包含化铋的浆和其在太阳能电池中的用途

申请号 CN201580023871.8 申请日 2015-05-18 公开(公告)号 CN106463198A 公开(公告)日 2017-02-22
申请人 太阳化学公司; 发明人 孙博; 何靳安;
摘要 本 发明 涉及用于Si 太阳能 电池 的 银 浆,所述Si 太阳能电池 包括高纯度Bi2O3添加剂和具有 硅 片 的太阳能电池,在所述 硅片 的 正面 表面上具有银浆。所得的电池展现改进的效率。
权利要求

1.一种用于太阳能电池的组合物,其包括
a)Ag粉,
b)玻璃料,
c)至少一种有机树脂
d)至少一种溶剂
e)和在0.02-1.5wt%之间的Bi2O3添加剂,其中所述Bi2O3具有在5至9000nm之间的平均
颗粒尺寸,并且其中所述添加剂包含大于98wt%的Bi2O3。
2.根据权利要求1所述的组合物,进一步包括粘合促进剂、触变剂和/或分散剂。
3.根据权利要求1或2所述的组合物,其中所述Bi2O3添加剂包含大于99.0wt%的Bi2O3。
4.根据前述权利要求的任一项所述的组合物,其中所述Bi2O3添加剂不包含其他金属
化物。
5.根据前述权利要求的任一项所述的组合物,其包括在0.1至0.5wt%之间的Bi2O3添加
剂。
6.根据前述权利要求的任一项所述的组合物,其包括在0.15至0.3wt%之间的Bi2O3添
加剂。
7.根据前述权利要求的任一项所述的组合物,其中所述Bi2O3的所述平均颗粒尺寸在10
至3000nm之间。
8.根据前述权利要求的任一项所述的组合物,其中所述Bi2O3的所述平均颗粒尺寸在20
至300nm之间。
9.根据前述权利要求的任一项所述的组合物,其包括在75至95wt%之间的Ag粉。
10.根据前述权利要求的任一项所述的组合物,其包括在80至92wt%之间的Ag粉。
11.根据前述权利要求的任一项所述的组合物,其中所述Ag粉具有在0.1至5μm之间的
颗粒尺寸D50。
12.根据前述权利要求的任一项所述的组合物,其中所述Ag粉具有在0.5至2μm之间的
颗粒尺寸D50。
13.根据前述权利要求的任一项所述的组合物,其包括在0.5至10wt%之间的玻璃料。
14.根据前述权利要求的任一项所述的组合物,其包括在1至5wt%的玻璃料。
15.根据前述权利要求的任一项所述的组合物,其中所述玻璃料由以下形成:PbO、
Al2O3、SiO2、B2O3、Li2O、TiO2、ZnO、P2O5、V2O5、SrO、CaO、Sb2O3、SO2、As2O3、Bi2O3、Tl2O3、Ga2O3、MgO、Y2O3、ZrO2、Mn2O5、CoO、NiO、CuO、SrO、Mo2O3、RuO2、TeO2、CdO、In2O3、SnO2、La2O3、BaO和其混合物。
16.根据前述权利要求的任一项所述的组合物,其包括在0.2至2wt%之间的有机树脂。
17.根据前述权利要求的任一项所述的组合物,其包括在0.5至1.5wt%之间的有机树
脂。
18.根据前述权利要求的任一项所述的组合物,其中所述树脂选自丙烯酸树脂、环氧树
脂、树脂、醇酸树脂纤维聚合物、聚乙烯醇、松香和其混合物。
19.根据前述权利要求的任一项所述的组合物,其包括在2至20wt%之间的溶剂。
20.根据前述权利要求的任一项所述的组合物,其包括在2至8wt%之间的溶剂。
21.根据前述权利要求的任一项所述的组合物,其中所述溶剂选自2,2,4-三甲基-1,3-
戊二醇一异丁酯、丙醇、异丙醇、乙二醇和二甘醇衍生物甲苯、二甲苯、二丁基卡必醇、松油醇和其混合物。
22.根据前述权利要求的任一项所述的组合物,其包括在0.1至0.7wt%之间的粘合促
进剂。
23.根据前述权利要求的任一项所述的组合物,其包括在0.01至2.0wt%之间的分散
剂。
24.根据前述权利要求的任一项所述的组合物,其包括在0.5至2.0wt%之间的触变剂。
25.根据前述权利要求的任一项所述的组合物,其中所述组合物为浆料的形式。
26.一种太阳能电池,其包括硅片和所述硅片的正面表面上的根据前述权利要求的任
一项所述的组合物。
27.根据权利要求26所述的太阳能电池,其中所述硅片在所述硅片的背面表面上具有
两个重叠层,所述两个重叠层中一个包括Al和一个包括Ag。
28.一种用于制造太阳能电池的方法,其包括将根据权利要求1至25任一项所述的组合
物的涂层施加至所述硅片的正面表面上。
29.根据权利要求28所述的方法,进一步包括将两个重叠层施加至所述硅片的背面表
面,所述两个重叠层中一个包括Al和一个包括Ag。
30.根据权利要求28或29所述的方法,进一步包括烧制所述涂覆的硅片。

