首页 / 国际专利分类库 / 化学;冶金 / 水泥;混凝土;人造石;陶瓷;耐火材料 / 石灰;氧化镁;矿渣;水泥;其组合物,例如:砂浆、混凝土或类似的建筑材料;人造石{ / 硫酸钙水泥 / .{准备或处理原材料} / Process for the physiochemical conditioning of chemical gypsum or phospho-gypsum for use in formulation for cement and other construction materials

Process for the physiochemical conditioning of chemical gypsum or phospho-gypsum for use in formulation for cement and other construction materials

申请号 US11786220 申请日 2007-04-11 公开(公告)号 US20080003174A1 公开(公告)日 2008-01-03
申请人 Miriam Elena Andara Giannotti; Jose R. Rus Romero; Carlos Dipasquale Torres; Morvin Ascanio Lopez; Jose Oropeza; Juan Carlos Suarez; 发明人 Miriam Elena Andara Giannotti; Jose R. Rus Romero; Carlos Dipasquale Torres; Morvin Ascanio Lopez; Jose Oropeza; Juan Carlos Suarez;
摘要 The present invention concerns the application of a novel process for the physical and chemical conditioning of chemical gypsum or phospho gypsum, derived from the production of phosphoric acid, and its use as a retarding agent in the setting of Portland type cements or in the preparation of other construction materials. This conditioning is based on solid-state reactions or reactions in the presence of small amounts of water, between phospho gypsum and agglutinating-neutralizing agents, principally through the application of oxy and hydroxy compounds, without discounting use of the respective carbonates of magnesium, aluminum and principally calcium, in addition to mixtures of these, and the subsequent preparation of self-hardening pellets which facilitate transport and handling.The technological process associated with the invention notably simplifies the number and type of individual operations, and the preparation of pellets from mixtures of phospho gypsum, in addition to reducing energy costs by operating at low temperatures (150° C.) during short periods (1-2 hours), reducing the quantity of neutralizing agents, and also minimizing the volume of water required for the process.
权利要求 1. A process for the physico-chemical conditioning of phospho gypsum or chemical gypsum, that neutralizes and stabilizes the harmful components contained in the aforesaid phospho gypsum, for application as a setting retardant in cements.2. A process for the physico-chemical conditioning of phospho gypsum or chemical gypsum, that neutralizes and stabilizes the harmful components contained in the aforesaid phospho gypsum, for application as a construction material.3. A process for the physico-chemical conditioning of phospho gypsum or chemical gypsum that substantially reduces the number of distinct operations required for conditioning the material forming the subject of this patent.4. A process of physico-chemical conditioning of phospho gypsum that involves three distinct operations, namely: drying, mixing for solid-state reactions, and agglomeration.5. A process in which the treatment temperatures for chemical gypsum are comprised between ambient temperature and forty degrees Celsius for drying, and from between sixty and one hundred fifty degrees Celsius up to a maximum of two hundred fifty [degrees] for material drying-dehydration.6. A process for the conditioning, neutralization and stabilization of the harmful components in chemical gypsum, which involves addition and mixing of neutralizing-agglutinating agents, which include oxy and hydroxy compounds, without discounting use of the respective carbonates of magnesium, aluminum and principally calcium, in addition to mixtures of them, between 0.5 and 10% w/w of chemical gypsum for the solid-state reaction.7. A process in which the mixing of chemical gypsum and the neutralizing, agglutinating and stabilizing agents takes place between 5 and 12 minutes, or up to 60 minutes, without prejudice to other durations as required according to the nature of the phospho gypsum. The mixture can include the addition of water at between 0.5 and 5% w/w8. A process in which the neutralization-stabilization reactions on the harmful components of phospho gypsum for cement setting processes occur in the solid-state during the operation described in claim 5.9. An agglomeration process for the material obtained in claim 5, in a disk pelletizer, agglomerating drum, agglomerating cone or other instrument for obtaining an agglomerated or granulated material.10. A process whereby the agglomerating operation for the phospho gypsum obtained in claim 5, proceeds via the addition of water onto the agglomerating disk or other agglomerating instrument, up to a final content of between 10 and 30%.11. A process in which the harmful components of chemical gypsum for application as a setting retardant for cement, or for application as a construction material, are completely neutralized and stabilized in accordance with claim 5.12. A process whereby the material obtained in claim 10 includes hydration reactions that hardens the pellets or agglomerates (self-hardening pellets) obtained in the agglomerating instrument, acquiring mechanical properties of compression resistance of between 2 kg/pellet up to 30 kg/pellet, and drop resistance of greater than 10 repeats, dependent upon setting time.13. A process whereby the hardening or setting of the pellets for obtaining their peak mechanical properties of compression resistance and drop resistance number, in accordance with claim 12, is up to 36 hours at ambient temperature or 4 hours at 40° C.14. The obtaining of modified phospho gypsum for addition to Clinker and its application as a setting retardant for cements.15. A process for obtaining a material in accordance with claim 5, which is subjected to grinding in a ball mill down to a size of less than 45 μm, to which water is added at up to 40%, and preferably between 21 and 29% by weight, for the preparation of construction forms such as sheets, panels, blocks, details, or any other required form. Setting times are from 4 hours up to a maximum of 8.
说明书全文

