树脂封装型半导体装置以及树脂封装型半导体装置的制造方法

申请号 CN201280050751.3 申请日 2012-05-08 公开(公告)号 CN104025267B 公开(公告)日 2017-02-15
申请人 新电元工业株式会社; 发明人 小笠原淳; 伊东浩二; 伊藤一彦; 六鎗広野;
摘要 本 发明 中的 树脂 封装型 半导体 装置10具有 台面 型半导体元件100和铸模用树脂40,台面型半导体元件100包括在包围台面区域的外围锥形区域具有 PN结 露出部的台面型半导体基体以及至少 覆盖 外围锥形区域的玻璃层,铸模用树脂40用于封装台面型半导体元件100。本发明的树脂封装型半导体装置虽与以往的树脂封装型半导体装置同样具有将台面型半导体元件用树脂铸模而形成的结构,但还是一种具有比以往的树脂封装型半导体装置更高的高温反向 偏压 耐量的树脂封装型半导体装置。
权利要求

1.一种树脂封装型半导体装置,具有台面型半导体元件和铸模用树脂,所述台面型半导体元件包括在包围台面区域的外围锥形区域具有PN结露出部的台面型半导体基体以及至少覆盖所述外围锥形区域的玻璃层,所述铸模用树脂用于封装所述台面型半导体元件,其特征在于:
所述台面型半导体元件具有通过对一种半导体接合保护用玻璃复合物进行烧制而形成的玻璃层作为所述玻璃层,所述半导体接合保护用玻璃复合物由一种玻璃微粒构成,该玻璃微粒是通过将一种实质上不含有铅的玻璃原料熔融而获得的熔液制造而成,其中,所述半导体接合保护用玻璃复合物不含有Pb、P、As、Sb、Li、Na、K,并且至少含有SiO2、B2O3、Al2O3、ZnO以及含有CaO、MgO和BaO中至少两种的土金属化物,所述SiO2的含量在41.1mol%~61.1mol%范围内、所述B2O3含量在5.8mol%~
15.8mol%范围内、所述ZnO的含量在3.0mol%~24.8mol%范围内。
2.一种树脂封装型半导体装置,具有台面型半导体元件和铸模用树脂,所述台面型半导体元件包括在包围台面区域的外围锥形区域具有PN结露出部的台面型半导体基体以及至少覆盖所述外围锥形区域的玻璃层,所述铸模用树脂用于封装所述台面型半导体元件,其特征在于:
所述台面型半导体元件具有通过对一种半导体接合保护用玻璃复合物进行烧制而形成的玻璃层作为所述玻璃层,所述半导体接合保护用玻璃复合物由一种玻璃微粒构成,该玻璃微粒是通过将一种实质上不含有铅的玻璃原料熔融而获得的熔液制造而成,其中,所述半导体接合保护用玻璃复合物至少含有SiO2、Al2O3、ZnO、CaO、以及3mol%~
10mol%的B2O3,
所述SiO2的含量在32mol%~48mol%范围内、所述ZnO的含量在18mol%~28mol%范围内。
3.根据权利要求1或2所述的树脂封装型半导体装置,其特征在于:
其中,所述外围锥形区域被所述玻璃层直接覆盖。
4.根据权利要求1或2所述的树脂封装型半导体装置,其特征在于:
其中,所述外围锥形区域通过绝缘层被所述玻璃层所覆盖。
5.根据权利要求1或2所述的树脂封装型半导体装置,其特征在于:
其中,所述玻璃层是通过对所述半导体接合保护用玻璃复合物进行非结晶化的烧制而形成的。
6.一种树脂封装型半导体装置的制造方法,依次包括准备具有与主面平行的PN结的半导体基板的半导体基板准备工序;从所述半导体基板一侧的表面形成深度超过所述PN结的沟道的沟道形成工序;在形成至少覆盖所述沟道的内面的由半导体接合保护用玻璃复合物构成的层后,通过对该由半导体接合保护用玻璃复合物构成的层进行烧制来形成玻璃层的玻璃层形成工序;通过沿所述沟道将所述半导体基板切断从而制作台面型半导体元件的半导体基板切断工序;以及将所述台面型半导体元件使用铸模用树脂封装的树脂封装工序,其特征在于:
在所述玻璃层形成工序中,使用一种由玻璃微粒构成的半导体接合保护用玻璃复合物来形成所述玻璃层,所述玻璃微粒是通过将一种实质上不含有铅的玻璃原料熔融而获得的熔液制造而成,
其中,所述半导体接合保护用玻璃复合物不含有Pb、P、As、Sb、Li、Na、K,并且至少含有SiO2、B2O3、Al2O3、ZnO以及含有CaO、MgO和BaO中至少两种的碱土金属氧化物,所述SiO2的含量在41.1mol%~61.1mol%范围内、所述B2O3含量在5.8mol%~
15.8mol%范围内、ZnO的含量在3.0mol%~24.8mol%范围内。
7.一种树脂封装型半导体装置的制造方法,依次包括准备具有与主面平行的PN结的半导体基板的半导体基板准备工序;从所述半导体基板一侧的表面形成深度超过所述PN结的沟道的沟道形成工序;在形成至少覆盖所述沟道的内面的由半导体接合保护用玻璃复合物构成的层后,通过对该由半导体接合保护用玻璃复合物构成的层进行烧制来形成玻璃层的玻璃层形成工序;通过沿所述沟道将所述半导体基板切断从而制作台面型半导体元件的半导体基板切断工序;以及将所述台面型半导体元件使用铸模用树脂封装的树脂封装工序,其特征在于:
在所述玻璃层形成工序中,使用一种由玻璃微粒构成的半导体接合保护用玻璃复合物来形成所述玻璃层,所述玻璃微粒是通过将一种实质上不含有铅的玻璃原料熔融而获得的熔液制造而成,
其中,所述半导体接合保护用玻璃复合物至少含有SiO2、Al2O3、ZnO、CaO、以及3mol%~
10mol%的B2O3,
所述SiO2的含量在32mol%~48mol%范围内、所述ZnO的含量在18mol%~28mol%范围内。
8.根据权利要求6或7所述的树脂封装型半导体装置的制造方法,其特征在于:
其中,所述玻璃层形成工序包括形成直接覆盖所述沟道的内面的玻璃层的工序。
9.根据权利要求6或7所述的树脂封装型半导体装置的制造方法,其特征在于:
其中,所述玻璃层形成工序包括在所述沟道的内面形成绝缘层的工序,以及形成将所述沟道的内面通过所述绝缘层覆盖的玻璃层的工序。
10.根据权利要求6或7所述的树脂封装型半导体装置的制造方法,其特征在于:
其中,在所述玻璃层形成工序中,通过对由所述半导体接合保护用玻璃复合物构成的层进行非结晶化的烧制来形成玻璃层。

说明书全文

树脂封装型半导体装置以及树脂封装型半导体装置的制造

