粒径变成5μm以上,因此,能够使磁畴壁共振频率f0(d·w)向更低的频率侧迁移。由此,在整个1~5GHz左右的宽的高频率频带,可以显著地降低磁导率的损耗系数tanδμ,其结果,能够充分地抑制由于磁损耗的增大而导致的效率的过度降低。
[0044] 另外,由于能够进一步增加复相对磁导率的实部,因此,与现有相比,可以使材料整体的磁导率和介电常数的积增大,由此,提高了波长缩短效果,从而可以谋求天线的小型化。而且,由于能够提高材料粉体的操作性,因此,也可以显著地提高天线制造时的经济性和量产性。
[0045] 还有,若考虑这些方面,则本实施方式的天线用磁性材料优选为,自然共振频率f0(n)为5GHz以上,并且,磁畴壁共振频率f0(d·w)为0.8GHz以下。另外,本实施方式的天线用磁性材料,例如在2GHz下的复相对磁导率实部为1.2以上,并且,磁损耗为0.01以下时,是特别有用的。再有,本实施方式的天线用磁性材料,例如在2GHz下的复相对介电常数实部为30以下,并且,介电损耗为0.05以下时,是特别有用的。
[0046] 此外,当本实施方式的天线用磁性材料进一步含有0.1~3质量%的SiO2、0.5~5质量%的CaO和0.5~8质量%的Bi2O3中的至少一种时,由于容易促进或控制作为磁性材料的结晶粒生长,因此,能够更有效且简便地将磁性材料的平均结晶粒径调整至5μm以上。
[0047] (天线)
[0048] 接着,图1是概念性地表示使用本发明的天线用磁性材料而形成的天线的优选的一个实施方式的构成的立体图。天线1是在基底2的表面和/或内部形成有至少一个导体4的天线。该基底2使用上述本实施方式的天线用磁性材料而形成,其形状没有特别的限定,可以采用搭载在无线通信器械时所要求的各种形状,一般而言,优选使用例如图1所示那样的长方体状的形状等。
[0049] 在这样的基底2例如是烧结体(陶瓷烧结体)的情况下,其可以通过通常的陶瓷制作工艺制造。对其一个例子进行说明,首先,以使烧结后的组成变成所期望的组成的方式称量各原料,进行规定的时间的湿式混合,而调制由含有构成M型六方晶铁氧体的金属元素的金属化合物组成的铁氧体前驱体。该金属化合物含有铁(Fe)化合物和其他金属(MA、MB)化合物,作为素材料,例如,可以使用Fe2O3等的氧化物作为铁化合物,另外,使用BaCO3(SrCO3)、TiO2、Mn3O4等的氧化物作为其他金属化合物。另外,替代这些化合物或者除了这些化合物以外,可以使用含有Al、Cr、Sc、In、Ti、Sn、Zr、Ni、Zn、Mn、Mg、Cu、Co、Zn等的氧化物。
[0050] 还有,在湿式混合处理中,除了例如使用铁制的介质(media)的球磨机和珠磨机等以外,还可以适当地应用混合机、搅拌机或分散机等。
[0051] 接着,例如在大气中对该铁氧体前驱体进行适宜的温度和时间的热处理(预烧),再有,在根据需要添加规定量的规定的添加物(上述的含有比率的SiO2、CaO(添加方式是(CaCO3))和Bi2O3中的至少一种)之后,进行适当的时间的粉碎处理,从而得到M型六方晶铁氧体的粉末(粉体)。另一方面,根据需要,也可以对该粉末添加在后面的烧成处理中消失的烧失剂和分散材、润滑剂、成形助剂等的本领域公知的添加剂。由于在使用烧失剂的情况下能够在作为烧结体的基底2的内部形成微细的空隙而使基底2多孔质化,因此,能够使基底2乃至天线1整体的介电常数降低而减少介电损耗,从而可以进一步提高天线1的效率。即,存在空隙率越高,介电常数·磁导率越下降的趋势,并存在可以提高因介电常数下降而引起的上述作用效果的增强效果的趋势。按照这样的观点,作为烧结体的基底2优选适当地具有空隙,更具体而言,作为烧结体的基底2的空隙率优选为1~40%左右,更优选为5~35%。
[0052] 然后,用适当的方法对所调制的原料粉末进行造粒,在规定的压下使其成形为所期望的形状后,例如在大气中对该成形体进行适宜的温度和适宜的时间的热处理(烧成),得到作为烧结体的基底2。通过适当控制烧成条件,该烧结体的平均结晶粒径能够形成为,从1μm以下的微细的结晶粒径开始生长至5μm以上。在这样的情况下,烧结体的平均结晶粒径能够根据烧成的处理温度和处理时间而增减。例如,存在处理温度越高,另外,处理时间越长,烧结体的平均结晶粒径越大的趋势。另外,通过上述的副成分的添加,存在促进结晶粒子的生长,容易使结晶粒子的生长均匀化的趋势。