The present invention concerns the application of a novel process for the physical and chemical conditioning of chemical gypsum or phospho gypsum, derived from the production of phosphoric acid, and its use as a retarding agent in the setting of Portland type cements or in the preparation of other construction materials. This conditioning is based on solid-state reactions or reactions in the presence of small amounts of water, between phospho gypsum and agglutinating-neutralizing agents, principally through the application of oxy and hydroxy compounds, without discounting use of the respective carbonates of magnesium, aluminum and principally calcium, in addition to mixtures of these, and the subsequent preparation of self-hardening pellets which facilitate transport and handling.

The technological process associated with the invention notably simplifies both the number and type of individual operations, and the preparation of pellets from mixtures of phospho gypsum; it also reduces energy costs by operating at low temperatures (150° C.) during short periods (1-2 hours), while reducing the quantity of neutralizing agents, and minimizing the volume of water required for the process.

BACKGROUND

The production of phosphoric acid uses phosphoric rock, which is leached with sulfuric acid according to several well-known processes such as the dihydrate, hemi-hydrate hemi-dihydrate methods, or processes named for the companies that introduced the technology, for example Dorr-Oliver, Nissan H & C, Fissons, Lurgi, etc. The process produces the desired product, H3PO4, and a byproduct known as phospho gypsum or chemical gypsum, CaSO4.2H2O, according to the following reaction:



Ca3(PO4)2+3H2SO4+6H2O→2H3PO4+3CaSO4.2H2O

This phosphor gypsum is basically made up of fine crystals, in tabular or rosette form, of sulfates of calcium dihydrate or hemi-dihydrate or mixtures thereof, depending on the process, with sizes of between 50 and 150 μm, as well as partially reacted rock or the insoluble fraction of phosphoric rock, namely silex, and oxides of iron, aluminum and magnesium, in addition to other compounds of the same metals but replaced by phosphates or polyphosphates. In addition, the phospho gypsum crystals also contain other inorganic compounds which have been absorbed or have replaced CaSO4 in the crystalline structure, including H3PO4, H2SO4 and HF, which are the products of incomplete reactions (H2SO4) and the usual shortcomings in solid-liquid separation; this gives the waste product an acidic character and causes one of the main problems concerning applications for construction materials or as a substitute for natural gypsum in the manufacture of cements.

During the production of H3PO4 between four (4) and five (5) metric tons of byproduct are produced per metric ton of acid, depending on the process used. This characteristic of the process requires the construction of large tailings dams or open areas for the retention and stockpiling of the damp solid. Given the acidic nature of the waste, there can be effects on the environment from leaching or dust generation, while certain phosphoric rocks also contain radioactive elements (uranium, thorium, radium) which require containment of the waste. Furthermore, disposal of the waste calls for large areas of land, which is accordingly rendered unusable for other purposes until closure of the plant and environmental recovery of the area. As an example, for the years 1981-1982, the annual worldwide production stood at 110 million metric tons.

The requirements for obtaining alternative methods of utilizing or disposing of phospho gypsum has driven a series of technological and research efforts aimed at providing an economical solution, or at least an environmentally acceptable one, to the phospho gypsum problem.