方法

技术领域

[0001] 本发明涉及一种树脂封装型半导体装置以及树脂封装型半导体装置的制造方法。

背景技术

[0002] 目前,具有PN结在包围台面(mesa)区域的外围锥形(taper)区域露出这样的结构的台面型半导体元件(例如,参考专利文献一、二)是已知的。图14显示的是用于说明以往的台面型半导体元件900的图。
[0003] 如图14所示,以往的台面型半导体元件900包括在包围台面区域A的外围锥形区域B中具有PN结露出部C的台面型半导体基体908,以及至少覆盖外围锥形区域B的玻璃层924。玻璃层924是钝化(passivation)用的玻璃层。另外,在图14中,符号910表示n-型半导体层,符号912表示p+型半导体层,符号914表示n+半导体层,符号916a表示(silicon)化膜,符号934表示阳极电极层,符号936表示阴极电极层。
[0004] 但是,根据本发明的发明者的研究,发现对于以往的台面型半导体元件900,在将其用树脂铸模(mould)从而制成树脂封装型半导体装置(以往的树脂封装型半导体装置)时会出现高温反向偏压(bias)耐量降低的问题。
[0005] 先行技术文献
[0006] 专利文献
[0007] 专利文献一 日本特开平10-116828号公报
[0008] 专利文献二 日本特开2004-87955号公报

发明内容

[0009] 因此,本发明是为了解决上述问题而发明的,目的在于提供一种虽是通过将台面型半导体元件用树脂铸模而制成但与以往的树脂封装型半导体装置相比具有更高的高温反向偏压耐量的树脂封装型半导体装置,并且,还在于提供一种能够制造这样的树脂封装型半导体装置的树脂封装型半导体装置的制造方法。
[0010] 本发明的发明者对于在将以往的台面型半导体元件用树脂铸模从而制成树脂封装型半导体装置时高温反向偏压耐量下降的原因进行反复研究后,得出其原因在于:因为构成玻璃层的含铅玻璃具有较高的电容率所以在玻璃层会产生较大的极化(参照后述的图3(b)),从而当进行高温反向偏压试验时在铸模树脂与玻璃层的交界面以及玻璃层与半导体层的交界面会有高密度的离子被诱发,由于这个影响,在玻璃层和半导体层的交界面会形成由反转层产生的通道(channel),漏电流就会增大。
[0011] 于是,本发明的发明者由此想到,对于玻璃层,如果使用由电容率比含铅玻璃低的无铅玻璃(不含铅(Pb)的氧化物的玻璃)构成的玻璃层,当进行高温反向偏压试验时在铸模树脂与玻璃层的交界面以及玻璃层与半导体层的交界面就不会诱发高密度的离子(参照后述的图3(a)),这样就能够与以往相比减小在高温反向偏压试验中增大的漏电流,从而完成了本发明。
[0012] [1]本发明提供一种树脂封装型半导体装置,具有台面型半导体元件和铸模用树脂,所述台面型半导体元件包括在包围台面区域的外围锥形区域具有PN结露出部的台面型半导体基体以及至少覆盖所述外围锥形区域的玻璃层,所述铸模用树脂用于封装所述台面型半导体元件,其特征在于:其中,所述台面型半导体元件具有实质上不含有铅的玻璃层作为所述玻璃层。
[0013] [2]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述外围锥形区域被所述玻璃层直接覆盖。
[0014] [3]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述外围锥形区域 通过绝缘层被所述玻璃层所覆盖。
[0015] [4]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃层是使用实质上不含有Pb、As、Sb、Li、Na、K的玻璃复合物形成的。
[0016] [5]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃层是使用实质上不含有Pb、P、As、Sb、Li、Na、K的玻璃复合物形成的。
[0017] [6]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2,B2O3,Al2O3,ZnO,以及含有CaO、MgO和BaO中至少两种土金属氧化物。
[0018] [7]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、ZnO、CaO、以及3mol%~10mol%的B2O3。
[0019] [8]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、碱土金属氧化物,以及从镍氧化物、氧化物、锰氧化物及锆氧化物构成的群中选择出的至少一种金属氧化物。
[0020] [9]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃层是使用实质上不含有Pb、B、P、As、Sb、Li、Na、K的玻璃复合物形成的。
[0021] [10]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、MgO、CaO。
[0022] [11]在本发明的树脂封装型半导体装置中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、ZnO。
[0023] [12]进一步,本发明还提供一种树脂封装型半导体装置的制造方法,依次包括准备具有与主面平行的PN结的半导体基板的半导体基板准备工序;从所述半导体基板一侧的表面形成深度超过所述PN结的沟道的沟道形成工序;形成至少覆盖所述沟道的内面的玻璃层的玻璃层形成工序;通过沿所述沟道将所述半导体基板切断从而制作台面型半导体元件的半导体基板切断工序;以及将所述台面型半导体元件使用铸模用树脂封装的树脂封装工序,其特征在于:其中,在所述玻璃层形成工序中,使用实质上不含有铅的玻璃复合物来形成所述玻璃层。
[0024] [13]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃层形成工序包括形成直接覆盖所述沟道的内面的玻璃层的工序。