[0053] 还有,在铁氧体前驱体的粉碎处理中,除了例如上述的各种装置即使用钢铁制球磨机等的介质的球磨机和珠磨机等之外,还可以适当地使用混合机、搅拌机或分散机等。
[0054] 另外,可以通过例如印刷、蒸、贴合或者电镀或铜合金等的适当的方法来形成在基底2的一个面所形成的导体4,在图1中,在基底2的另一个面所设置的供电端子6电连接于该导体4。该导体4的形状没有特别的限制,除了如图1所记载那样的平面薄片状或者平面薄膜状之外,还可以是例如蜿蜒(meander)状、螺旋(helical)状等的各种形状。另外,供电端子6是用于电连接导体4和外部的供电线的端子,从规定的供电线供给的电压经由该供电端子6而施加到导体4。
[0055] (无线通信器械)
[0056] 图2是表示具备使用了本发明的天线用磁性材料的天线的无线通信器械的优选的一个实施方式的概略构成的平面图(正面图)。作为无线通信器械的移动电话机10是第1筐体10CA和第2筐体10CB通过铰合部13连结的折叠式的一种移动终端,其使用频率频带例如是2GHz频带的频率频带。在第2筐体10CB的内部,在位于铰合部13侧的相反侧的端部,配置有第1天线11(天线)。该第1天线11是提供给移动电话机10的无线通信的收发信天线,在用于在移动电话机10和基站之间进行通话和电子邮件等的数据交换的电波的收发信中使用。
[0057] 另外,在第2筐体10CB的内部,在铰合部13侧的相反侧的部位,配置有第2天线12(天线)。该第2天线12例如是用于GPS无线信号的收信的收信天线,用于从GPS卫星发信的电波的收信,其频率频带例如是1.5GHz频带。
[0058] 在具有这样的构成的移动电话机10中,第1天线11的基底使用本发明的天线用磁性材料而形成,由此,能够使第1天线11小型化,同时能够在移动电话机10的无线通信所使用的频率(上述的例子中是2GHz频带)中,在宽频带(例如几十MHz)中使用第1天线11。另外,由于能够使第1天线11小型化,因此可以提高移动电话机10的内部所设置的器械、部件、配线等的配置自由度,由此,能够谋求移动电话机10的筐体的小型化。
[0059] 另外,第2天线12的基底也使用本发明的天线用磁性材料而形成,由此,能够谋求第2天线12的小型化,同时能够在用于GPS无线信号的收信的频率频带中,在宽频带(例如几十MHz)中使用第2天线12。再有,通常存在第2天线12在移动电话机10的筐体内的配置被限制的趋势,但是,根据本实施方式,由于能够使第2天线12小型化,因此,也可以提高筐体内的第2天线12的配置自由度。
[0060] 还有,如上所述,本发明并不限定于上述的各实施方式,在不改变其要旨的限度下可以进行各种变形。例如,本发明的天线用磁性材料不限制于天线1和移动电话机10的天线,对GHz频带、特别是使用2~5GHz频带的所有无线通信器械均能够适用。另外,本发明的无线通信器械除了移动器械之外,还可以举出例如移动电话机用的室内外天线、无线LAN用的收发信机(母机、子机)等,本发明在其中特别是对要求小型化的器械非常有用。
[0061] 以下,对本发明的实施例进行说明,但是,本发明并不限定于这些实施例。
[0062] (实施例1~27和比较例1~5)
[0063] 调制作为天线用磁性材料的各原料粉末,制作各实施例和各比较例的物性和特性评价用样品(烧结体),其中,作为天线用磁性材料的各原料粉末包含:按照表1和表2中用x表示的组成比分别含有同表所示的MA和MB的M型六方晶铁氧体粉;以及根据需要的同表所示的含有比率的添加物(SiO2、CaO和Bi2O3的至少一种)。还有,通过使用钢铁制球磨机进行16小时的各材料的湿式混合,在大气中在1200℃下对该混合粉预烧2小时,在对其添加上述添加物后,用钢铁制球磨机粉碎16小时,从而调制原料粉末。另外,在100MPa的压力下将对原料粉末造粒而成的粒子成形为规定的形状之后,在大气中在1100~1380℃的温度下(实施例1是1200℃,实施例2是1250℃,实施例3是1350℃,其他实施例以其作为指标并根据作为目的的平均结晶粒径而进行微调整)对该成形体进行2小时的原料粉末的烧成处理。还有,在实施例13和实施例25~27中,使用实施例5的原料粉末,再有,使用烧失剂(平均粒径10μm的聚苯乙烯)来调整所期望的空隙率。