说明书全文

包含化铋的浆和其在太阳能电池中的用途

[0001] 本申请要求提交于2014年5月19日的美国临时专利申请序列号62/000,141的优先权,其通过引用以其整体并入本文并且用于所有目的。

技术领域

[0002] 本发明涉及用于(Si)太阳能电池的银浆,该银浆包括高纯度Bi2O3添加剂,和具有硅片的太阳能电池,银浆在该硅片的正面表面上。太阳能电池展现由在浆料中使用高纯度添加剂产生的改进的效率。

背景技术

[0003] 硅太阳能电池被广泛地用于快速发展的光伏(PV)产业。
[0004] 硅太阳能电池通常包括硅片,在硅片的正面(面向阳光)用银(Ag)浆丝网印刷图案。硅片还通常具有两个重叠层,其包含分别印刷在硅片的相反面(背面)的和银。
[0005] US 5,066,621和US 5,336,644涉及包含金属氧化物的封接玻璃组合物。
[0006] US 2013/0037761涉及一种导电厚膜浆料,其包括用于太阳能电池的电极的Ag。
[0007] US 2012/0171810描述了用于太阳能电池的电极的浆料组合物,其包含导电粉、有机载体和玻璃料。
[0008] US 2012/0138142涉及用于太阳能电池的触点(contacts)的无铅和无镉浆料组合物。
[0009] US 2010/0294360和US 2010/0294361涉及在硅片上形成正面栅极的方法,在该硅片上印刷和干燥包含玻璃料的金属浆料。
[0010] US 2012/0312368和US 2012/173875描述了导电厚膜浆料包括基于无Ag和Pb铋的氧化物,二者都分散在用于制造半导体器件的有机介质中。
[0011] US 2011/0147677涉及包含锌的玻璃组合物,其用于硅半导体器件和光伏电池的导电浆料。
[0012] WO 2012/135551描述了可丝网印刷的高纵横比厚膜浆料蜡组合物,其用于将导线放置在太阳能电池器件上。
[0013] 最后,期刊文章:用于前触点金属化的无铅银油墨的发展(Development of lead-free silver ink for front contact metallization)作者(一个或多个):Kalio,A.;Leibinger,M.;Filipovic,A.;Kruger,K.;Glatthaar,M.;Wilde,J.涉及太阳能材料和太阳能电池。