[0025] [14]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃层形成工序包括在所述沟道的内面形成绝缘层的工序,以及形成将所述沟道的内面通过所述绝缘层覆盖的玻璃层的工序。
[0026] [15]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:在所述玻璃层形成工序中,使用实质上不含有Pb、As、Sb、Li、Na、K的玻璃复合物来形成所述玻璃层。
[0027] [16]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:在所述玻璃层形成工序中,使用实质上不含有Pb、P、As、Sb、Li、Na、K的玻璃复合物来形成所述玻璃层。
[0028] [17]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2,B2O3,Al2O3,ZnO,以及含有CaO、MgO和BaO中至少两种碱土金属氧化物。
[0029] [18]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、ZnO、CaO、以及3mol%~10mol%的B2O3。
[0030] [19]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、碱土金属氧化物,以及从镍氧化物、铜氧化物、锰氧化物及锆氧化物构成的群中选择出的至少一种金属氧化物。
[0031] [20]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:在所述 玻璃层形成工序中,使用实质上不含有Pb、B、P、As、Sb、Li、Na、K的玻璃复合物来形成所述玻璃层。
[0032] [21]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、MgO、CaO。
[0033] [22]在本发明的树脂封装型半导体装置的制造方法中,还可以具有这样的特征:所述玻璃复合物至少含有SiO2、Al2O3、ZnO。
[0034] 发明效果
[0035] 根据本发明的树脂封装型半导体装置,因为台面型半导体元件具有由电容率比含铅玻璃低的无铅玻璃(不含铅的玻璃)构成的玻璃层作为玻璃层,所以当进行高温反向偏压试验时在铸模树脂与玻璃层的交界面以及玻璃层与半导体层的交界面就不会诱发高密度的离子(参照后述的图3),这样就能够与以往相比减小在高温反向偏压试验中增大的漏电流。
[0036] 其结果,本发明的树脂封装型半导体装置虽然与以往的树脂封装型半导体装置同样具有将台面型半导体元件用树脂铸模而形成的结构,但还是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。即,本发明的树脂封装型半导体装置既是一种将台面型半导体元件用树脂铸模而制成的树脂封装型半导体装置,也是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。
[0037] 另外,为了提高树脂封装型半导体装置的高温反向偏压耐量,可以考虑以下的方法:(1)在制造台面型半导体元件的过程中形成较宽的沟道(台面沟道)的方法;(2)在制造台面型半导体元件的过程中使用扩散晶片(wafer)从而形成深沟道(台面沟道)的方法;(3)使用电阻率低的晶片的方法;以及(4)形成较厚的玻璃层的方法。但是,在上述(1)方法中,存在由于芯片(chip)面积变大而导致产品制造成本提高的问题。另外,在上述(2)方法中使用了扩散晶片,而晶片价格高涨,而且需要形成深沟道而导致工序变得困难,因此存在产品制造成本提高的问题。另外,在上述(3)方法中,存在难以保证反向电压的问题。另外,在上述(4)方法中,存在工序中晶片容易弯曲或破裂等问题。而与此相对,本发明的树脂封装型半导体装置不会产生上述的问题且能够提高高温反向偏压耐量。
[0038] 根据本发明的树脂封装型半导体装置的制造方法,能够制造如上述那样具有较高的高温反向偏压耐量的优良的树脂封装型半导体装置。
[0039] 并且,根据本发明的树脂封装型半导体装置的制造方法,从后述的实施例也可知,虽然使用实质上不含铅的玻璃复合物,但与以往的使用由含铅玻璃构成的玻璃复合物时同样能够获得以下的效果:(1)能够以合适的温度(例如1100℃以下)烧制玻璃复合物(;2)玻璃复合物对工序中使用的药品(例如王和电液)具有耐药性;(3)因为玻璃复合物具有接近硅的线膨胀系数的线膨胀系数(特别是在50℃~550℃下的平均线膨胀系数接近硅的线膨胀系数)所以能够在很大程度上减小工序中晶片的弯曲;进一步,(4)制造出的玻璃层具有优良的绝缘性因而能够制造反向特性优良的树脂封装型半导体装置。
[0040] 另外,在本发明的半导体接合保护用玻璃复合物中,含有至少某种特定成分(SiO2、B2O3等)不仅包括仅含有该某种特定成分的情况,还包括在玻璃复合物中不仅含有该某种特定成分还进一步含有通常可能含有的成分的情况。
[0041] 另外,在本发明的半导体接合保护用玻璃复合物中,实质上不含有某种特定元素(Pb、As等)是指不将该某种特定元素作为成分含有,但不排除上述特定元素作为杂质混入构成玻璃的各成分的原料中的玻璃复合物。这在本发明的半导体装置的制造方法以及半导体装置中也同样。
[0042] 另外,在半导体接合保护用玻璃复合物如本发明这样为所谓的氧化物系的玻璃复合物的情况下,不含有某种特定元素(Pb、As等)是指不含有该某种特定元素的氧化物、该某种特定元素的氮化物。附图说明
[0043] 图1是显示用于说明实施方式一涉及的树脂封装型半导体装置10的图;
[0044] 图2是显示用于说明实施方式一中的台面型半导体元件100的图;
[0045] 图3是显示用于说明实施方式一涉及的树脂封装型半导体装置10的效果的图;
[0046] 图4是显示用于说明实施方式一涉及的树脂封装型半导体装置的制造方法的图;