The technologies associated with the disposal of phospho gypsum are normally focused on evaluation of the environmental impact of the selected method, or the economies achieved through the application of the available technology.

Meanwhile, there is abundant research directed towards value-adding and re-utilizing phosphor gypsum in quite varied applications, and this gives a measure of the magnitude of the problem. Research into alternative applications has been oriented towards three principal areas: the agronomic area (fertilizers and soil conditioners), the production of construction material, and use as a raw material for obtaining chemical products and materials (sulfur, cements, calcium salts and other sulfates).

In the agronomic area, the principal use is in the conditioning of soils that are clay-like, acidic, or with a high content of sodium salts, and soils with erosion problems, low seepage, and as a source of sulfates for specific crops, or as low-formulation direct-application fertilizer.

The studies into obtaining other byproducts or raw materials were based on the application of technologies associated with pyrometallurgy, such as the decomposition of phospho gypsum in the presence of coke in order to obtain sulfur and cements, in addition to calcium sulfurates. Other studies were directed toward the preparation of fertilizers, K2SO4, through chemical digestion in the presence of nutrients such as KCI and NH4NO3 or NH3.

Finally, one area where research efforts are very abundant, and where there are proven industrial applications, is in materials for construction and civil works. We might expect such results in this area, given the large tonnages normally required to satisfy the demand for construction materials, especially where such materials are scarce or subject to economic competition.

In the international sphere, phospho gypsum has been utilized as an additive for regulating setting times, totally or partially replacing mineral gypsum. In the majority of cases, prior treatment of the phosphor gypsum has been necessary in order to reduce or eliminate the impurities which adversely affect the setting time, compression strength and other characteristics of prepared cement. Thus, we find that the first industrial-level application occurred in Japan, where phospho gypsum is heat treated by calcination at 800° C. (conversion to an anhydride, CaSO4) and mixed with bases such as CaO, then subsequently agglomerated to obtain a cement retardant. Likewise, the company ONODA developed a technology for obtaining gypsum for construction, stucco or plaster of Paris, but in this instance using chemical methods such as washing and neutralization, filtration and drying (U.S. Pat. No. 3,998,596, U.S. Pat. No. 3,928,053).

Similarly, Saltgitter patented a technology based on an upstream washing treatment in decanter tanks, neutralization with strong sodium or calcium bases, and hydro-cyclone separation, in order to eliminate impurities (free P2O5, F and others) and finally drying and calcination, in order to obtain a material that can be used in cement industry applications.

Other patents (CN1085879, CN1394823), operate using additives such as aluminum salts, clays, liquid byproducts of paper manufacture, CaO or Ca(OH)2 to treat the phospho gypsum until a material appropriate for use is achieved.

Other patents (CN1389421, CN1389422) refer to the application of unspecified modifying agents to treat chemical gypsum and subsequent mixing, molding, curing, and drying in a confined environment for up to 48 hours, and then adjustments or calcinations at between 600 and 900° C., and finally agglomeration (CN1394823).

The technological process associated with the present invention notably simplifies the number and type of distinct operations (elimination of upstream washing and filtering), in addition to reducing energy costs by operating at low temperatures (150° C. versus 800-1200° C. for other processes) during short periods (1-2 hours), reducing the quantities of neutralizing agents (10% maximum), as well as minimizing the volume of water required in the process; moreover the total processing time from damp phospho gypsum up to production of a pellet with adequate mechanical properties is less than 24 hours.

The product is presented in the form of pellets, which allows ease of use and reduction of fine [particles]

The final composition of the phospho gypsum obtained via this invention is similar to natural gypsums and compatible with Portland type cement formulations.

DESCRIPTION OF PROCESS

FIG. 1 shows a flow diagram for the processes disclosed by the present invention. In this case the present invention involves the chemical conditioning, through application of an agglutination-neutralizing agent—normally a hydrated lime or calcium oxide base, in addition to carbonate-type compounds and compounds of other metals such as magnesium or aluminum—simultaneously with physical conditioning or the obtaining of an agglomerate with the appropriate mechanical properties, for use as a retardant in Portland type cements. The technology proposed by this invention notably simplifies previously known technologies by reducing the individual operations required for treatment; it also reduces the energy costs by operating at low temperatures (150° C. versus 800-1200° C.), thus lowering investment and operating costs, and generating a positive cash flow for companies in this sector. Furthermore this process would entail replacement of mineral gypsum imports, value-adding a waste product of phosphoric acid production plants and lessening the environmental liabilities and impact of plant operations.