[0064] (参考例1和2)
[0065] 除了使用以式CaTiO3作为基体(base)的介电粉和以式Ba2Co2Fe2O22所表示的Y型六方晶铁氧体粉作为原料粉末以外,与上述的实施例和比较例相同,制作参考例1和2的物性和特性评价用样品(烧结体)。
[0066] (物性和特性评价)
[0067] <平均结晶粒径>
[0068] 利用扫描型电子显微镜观察用浓盐酸蚀刻后的烧结体样品表面,由N=50个的平均求出平均结晶粒径。
[0069] <材料常数>
[0070] 由调制后的各原料粉末的烧结体分别成形加工环状样品(外径7mm×内径3.04mm×厚度1~2mm),从使用网络分析仪(Agilent公司制:HP8510C)测量的频率0.1~
18GHz下的S参数的结果导出所得到的各环状样品的室温25℃下的复相对磁导率μr的实部μr′、虚部μr″和磁损耗tanδμ。另外,从调制后的各原料粉末的烧结体分别成形加工棒状样品(1mm×1mm×80mm),使用相同的网络分析仪,通过在频率2GHz下的空腔共振器摄动法,测量所得到的各棒状样品的室温25℃下的复相对介电常数εr的实部εr′、虚部εr″和介电损耗tanδε。
[0071] 再有,由各环状样品的复相对磁导率的虚部μr″的频率依赖性,鉴定自然共振频率f0(n)(在5GHz以上的频率频带中虚部μr″的值表示峰值的频率)和磁畴壁共振频率f0(d·w)(在1GHz以下的频率频带中虚部μr″的值表示峰值的频率)。
[0072] (天线特性)
[0073] 从调制后的各原料粉末的烧结体分别成形加工长方体块状样品(10mm×3mm×4mm),在所得到的各长方体块状样品的表面上形成电极(还有,根据各样品而适当调整电极图案),从而制作具有与图1所示的构成大致相同的构成的、共振频率是
1.5GHz的各芯片型天线。将所得到的芯片型天线分别安装在平面基板上,在使电极的一端连接至供电电极的状态下,由使用小型3D放射指向性测量机(SATIMO公司制:STARLAB)所测量的放射效率,评价最大放射效率和频带宽度(放射效率变成50%以上的以1.5GHz为中心的频率范围)。
[0074] <空隙率>
[0075] 空隙率是利用扫描型电子显微镜观察用浓盐酸蚀刻后的烧结体样品表面,通过图像解析处理算出空隙所占有的面积后,在将空隙形状视为球形的基础下,乘以2/3而换算成体积占有率。
[0076] 表1和表2中汇总表示所得到的测量评价结果。由这些结果,判明了本发明的实施例的原料粉末和天线满足全部的下述条件:自然共振频率f0(n)为5GHz以上,磁畴壁共振频率f0(d·w)为0.8GHz以下,2GHz下的复相对磁导率实部μ′r为1.2以上,磁损耗为0.01以下,2GHz下的复相对介电常数实部ε′r为30以下,以及介电损耗为0.05以下,因而与比较例和参考例相比,确认了其优越性。
[0077] 另外,由实施例5、实施例13和实施例25~27的比较,确认了将空隙率调整至1~40%的样品与没有这样做的样品相比,可以显著地提高最大放射效率和频带宽度,从而在天线效率方面特别优良。
[0078] [表1]
[0079]
[0080] [表2]
[0081]
[0082] 产业上的利用可能性
[0083] 如以上说明所述,根据本发明的天线用磁性材料,通过含有特定的M型六方晶铁氧体作为主相,并且,使平均结晶粒径为5μm以上,从而能够在高频率下,高效率且维持足够宽的频带宽度,并能够谋求天线和具备其的无线通信器械的小型化,再有,可以提高生产性和经济性,因此,本发明的天线用磁性材料以及使用其的天线和无线通信器械,对例如以1GHz以上的高频率信号作为对象的天线用途的宽频带化和小型化是有用的,可以广泛且有效地应用在移动电话机、游戏机、PDA、个人计算机、室内天线、无线LAN用的收发信机、信息通信用卡等的各种无线通信器械和移动通信机、以及具备其的系统和设备等中。
QQ群二维码
意见反馈