[0047] 图5是显示用于说明实施方式一涉及的树脂封装型半导体装置的制造方法的图;
[0048] 图6是显示用于说明实施方式二中的台面型半导体元件102的图;
[0049] 图7是显示用于说明实施方式二涉及的树脂封装型半导体装置的制造方法的图;
[0050] 图8是显示用于说明实施方式二涉及的树脂封装型半导体装置的制造方法的图;
[0051] 图9是显示实施例的条件及结果的图表;
[0052] 图10是用于说明初步评价中在玻璃层124的内部产生的泡b的图;
[0053] 图11是用于说明正式评价中在玻璃层124的内部产生的泡b的照片;
[0054] 图12是显示高温反向偏压试验结果的图;
[0055] 图13是显示用于说明变形例中的台面型半导体元件200的图;以及
[0056] 图14是显示用于说明以往的台面型半导体元件900的图。

具体实施方式

[0057] 以下,基于附图所示的实施方式对本发明的树脂封装型半导体装置以及树脂封装型半导体装置的制造方法进行说明。
[0058] <实施方式一>
[0059] 1.树脂封装型半导体装置
[0060] 图1是显示用于说明实施方式一涉及的树脂封装型半导体装置10的图。图1(a)是树脂封装型半导体装置10的斜视图,图1(b)是从树脂封装型半导体装置10去除了树脂后的平面图,图1(c)是从树脂封装型半导体装置10去除了树脂后的侧面图。
[0061] 图2是显示用于说明实施方式一中的台面型半导体元件100的图。
[0062] 实施方式一涉及的树脂封装型半导体装置10,如图1所示,包括台面型半导体元件100,以及封装台面型半导体元件100的铸模用树脂40。台面型半导体元件100被放置在由引脚(lead)21、引脚22及下垫板(die pat)23所构成的引线框架(lead frame)20中的下垫板
23上。台面型半导体元件100的一个电极通过下垫板23与引脚21相连接,台面型半导体元件
100的另一个电极通过金线(wire)30与引脚22相连接。
[0063] 台面型半导体元件100,如图2所示,包括在包围台面区域A的外围锥形区域B具有PN结露出部C的台面型半导体基体108、以及至少覆盖外围锥形区域B的玻璃层124。外围锥形区域B被玻璃层124直接覆盖。
[0064] 台面型半导体基体108具有n-型半导体层110、通过从n-型半导体层110一侧的表面扩散p型杂质而形成的p+型半导体层112、以及通过从n-型半导体层110另一侧的表面扩散n型杂质而形成的n+型半导体层114。台面型半导体元件100是PN二极管(diode)。另外,在图2中,符号134表示阳极(anode)电极层,符号136表示阴极(cathode)电极层。
[0065] 并且,在实施方式一涉及的树脂封装型半导体装置10中,台面型半导体元件100的特征在于具有实质上不含铅的玻璃层作为玻璃层124。作为这样的玻璃层,可以是使用由实质上不含有Pb、As、Sb、Li、Na、K的玻璃复合物形成的玻璃层。作为这样的玻璃复合物,非常合适的例子有实质上不含有Pb、P、As、Sb、Li、Na、K的玻璃复合物(参考权利要求5),以及实质上不含有Pb、B、P、As、Sb、Li、Na、K的玻璃复合物(参考权利要求9)等。
[0066] 当为前者时,作为上述的玻璃复合物,可以是(1)至少含有SiO2,B2O3,Al2O3,ZnO,以及含有CaO、MgO和BaO中至少两种碱土金属氧化物的玻璃复合物,也可以是(2)至少含有SiO2,Al2O3,ZnO,CaO,以及3mol%~10mol%的B2O3的玻璃复合物,还可以是(3)至少 含有SiO2,Al2O3,碱土金属氧化物,以及从镍氧化物、铜氧化物、锰氧化物及锆氧化物构成的群中选择出的至少一种金属氧化物的玻璃复合物。
[0067] 当为后者时,作为上述的玻璃复合物,可以是(4)至少含有SiO2,Al2O3,MgO,CaO的玻璃复合物,也可以是(5)至少含有SiO2,Al2O3,ZnO的玻璃复合物。
[0068] 另外,在这种情况下,含有某种特定成分不仅包括仅含有该某种特定成分的情况,还包括在玻璃复合物中不仅含有该某种特定成分还进一步含有通常可能含有的成分的情况。另外,实质上不含有某种特定元素是指不将该某种特定元素作为成分含有,但不排除上述特定元素作为杂质混入构成玻璃的各成分的原料中的玻璃复合物。另外,不含有某种特定元素是指不含有该某种特定元素的氧化物、该某种特定元素的氮化物。
[0069] 其中,作为(1)中记载的玻璃复合物,可以使用SiO2的含量在41.1mol%~61.1mol%的范围内,B2O3的含量在5.8mol%~15.8mol%的范围内,Al2O3的含量在7.4mol%~17.4mol%的范围内,ZnO的含量在3.0mol%~24.8mol%的范围内,碱土金属氧化物的含量在5.5mol%~15.5mol%的范围内,镍氧化物的含量在0.01mol%~3.0mol%的范围内的玻璃复合物。
[0070] 在这种情况下,可以使用碱土金属氧化物中CaO的含量在2.8mol%~7.8mol%的范围内,MgO的含量在1.1mol%~3.1mol%的范围内,BaO的含量在1.7mol%~4.7mol%的范围内的玻璃复合物。
[0071] 在这种情况下,也可以使用碱土金属氧化物中CaO的含量在3.8mol%~10.9mol%的范围内,MgO的含量在1.7mol%~4.7mol%的范围内的玻璃复合物。
[0072] 在这种情况下,也可以使用碱土金属氧化物中CaO的含量在3.3mol%~9.3mol%的范围内,BaO的含量在2.2mol%~6.2mol%的范围内的玻璃复合物。
[0073] 在这种情况下,也可以使用碱土金属氧化物中MgO的含量在2.2mol%~6.2mol%的范围内,BaO的含量在3.3mol%~9.3mol%的范围内的玻璃复合物。
[0074] 另外,还可以使用不含有镍氧化物的玻璃复合物。