发明内容

[0014] 本发明提供了一种用于硅太阳能电池的组合物,其包括银粉、玻璃料、至少一种有机树脂、至少一种溶剂和在0.02至1.5wt%之间的Bi2O3添加剂,其中Bi2O3具有在5至9000nm之间的平均颗粒尺寸,并且其中添加剂包含大于98wt%的Bi2O3。
[0015] 本发明还提供了包括硅片和硅片的正面表面上的组合物的太阳能电池。
[0016] 最后,本发明提供了用于制造太阳能电池的方法,其包括施加组合物的涂层至硅片的正面表面上。
[0017] 如以下更详细地描述,当阅读该方法和配方的细节时,本发明的这些和其他目的、优势和特征对本领域技术人员将变得显而易见。

具体实施方式

[0018] 已经发现,具有在特定重量范围的高纯度Bi2O3添加剂并且具有特定颗粒尺寸的银浆组合物的使用导致当暴露于阳光时具有更高电池效率和因此更大功率输出的太阳能电池的产生。
[0019] 通常,当用于生产太阳能电池时将玻璃料添加至银浆组合物,以蚀刻通过硅片的正面上的抗反射涂层(ARC)。
[0020] 此外,玻璃料的使用还增加了组合物的均匀性,其潜在地增加了带粘合并且有助于防止由一种金属氧化物浓度的激增引起的多斑点区域。
[0021] 然而,通过将独立地作为添加剂的金属氧化物直接并入银浆组合物也可以实现可接受的均匀性。
[0022] 现在已经发现,高纯度Bi2O3添加剂赋予特别有利的特性至高效率的正面银浆组合物。此外,也已经发现,具有特定颗粒尺寸的Bi2O3,其独立地用作添加剂或用作并入玻璃料内的添加剂,赋予更高的效率至正面银浆组合物。
[0023] 通过使用术语“高纯度”,意思是氧化铋基本上是添加剂中的仅有的金属氧化物,并且当可能连同其他金属氧化物使用氧化铋添加剂时,铋添加剂被单独并入并且不作为多组分金属氧化物混合物。
[0024] 优选地,Bi2O3添加剂包含大于99.0wt%比如99.999wt%。
[0025] 优选地,基于组合物的总重量,该组合物包括在0.02至1.5wt%,和更优选地在0.05至0.5wt%之间,和有利地在0.1至0.2wt%之间的Bi2O3添加剂。
[0026] Bi2O3添加剂的平均颗粒尺寸优选地在10nm至3000nm之间和更优选地在20nm至300nm之间。
[0027] 通常,Ag粉具有大于99.5%的纯度,并且通常包含有利地少于100ppm的杂质,比如Zr、Al、Fe、Na、Zn、Pb。
[0028] 通常,该组合物包含在70至95wt%之间,和更优选地在80至92wt%之间的Ag粉。
[0029] Ag粉(一种或多种)可以由具有优选地在0.1至5μm之间,更优选地0.5至2μm之间的颗粒尺寸D50的一种或多种Ag粉组成。
[0030] 通常当使用两种或多种Ag粉时实现了更高的Ag颗粒堆积密度,Ag颗粒的邻近促进了在烧制过程期间Ag的烧结和浸透。这产生了更连接的和更压缩的电子传导路径,其通常改进太阳能电池效率。
[0031] Ag粉(一种或多种)在形态上不被限制,并且可以是球形的、椭圆的等,并且通常在太阳能电池金属化烧制步骤期间可以被热烧结以形成导电网络。
[0032] 此外,Ag粉(一种或多种)可以用不同的表面活性剂预涂布以避免颗粒凝聚和聚集。表面活性剂有利地为直链或支链脂肪酸、脂肪酸酯、脂肪酰胺或其混合物。
[0033] 另外,长链醇也可用于流变改性。
[0034] 该组合物通常包括在0.5至10wt%之间的玻璃料。