The conditioning process is based on the application of solid-state reactions, at low temperatures and in three distinct operations—namely drying, mixing for the solid-state reactions, and agglomeration—performed in accordance with the steps described below:

Step 1: Pre-drying of the phospho gypsum, whether at ambient pressure and temperature conditions, or in an oven at forty degrees Celsius;

Step 2: Drying-dehydration of the phospho gypsum, between 60 and 150 and up to 250 degrees Celsius during one to two hours;

Step 3: Mixing of the dehydrated phospho gypsum at 150 degrees Celsius with dry phospho gypsum at ambient temperature, with proportions of between 0 to 60% of dry phospho gypsum at ambient temperature, or the use of 100% dehydrated phospho Gypsum;

Step 4: Addition and mixing of neutralizing-agglutinating agents, which include oxy and hydroxy compounds, without discounting possible use of the respective carbonates of magnesium, aluminum and principally calcium, in addition to mixtures of them, between 0.5 and 10% w/w of chemical gypsum for the solid-state reaction. The mixture can include the addition of water at between 0 and 5% w/w. Mixing times are between 5 minutes and 12 minutes, or up to 60 minutes, without prejudice to other possible mixing times as required according to the nature of the phospho gypsum;

Step 5: Agglomeration in a disk pelletizer, agglomerating drum or cone, using water at between 10 and 30% w/w, with subsequent hardening times at ambient temperature of between 24 and 36 hours, or else 4 hours at 40° C.

The modified and agglomerated phospho gypsum has a final free water content of less than 5% by weight and free P2O5 and F content equal to or less than 0.01% and down to 0.0001%, which makes it adequate for use (retardant) in formulations of Portland type cement without adverse effects on the mechanical properties of the concrete produced with such cements.

In the case of applications for construction materials, the phospho gypsum yielded by Step 4 is submitted to fine grinding down to a particle size of less than 45 μm; water is then added at up to 40% but preferably between 21 and 29% by weight, for preparation of the desired construction form, whether sheets, blocks or any other type.

PRACTICAL EXAMPLES

Example 1

1000 g of mixture in equal parts comprising 90% phospho gypsum pre-dried at ambient temperature or at 45° C., plus dry phospho gypsum at 150° C.; to this is added 10% calcium hydroxide and then mixed for 10 minutes in a paddle mixer running at 15 rpm. The mixture is subsequently agglomerated in a disk, adding water to the disk at up to 20%. The pellets or agglomerates are then dried at a temperature of 40° C. for 4 hours. This produces pellets of from 15 to 20 mm in size, with mechanical properties including compression resistance of up to 30 kg/pellet and drop resistance equal to or greater than 30 [repeats].

Example 2

Fifty [50] grams of magnesium and calcium hydroxide is added to 950 g of dry phospho gypsum at 150° C., and then mixed in a paddle or drum mixer for 12 minutes at a speed of 15 rpm, with addition of 5% water by weight. The mixture is then fed to a disk or drum pelletizer and water is added at up to 22% for agglomeration. The self-hardening pellets discharged from the disk are left to cure for at least 24 hours, until they reach a mechanical resistance of 20 kg/pellet and a drop resistance of at least 15 [repeats].

The modified phospho gypsum associated with this invention was used as a retardant in Portland cements, yielding a product with physical and chemical characteristics that comply with the quality standards for cements under both national and international standards.

This invention would entail the replacement of imports and a reduction in the use of natural gypsum, as well as a reduction in the environmental impact caused by mining operations to extract this mineral. Furthermore, it value-adds a waste product of phosphoric acid production plants, affording an opportunity for the reuse and application of the discarded material in the construction industry, in addition to the reduction of environmental liabilities and effects on the land and scenery.

QQ群二维码
意见反馈