[0075] 另外,作为(2)中记载的玻璃复合物,例如可以使用SiO2的含量在32mol%~48mol%的范围内(例如40mol%),Al2O3的含量在9mol%~13mol%的范围内(例如11mol%),ZnO的含量在18mol%~28mol%的范围内(例如23mol%),CaO的含量在15mol%~23mol%的范围内(例如19mol%),B2O3的含量在3mol%~10mol%的范围内(例如7mol%)的玻璃复合物。
[0076] 另外,作为(3)中记载的玻璃复合物,例如可以使用SiO2的含量在53mol%~73mol%的范围内(例如62.6mol%),Al2O3的含量在11mol%~21mol%的范围内(例如15.3mol%),CaO的含量在3mol%~9mol%的范围内(例如5.5mol%),MgO的含量在11mol%~21mol%的范围内(例如15.6mol%),镍氧化物的含量在0.01mol%~3mol%的范围内(例如1mol%)的玻璃复合物。
[0077] 另外,也可以使用SiO2的含量在32mol%~48mol%的范围内(例如39.6mol%),Al2O3的含量在9mol%~13mol%的范围内(例如10.9mol%),CaO的含量在15mol%~23mol%的范围内(例如18.8mol%),ZnO的含量在18mol%~28mol%的范围内(例如22.8mol%),B2O3的含量在3mol%~10mol%的范围内(例如6.9mol%),镍氧化物的含量在0.01mol%~3mol%的范围内(例如1mol%)的玻璃复合物。
[0078] 另外,作为(4)中记载的玻璃复合物,例如可以使用SiO2的含量在53mol%~73mol%的范围内(例如63.2mol%),Al2O3的含量在11mol%~21mol%的范围内(例如15.5mol%),MgO的含量在11mol%~21mol%的范围内(例如15.7mol%),CaO的含量在3mol%~6mol%的范围内(例如5.6mol%)的玻璃复合物。
[0079] 另外,作为(5)中记载的玻璃复合物,例如可以使用SiO2的含量在40mol%~60mol%的范围内(例如50mol%),Al2O3的含量在5mol%~15mol%的范围内(例如10mol%),ZnO的含量在30mol%~50mol%的范围内(例如40mol%)的玻璃复合物。
[0080] 2.树脂封装型半导体装置的效果
[0081] 图3是显示用于说明实施方式一涉及的树脂封装型半导体装置10的效果的图。图3(a)是显示对实施方式一涉及的树脂封装型半导体装置10施加了反向电压时的状态的图,图3(b)是显示对比较例涉及的树脂封装型半导体装置施加了反向电压时的状态的图。另外,图3中虚线表示耗尽层的前端部。比较例涉及的树脂封装型半导体装置是将以往的台面型半导体元件900用树脂铸模而制成的树脂封装型半导体装置。另外,图3(b)中的BT试验后指的是高温反向偏压试验后。
[0082] 根据实施方式一涉及的树脂封装型半导体装置10,因为台面型半导体元件100具有由电容率比含铅玻璃低的无铅玻璃(不含铅的玻璃)构成的玻璃层作为玻璃层124,所以不会像比较例涉及的树脂封装型半导体装置那样当进行高温反向偏压试验时在铸模树脂与玻璃层的交界面以及玻璃层与半导体层的交界面诱发高密度的离子(参照图3),这样就能够与以往相比减小在高温反向偏压试验中增大的漏电流。
[0083] 其结果,实施方式一涉及的树脂封装型半导体装置10虽然是一种与以往的树脂封装型半导体装置同样具有将台面型半导体元件用树脂铸模而形成的结构,但还是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。即、实施方式一涉及的树脂封装型半导体装置10既是一种将台面型半导体元件用树脂铸模而制成的树脂封装型半导体装置,还是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。
[0084] 3.树脂封装型半导体装置的制造方法
[0085] 实施方式一涉及的树脂封装型半导体装置10能够通过以下的方法(实施方式一涉及的树脂封装型半导体装置的制造方法)制造。
[0086] 图4和图5是显示用于说明实施方式一涉及的树脂封装型半导体装置的制造方法的图。图4(a)~图4(d)和图5(a)~图5(d)为各工序图。
[0087] 实施方式一涉及的树脂封装型半导体装置的制造方法,如图4和图5所示,依次实施:“半导体基板准备工序”、“沟道形成工序”、“玻璃层形成工序”,“光致抗蚀剂(photoresist)形成工序”、“氧化膜去除工序”、“粗面化区域形成工序”、“电极形成工序”、“半导体基板切断工序”及“树脂封装工序”。下面依工序顺序对实施方式一涉及的树脂封装型半导体装置的制造方法进行说明。
[0088] (a)半导体基板准备工序
[0089] 首先,通过从n-型半导体层(n-型硅基板)110一侧的表面扩散p型杂质形成p+型半导体层112,通过从另一侧的表面扩散n型杂质形成n+型半导体层114,从而形成具有与主面平行的PN结的半导体基板。之后,通过热氧化在p+型半导体层112和n+型半导体层114的表面形成氧化膜116、118(参照图4(a))。
[0090] (b)沟道形成工序
[0091] 其次,通过光刻法,在氧化膜116的预定部位形成预定的开口部。在氧化膜的蚀刻(etching)后,继续进行半导体基板的蚀刻,从而从半导体基板一侧的表面形成深度超过PN结的沟道120(参照图4(b))。
[0092] (c)玻璃层形成工序
[0093] 其次,在沟道120的表面,通过电泳法在沟道120的内面及其近旁的半导体基板表面形成由玻璃复合物构成的层的同时,通过烧制该由玻璃复合物构成的层来形成钝化用的玻璃层124(参照图4(c))。因此,沟道120内部的PN结露出部成为被玻璃层124直接覆盖的状态。另外,如上所述,作为玻璃复合物可以使用实质上不含铅的各种玻璃复合物。
[0094] (d)光致抗蚀剂形成工序
[0095] 其次,形成覆盖玻璃层124的表面的光致抗蚀剂126(参照图4(d))。
[0096] (e)氧化膜去除工序
[0097] 其次,以光致抗蚀剂126为掩膜(mask)进行氧化膜116的蚀刻,去除形成镀镍电极膜的部位130上的氧化膜116(参照图5(a))。