[0035] 玻璃料可以由以下形成:PbO、Al2O3、SiO2、B2O3、Li2O、TiO2、ZnO、P2O5、V2O5、SrO、CaO、Sb2O3、SO2、As2O3、Bi2O3、Tl2O3、Ga2O3、MgO、Y2O3、ZrO2、Mn2O5、CoO、NiO、CuO、SrO、Mo2O3、RuO2、TeO2、CdO、In2O3、SnO2、La2O3、BaO和其混合物。
[0036] 另外,该组合物优选地包含在0.2至2wt%之间,和更优选地在0.5至1.5wt%之间的有机树脂。
[0037] 通常,树脂选自丙烯酸树脂、环氧树脂树脂、醇酸树脂纤维聚合物、聚乙烯醇、松香和其混合物。
[0038] 有利地,树脂应该在涂覆的硅片烧制期间烧尽,使得没有残留剩余在其上。
[0039] 另外,该组合物优选地包含在0.2至20wt%之间和更优选地在2至8wt%之间的溶剂。
[0040] 典型的溶剂包括2,2,4-三甲基-1,3-戊二醇一异丁酯(texanol)、丙醇、异丙醇、乙二醇和二甘醇衍生物(乙二醇醚溶剂)、甲苯、二甲苯、二丁基卡必醇、松油醇和其混合物。
[0041] 溶剂对于溶解树脂、松香和触变剂是有效的,并且优选地能够维持浆料印刷,同时接着在干燥步骤期间彻底地蒸发
[0042] 该组合物还通常包含粘合促进剂、触变剂和/或分散剂。
[0043] 通常,该组合物包含在0.1至0.7wt%之间的粘合促进剂,在0.01至3.0wt%之间的分散剂和在0.1至2.0和有利地在0.5至1.5wt%之间的触变剂。
[0044] 通常,触变剂是纤维素聚合物,比如乙基纤维素、羟乙基纤维素、蓖麻油、氢化蓖麻油、酰胺改性的蓖麻油衍生物或脂肪酰胺。合适的触变剂包括Thixatrol Max,Thixatrol ST和Thixatrol Pro。
[0045] 分散剂通常是长链脂肪酸,比如具有官能胺、酸性酯或醇基团的硬脂酸。合适的分散剂包括BYK 108、BYK 111、Solsperse 66000和Solsperse 27000。
[0046] 该组合物通常为浆料的形式,并且在10/秒下优选地具有在50至250Pa·S之间的粘度
[0047] 本发明还提供了一种用于制造太阳能电池的方法,其涉及涉及施加组合物的涂层至硅片的正面表面上。此外,该方法通常涉及将包含铝和银的两个重叠层分别施加至硅片的背面表面。然后烧制涂覆的硅片。
[0048] 通常通过丝网/模板印刷将组合物沉积在硅片上。跨越丝网的冲击(stroke)运动通过网格图案的微通道提供高剪切率至组合物。微通道的大小优选地在40至80微米用于指形物(finger),并且优选地1.0至2.0mm用于母线。指形物优选地较窄,以便保留用于收集阳光的更多的开口区域,同时由于Ag的成本,母线优选地为虚线,而不是连续的。印刷的指形线的厚度通常在10至35微米之间。有利地,印刷的指形物越高,指形物的导电性越好。
[0049] 硅太阳能电池的制造通常包括若干步骤,即;
[0050] 1)将SiO2转换成Si锭;
[0051] 2)通过锯切、蚀刻、掺杂、ARC和其他表面处理将Si锭转换成Si晶片;
[0052] 3)丝网印刷和干燥晶片的背面上的背面银(Ag)浆;
[0053] 4)丝网印刷和干燥晶片的背面上的铝(Al)浆;
[0054] 5)丝网印刷和干燥晶片的正面上的正面银(Ag)浆;
[0055] 6)在炉中共烧涂覆的晶片,其中该晶片经历对器件的整体效率最佳的温度曲线。