[0098] (f)粗面化区域形成工序
[0099] 其次,对形成镀镍电极膜的部位130上的半导体基板表面进行粗面化处理,形成用于提高镀镍电极与半导体基板的密接性的粗面化区域132(参照图5(b))。
[0100] (g)电极形成工序
[0101] 其次,对半导体基板进行镀镍,在粗面化区域132上形成阳极电极134的同时,在半导体基板另一侧的表面形成阴极电极136(参照图5(c))。
[0102] (h)半导体基板切断工序
[0103] 其次,通过切割(dicing)等在玻璃层124的中央部将半导体基板切断,将半导体基板切片(chip)化,从而制造成台面型半导体元件(PN二极管)100(参照图5(d))。
[0104] (i)树脂封装工序
[0105] 其次,通过在没有图示的引线框架(参照图1)中的下垫板23上安装台面型半导体元件100,从而将台面型半导体元件100一侧的电极与引脚21连接的同时,用金线30将台面型半导体元件100另一侧的电极与引脚22连接。之后,把它们放入没有图示的树脂封装用模具后,把铸模用树脂注入到模具中并使其硬化,来制造树脂封装型半导体装置。只要将树脂封装型半导体装置从模具中取出,就得到了实施方式一涉及的树脂封装型半导体装置10。
[0106] 按以上方法即可制造实施方式一涉及的树脂封装型半导体装置10。
[0107] <实施方式二>
[0108] 图6是显示用于说明实施方式二中的台面型半导体元件102的图。
[0109] 实施方式二涉及的树脂封装型半导体装置12(没有图示)基本具有与实施方式一涉及的树脂封装型半导体装置10相同的结构,但台面型半导体元件的结构与实施方式一涉及的树脂封装型半导体装置10中的不同。即、在实施方式二的台面型半导体元件102中,如图6所示,外围锥形区域B是通过绝缘层121被玻璃层124所覆盖的。
[0110] 这样,虽然实施方式二涉及的树脂封装型半导体装置12中的台面型半导体元件的结构与实施方式一涉及的树脂封装型半导体装置10不同,但是因为台面型半导体元件102与实施方式一涉及的树脂封装型半导体装置10同样具有由电容率比含铅玻璃低的无铅玻璃(不含铅的玻璃)构成的玻璃层作为玻璃层124,所以当进行高温反向偏压试验时不会在铸模树脂与玻璃层的交界面以及玻璃层与半导体层的交界面诱发高密度的离子,这样就能够与以往相比减小在高温反向偏压试验中增大的漏电流。
[0111] 其结果,实施方式二涉及的树脂封装型半导体装置12虽然是一种与以往的树脂封装型半导体装置同样具有将台面型半导体元件用树脂铸模而形成的结构,但还是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。即、实施方式二涉及的树脂封装型半导体装置12既是一种将台面型半导体元件用树脂铸模而制成的树脂封装型半导体装置,还是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。
[0112] 另外,根据实施方式二涉及的树脂封装型半导体装置12,因为外围锥形区域B是通过绝缘层121被玻璃层124所覆盖的,所以可以获得在烧制工序中难以产生气泡的效果以及能够将树脂封装型半导体装置的反向漏电流进一步降低的效果。
[0113] 实施方式二涉及的树脂封装型半导体装置12可以通过以下的方法(实施方式二涉及的树脂封装型半导体装置的制造方法)来制造。
[0114] 图7和图8是显示用于说明实施方式二涉及的树脂封装型半导体装置的制造方法的图。图7(a)~图7(d)和图8(a)~图8(d)为各工序图。
[0115] 实施方式二涉及的树脂封装型半导体装置的制造方法,如图7和图8所示,依次实施:“半导体基板准备工序”、“沟道形成工序”、“绝缘层形成工序”、“玻璃层形成工序”,“光致抗蚀剂形成工序”、“氧化膜去除工序”、“粗面化区域形成工序”、“电极形成工序”、“半导体基板切断工序”及“树脂封装工序”。下面依工序顺序对实施方式二涉及的树脂封装型半导体装置的制造方法进行说明。
[0116] (a)半导体基板准备工序
[0117] 首先,通过从n-型半导体层(n-型硅基板)110一侧的表面扩散p型杂质形成p+型半导体层112,通过从另一侧的表面扩散n型杂质形成n+型半导体层114,从而形成具有与主面平行的PN结的半导体基板。之后,通过热氧化在p+型半导体层112和n+型半导体层114的表面形成氧化膜116、118。
[0118] (b)沟道形成工序
[0119] 其次,通过光刻法,在氧化膜116的预定部位形成预定的开口部。在氧化膜的蚀刻后,继续进行半导体基板的蚀刻,从而从半导体基板一侧的表面形成深度超过PN结的沟道120(参照图7(a))。
[0120] (c)绝缘层形成工序
[0121] 其次,通过使用干氧(DryO2)的热氧化法,在沟道120的内面形成由硅氧化膜构成的绝缘层121(参考图7(b))。将绝缘层121的厚度设定在5nm~60nm的范围内(例如20nm)。绝缘层的形成是通过把半导体基体放进扩散炉后,在流通氧气和900℃温度的条件下处理10分钟而进行的。当绝缘层121的厚度未满5nm时,可能不能获得反向电流降低的效果,而当绝缘层121的厚度超过60nm时,在随后的玻璃层形成工序中可能会有不能通过电泳法形成由玻璃复合物构成的层的情况。
[0122] (d)玻璃层形成工序
[0123] 其次,通过电泳法在沟道120的内面及其附近的半导体基板表面上形成由玻璃复合物构成的层的同时,通过烧制该由玻璃复合物构成的层来形成钝化用的玻璃层124(参照图7(c))。另外,当在沟道120的内面形成由玻璃复合物构成的层时,是形成将沟道120的内面通过绝缘层121覆盖的由玻璃复合物构成的层。因此,沟道120内部的PN结露出部成为通过绝缘层121被玻璃层124所覆盖的状态。
[0124] (e)光致抗蚀剂形成工序
[0125] 其次,形成覆盖玻璃层124的表面的光致抗蚀剂126(参照图7(d))。
[0126] (f)氧化膜去除工序