[0056] 因此,通过渗透背面上的SiO2,在两个背面涂层中的Al和Ag金属与Si晶片形成物理接触。此外,它们也可以通过重叠区域彼此形成接触。正面Ag浆渗透抗反射层并且到达在其下面的n型Si,并且在烧制过程期间在Ag线和n-Si发射极之间形成良好的欧姆接触。在Ag线和发射极之间用于电流的接触电阻优选最小以使器件的效率最大化。通常,在发射极和Ag轨迹之间的玻璃料薄层也是优选地,并且产生较高的效率。
[0057] 已经详细描述了本发明,包括其优选的实施方式。然而,要认识到,当考虑本公开内容时,本领域技术人员可对本发明做出落在本发明的范围和精神内的改变和/或改进。
[0058] 以下通过给出的实施例进一步描述了本发明。
[0059] 实施例
[0060] 以下实施例图解了本发明的具体方面,并且不意欲在任何方面限制其范围,并且不应该被这样解释。
[0061] 实施例1制造Ag浆的步骤。
[0062] 步骤1
[0063] 通过将松香(一种或多种)和触变剂(一种或多种)溶解在溶剂(成分1-3)中制造表1中的清漆。清漆是溶剂、触变性聚合物、树脂比如乙烯纤维素、聚酸酯、和松香比如氢化的松香和氢化的蓖麻油的酯的混合物。这些可浸渍玻璃料(一种或多种)、Ag粉和其他固体,并且使得浆料充分流体的以能够通过不锈网/乳剂通道,该通道宽度为30-100微米,网厚度为30-55微米和乳剂厚度为10-30微米,在晶片上形成浆料指形线。然而,清漆优选地允许印刷的指形线具有适合于使浆料散布最小化的触变性,因此留下更多的区域用于捕集阳光以转化为电。
[0064] 表1用于实施例A-F和1-4的清漆配方
[0065]
[0066] 步骤2
[0067] 然后将分散剂(成分4)添加至以上混合物内,并且剧烈地混合直到其变得均匀。
[0068] 表2正面银浆配方
[0069]
[0070] 步骤3
[0071] 将来自步骤(2)的混合物与玻璃料(一种或多种)、溶剂和添加剂——根据需要包括铋添加剂(表2–成分2、3、4、5、6)——剧烈地混合。玻璃料是由3M Cerodyne Viox Inc.商业上可获得的硅酸铅,并且典型的料比如V2173、V2172、V0981可以单独使用或作为最终浆料中的混合物使用。
[0072] 步骤4
[0073] 然后将Ag粉(一种或多种)(成分1)添加至步骤(3)的混合物,并且用来自FlackTek Inc的DAC加速混合器剧烈地混合。
[0074] 步骤5
[0075] 然后将来自步骤(4)的混合物三辊研磨至6-9μm的优选粒度。所得浆料在10/s下的优选粘度为50-250Pa*s,更优选地为70-150Pa*s,如来自TA Instruments的AR-2000EX流变仪所测量。
[0076] 浆料的三个主要要求为1)电性能,主要是效率;2)湿强度(即该线将保持其完整性,并且在干燥之后和烧制之前在指形物摩擦测试期间抵抗涂抹;3)在烧制之后的带粘合。
[0077] 已经发现,具有10nm至3μm的平均颗粒尺寸的Bi2O3粉可以增加浆料的效率。以下使用不同颗粒尺寸的Bi2O3的实验显示上述范围对于改进银浆效率是最有利的。
[0078] 太阳能电池制造和浆料的性能测试:
[0079] 在该测试中使用了具有80至90欧姆/平方的发射极方电阻的5英寸单晶片,并且以下描述了用于制备的3个步骤:1)将1.0g Al浆丝网印刷在每个Si晶片的背面上,然后使用BTU国际D914干燥器干燥,设定带速=90ipm、310℃(区域1)、290℃(区域2)和285℃(区域3)。用于印刷的丝网为325目,23微米线径,和10微米乳剂,45度偏差,使用的涂刷器具有65-
75的肖氏硬度;2)将正面Ag浆丝网印刷在相同晶片的正表面上,并且在相同的干燥炉中干燥,设定带速=165ipm、340℃(区域1)、370℃(区域2)和370℃(区域3)。用于印刷的丝网为
325目,23微米线径,和16微米乳剂,22.5度偏差,使用的涂刷器的具有65-75的肖氏硬度;3)使用BTU国际PV309燃烧炉烧制晶片,设定带速=200ipm、850℃(区域1)、790℃(区域2)、790℃(区域3)和1000℃(区域4)。使用来自PV Measurements Inc的太阳模拟器/I-V测试仪测量电性能(在黑暗中和在光下的开路电压Voc(V)、效率、填充系数、串联电阻和并联电阻)。
使用密封的校准电池校准灯的照明,并且调节测量的特征至标准AM1.5G照明条件(1000mW/cm2)。在测试期间,电池被放置在位于灯下的真空吸盘上,并且使用冷却器将吸盘温度维持在25℃+/-1。通过在-0.2V和+1.2V之间的扫描电压和测量的电流收集黑暗和光亮二者的I-V曲线。从仪器收集标准太阳能电池电学参数,包括电池效率(%)、串联电阻(Rs)、并联电阻(Rsh)和开路电压(Voc)、短路电流(Isc)和短路电流密度(Jsc)。电池效率η是评估太阳能电池的性能的关键参数。填充系数被限定为来自太阳能电池的最大功率与Voc和Isc的乘积的比。用图表表示(graphically),填充系数是可在I-V曲线和I/V轴之间拟合的最大矩形的面积被Isc*Voc除。使用在测量太阳能电池的电学参数的工业中可获得的标准计算机软件获得结果。
[0080] 发明性实施例A-F;比较实施例G
[0081] 控制浆料的实施例(比较实施例G)是表2中无铋添加剂的配方。表3中的实施例浆料A-F包含添加至表2的配方的0.2%Bi2O3,其具有不同的颗粒尺寸。浆料用DAC混合器剧烈地混合并且被指定为用于该实验的最终浆料。
[0082] 表3.Bi2O3的不同颗粒尺寸的比较
[0083]
[0084] 表1显示了1)在浆料中无Bi2O3添加剂时,Si太阳能电池的效率为6.2%,在添加Bi2O3之后,达到的最高效率为17.8%;2)随着将不同的Bi2O3颗粒尺寸添加至Ag浆料,太阳能电池的效率被显著改变;3)一般而言,颗粒尺寸越小,效率越好。在实施例F中,相对大的颗粒尺寸使效率降低,并且因此这不会是优选的材料。
[0085] 发明性实施例B;比较实施例1-4
[0086] 以上在发明性实施例A-G中描述的用于制造浆料的相同步骤被用于制造实施例1-4的浆料。通过将与表4中显示的摩尔浓度相等的铋添加剂添加至表2显示的配方制备实施例1-4。这些新材料是包含Bi的无机化合物。具有75至85欧姆/平方的发射极薄层电阻的6英寸多晶片被用于该测试。浆料的太阳能电池制造和性能测试类似于实施例A-G描述的那些方法。该对照实验清楚地显示了具有合适(right)颗粒尺寸的纯Bi2O3所起的作用。该纯度优选地>98%,优选地>99.9%。浆料中合适的Bi来源可帮助形成在n-Si层和Ag之间良好的接触,因此形成较低的串联电阻Rs,反过来显著较高的效率。
[0087] 表4显示了实施例B,其基于平均颗粒尺寸为140nm的Bi2O3-2(见表3),赋予与其他铋添加剂相比好得多的效率和低得多的电阻。
[0088] 表4.不同Bi添加剂之间的对比
[0089]
[0090] 已经详细描述了本发明,包括其优选的实施方式。然而,要认识到,当考虑本公开内容时,本领域技术人员可对本发明做出落在本发明的范围和精神内的改变和/或改进。
QQ群二维码
意见反馈