[0127] 其次,以光致抗蚀剂126为掩膜进行氧化膜116的蚀刻,去除形成镀镍电极膜的部位130的氧化膜116(参照图8(a))。
[0128] (g)粗面化区域形成工序
[0129] 其次,对形成镀镍电极膜的部位130的半导体基板表面进行粗面化处理,形成用于提高镀镍电极和半导体基板的密接性的粗面化区域132(参照图8(b))。
[0130] (h)电极形成工序
[0131] 其次,对半导体基板进行镀镍,在粗面化区域132上形成阳极电极134的同时,在半导体基板另一侧的表面形成阴极电极136(参照图8(c))。
[0132] (i)半导体基板切断工序
[0133] 其次,通过切割等在玻璃层124的中央部将半导体基体切断,将半导体基体切片化,从而制成台面型半导体元件(PN二极管)102(参照图8(d))。
[0134] (j)树脂封装工序
[0135] 其次,通过在没有图示的引线框架(参照图1)中的下垫板23上安装台面型半导体元件102,从而将台面型半导体元件102一侧的电极与引脚21连接的同时,用金线30将台面 型半导体元件102另一侧的电极与引脚22连接。之后,把它们放入没有图示的树脂封装用模具后,把铸模用树脂注入到模具中并使其硬化,来制造树脂封装型半导体装置。只要将树脂封装型半导体装置从模具中取出,就得到了实施方式二涉及的树脂封装型半导体装置12。
[0136] 按以上方法即可制造实施方式二涉及的树脂封装型半导体装置12。
[0137] <实施例>
[0138] 1.试料的制备
[0139] 图9是显示实施例的条件及结果的图表。按实施例1~8以及比较例1~2所示的组成比(参照图9)调配原料,将其用混合机充分搅拌,之后将该混合后的原料放入在电炉中上升至预定温度(1350℃~1550℃)的白金坩埚中,熔融2小时。之后,使熔液流出至水冷辊,获得薄片状的玻璃片(glass flake)。然后将该玻璃片用球磨机(ball mill)粉碎至平均粒径为5μm的粉末,获得粉末状的玻璃复合物。
[0140] 另外,实施例中使用的原料为SiO2、H3BO3、Al2O3、ZnO、CaCO3、MgO、BaCO3、NiO及PbO。
[0141] 2.对通过上述方法获得的各玻璃复合物进行以下评价项目的评价。
[0142] (1)评价项目1(烧制温度)
[0143] 如果烧制温度过高,在制造中会给半导体装置带来较大影响,因而对烧制温度在1100℃以下的评价为“○”(表示“好”),而对烧制温度超过1100℃的评价为“×”(表示“不好”)。
[0144] (2)评价项目2(耐药品性)
[0145] 当玻璃复合物对王水和电镀液均表现出难溶性时评价为“○”,当对王水和电镀液中的至少一种表现出可溶性时则评价为“×”。
[0146] (3)评价项目3(平均线膨胀系数)
[0147] 用上述“1.试料的制备”栏中获得的熔液制作薄片状的玻璃板,然后使用该薄片状的玻璃板测定50℃~550℃的玻璃复合物的平均线膨胀系数。平均线膨胀系数的测定是使用岛津制作所制造的热机械分析装置TMA-60,以长度为20mm的硅单晶作为标准试料,通过全膨胀测定法(升温速度10℃/分)来进行的。根据这个结果,当50℃~550℃的玻璃复合物的平均线膨胀系数与硅的平均线膨胀系数(3.73×10-6)之间的差在0.7×10-6以下时评价-6为“○”,当该差超过0.7×10 时则评价为“×”。
[0148] (4)评价项目4(绝缘性)
[0149] 通过与实施方式一涉及的树脂封装型半导体装置的制造方法相同的方法制造台面型半导体元件,测定制造出的台面型半导体元件的反向特性。根据这个结果,当台面型半导体元件的反向特性在正常范围内时评价为“○”,当台面型半导体元件的反向特性不在正常范围内时则评价为“×”。
[0150] (5)评价项目5(有无结晶化)
[0151] 在通过与实施方式一涉及的半导体装置的制造方法相同的方法制造半导体装置(PN二极管)的过程中,如果没有发生结晶化而完成了玻璃化则评价为“○”,如果由于结晶化而没有完成玻璃化则评价为“×”。
[0152] (6)评价项目6(有无产生泡)
[0153] 通过与实施方式一涉及的半导体装置的制造方法相同的方法制作台面型半导体元件,观察在玻璃层124的内部(特别是与硅基板的交界面近旁)是否产生了泡(初步评价)。另外,在10mm见方的硅基板上涂敷实施例1~8和比较例1~2涉及的玻璃复合物从而形成由玻璃复合物构成的层,同时通过烧制该由玻璃复合物构成的层来形成玻璃层,观察在玻璃层的内部(特别是与硅基板的交界面近旁)是否产生了泡(正式评价)。
[0154] 图10是用于说明初步评价中在玻璃层124内部产生的泡b的图。图10(a)是未产生泡b时的半导体装置的截面图,图10(b)是产生了泡b时的半导体装置的截面图。图11 是用于说明正式评价中在玻璃层124的内部产生的泡b的照片。图11(a)是将未产生泡b时的硅基板和玻璃层的交界面放大显示的图,图11(b)是将产生了泡b时的硅基板和玻璃层的交界面放大显示的图。通过实验结果明确了初步评价的结果与本发明的评价结果有着良好的对应关系。另外,在正式评价中,当在玻璃层的内部未产生直径在50μm以上的泡时评价为“○”,当在玻璃层的内部产生了1~20个直径在50μm以上的泡时评价为“△”(表示“不太好”),当在玻璃层的内部产生了21个以上直径在50μm以上的泡时则评价为“×”。
[0155] (7)评价项目7(高温反向偏压耐量)
[0156] 将通过和实施方式一涉及的树脂封装型半导体装置的制造方法相同的方法制造树脂封装型半导体装置,对制造出的树脂封装型半导体装置进行高温反向偏压试验,从而测定高温反向偏压耐量。高温反向偏压耐量的测定是通过向温度条件被设定为150℃的恒温槽和高温反向偏压试验机中投入试料后,在对阳极电极和阴极电极之间施加600V电压的状态下,总共经过70小时且每10分钟测定一次反向电流来进行的。
[0157] 图12是显示高温反向偏压试验结果的图。在图12中,实线表示的是使用实施例1的玻璃复合物制成的试料的反向电流,虚线表示的是使用比较例1的玻璃复合物制成的试料的反向电流。如图12所示,明确了对于使用比较例1的玻璃复合物制成的试料,漏电流(反向电流)在高温反向偏压试验开始后随着温度上升而增大后,随着时间的经过漏电流(反向电流)继续增大。还明确了与此相对,对于使用实施例1涉及的玻璃复合物制成的试料,漏电流(反向电流)在高温反向偏压试验开始后随着温度的上升而增大后,漏电流(反向电流)几乎不再增大。如上,如果在高温反向偏压试验开始后漏电流(反向电流)随着温度的上升而增大后漏电流(反向电流)几乎不再增大,则评价为“○”,如果在高温反向偏压试验开始后漏电流(反向电流)随着温度的上升而增大后漏电流(反向电流)还随着时间的经过而继续增大,则评价为“×”。
[0158] (8)综合评价
[0159] 当上述评价项目1~7的各评价都为“○”时评价为“○”;当在各评价中有至少有一个“△”或“×”时,则评价为“×”。
[0160] 3.评价结果
[0161] 从图9也可知,比较例1~2涉及的玻璃复合物都在至少一个评价项目中有“×”的评价,因此得到了“×”的总评价。即,比较例1涉及的玻璃复合物在评价项目7中得到了“×”的评价。另外,比较例2涉及的玻璃复合物在评价项目2中得到了“×”的评价。
[0162] 与此相对,实施例1~8涉及的玻璃复合物在所有的评价项目(评价项目1~7)中均被评价为“○”,因此明确了实施例1~8涉及的玻璃复合物都可以制造出具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。另外,还明确了:(1)能够在合适的温度(例如1100℃以下)下烧制玻璃复合物;(2)玻璃复合物能够承受在工序中使用的药品(例如王水和电镀液);(3)因为玻璃复合物具有接近硅的线膨胀系数的线膨胀系数(特别是在50℃~550℃下的平均线膨胀系数接近硅的线膨胀系数)所以能够在很大程度上减小工序中晶片的弯曲;并且(4)制造出的玻璃层具有优良的绝缘性因而能够制造反向特性优良的树脂封装型半导体装置。
[0163] 以上,基于上述实施方式对本发明的树脂封装型半导体装置以及树脂封装型半导体装置的制造方法进行了说明,但本发明不限于此,只要是在不脱离这一主旨的范围内均可以实施。例如还可以进行如下的变形。
[0164] (1)在上述的实施形方式一、二中,是使用实施方式一中记载的玻璃复合物来形成玻璃层的,但本发明不限于此。例如,也可以使用实质上不含铅的其他玻璃复合物来形成玻璃层。
[0165] (2)在上述的实施方式二中,是通过使用干氧(DryO2)的热氧化法来形成绝缘层的, 但本发明并不限于此。例如,也可以通过使用干氧和氮气(DryO2+N2)的热氧化法来形成绝缘层,也可以通过使用湿氧(WetO2)的热氧化法来形成绝缘层,还可以通过使用湿氧和氮气(WetO2+N2)的热氧化法来形成绝缘层。
[0166] (3)在上述的实施方式一、二中,使用了由二极管(PN二极管)构成的台面型半导体元件,但本发明并不限于此。例如,还可以使用由晶闸管(thyristor)构成的台面型半导体元件。另外,除了由晶闸管构成的台面型半导体元件,PN结露出的所有半导体装置(例如,功率MOSFET、IGBT等)都可以适用于本发明。
[0167] 图13是显示用于说明变形例中的台面型半导体元件200的图。
[0168] 变形例涉及的树脂封装型半导体装置(没有图示)基本上具有与实施方式一涉及的树脂封装型半导体装置10相同的结构,但在使用的是由晶闸管构成的台面型半导体元件这一点上,与实施方式一涉及的树脂封装型半导体装置10的情况不同。
[0169] 即、变形例涉及的树脂封装型半导体装置是一种具有台面型半导体元件200和铸模用树脂的树脂封装型半导体装置,半导体元件200包括在包围台面区域的外围锥形区域具有PN结露出部的台面型半导体基体以及至少覆盖外围锥形区域的玻璃层224,铸模用树脂是用于封装台面型半导体元件200的铸模用树脂。台面型半导体元件200具有实质上不含有铅的玻璃层作为玻璃层224。
[0170] 变形例中的台面型半导体元件200是晶闸管,如图13所示,包括:n-型半导体层210、被设置为与n-型半导体层210相接触的第一p+型半导体层212、被设置为与n-型半导体层210相接触的第二p+型半导体层214、形成在第二p+型半导体层214表面的n+型半导体区域216、与第一p+型半导体层212相连接的阳极电极234、与n+型半导体区域216相连接的阴极电极236、以及与第二p+型半导体层214相连接的栅极(gate)电极238。
[0171] 如上,变形例涉及的树脂封装型半导体装置虽然在使用了由晶闸管构成的台面型半导体元件这一点上与实施方式一涉及的树脂封装型半导体装置10的情况不同,但由于与实施方式一涉及的树脂封装型半导体装置10同样是台面型半导体元件具有由电容率比含铅玻璃低的无铅玻璃(不含铅的玻璃)构成的玻璃层作为玻璃层,因此,虽然与以往的树脂封装型半导体装置同样具有把台面型半导体元件用树脂铸模而形成的结构,但还是一种与实施方式一涉及的树脂封装型半导体装置10同样具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。即、变形例涉及的树脂封装型半导体装置既是一种把台面型半导体元件用树脂铸模而制成的树脂封装型半导体装置,还是一种具有比以往的树脂封装型半导体装置更高的高温反向偏压耐量的树脂封装型半导体装置。
[0172] 符号说明
[0173] 10…树脂封装型半导体装置,20…引线框架,21、22…引脚,23…下垫板,30…金线,40…树脂,100、102、200…台面型半导体元件,110、910…n-型半导体层,112、912…p+型半导体层,114、914…n+型半导体层,116、116a、118、916…氧化膜,916a…硅氧化膜,120…沟道,121…绝缘层,124、924…玻璃层,126…光致抗蚀剂,130…形成镀镍电极膜的部位,132…粗面化区域,134、234,934…阳极电极层,136、236、936…阴极电极层,210…n -型半导体层,212…第一p+型半导体层,214…第二p+型半导体层,216…n+型半导体区域,238…栅极电极。
QQ群二维码
意见反馈