多层包覆粉末

申请号 CN97196787.3 申请日 1997-06-06 公开(公告)号 CN1091013C 公开(公告)日 2002-09-18
申请人 日铁矿业株式会社; 中塚胜人; 发明人 新子贵史; 中塚胜人;
摘要 一种包括一种按需要 染色 且色彩鲜艳的基体颗粒、对可见光具有高的传输性的粉末。该粉末为多层包覆粉末,它包括一种其表面具有多层膜的基体颗粒,该多层膜包括至少一个包含金属硫化物、金属氟化物、金属 碳 酸盐或金属 磷酸 盐 的薄层。该多层膜根据其厚度、薄层 叠加 顺序等反射或吸收特定 波长 的光线。
权利要求

1.一种多层包覆粉末,包括一种其表面具有一个多层膜的基体颗粒, 该多层膜至少包括一个包含金属硫化物、金属氟化物、金属酸盐或金属 磷酸盐的薄层,其中,金属氟化物、金属碳酸盐或金属磷酸盐中的金属为 金属或碱土金属,并且该多层膜反射特定波长
2.一种多层包覆粉末,包括一种其表面具有一个多层膜的基体颗粒, 该多层膜至少包括一个包含金属硫化物、金属氟化物、金属碳酸盐或金属 磷酸盐的薄层,其中,金属氟化物、金属碳酸盐或金属磷酸盐中的金属为 碱金属或碱土金属,并且该多层膜传输可见光区的光线。

说明书全文

发明涉及一种表面由一个多层覆盖膜包覆的粉末,尤其涉及一种适 合于用作液晶显示球形分隔器或光纤球形透镜以及用在磁性染色材料如磁 性彩色墨粉和磁性彩墨、反光颜料、和用于反射紫外线和红外线的化妆品 的多层包覆粉末。

有一种技术已众所周知,即为了在各种不同领域使用粉末,通常用另 一种物质包覆粉末以赋予其一种新的功能。

例如,用于彩色电子照相术等的磁性染色材料(如磁性彩色墨粉和磁性 彩墨)包括作为基体的磁性颗粒和具有各种光反射-吸收界面的包覆膜。用 作液晶显示的球形分隔器或光纤球形透镜的细粉包括一种包含一种透明材 料如玻璃珠的基体颗粒和一层覆盖其表面作为保护膜的光传输膜。用于化 妆品的某些粉末也包括其表面包覆一种反射紫外线和红外线的物质的颜料 颗粒。

作为这样一种功能性粉末,以前本发明者曾经提出一种包括一种金属 基体颗粒和覆盖于表面的均匀厚度的且与组成基体的金属不同的金属的金 属化物膜(见未审查日本公开专利申请6-228604)。根据这一技术,一种磁 性材料,如金属(如、钴、镍)、及其合金、或铁的氮化物,作为其基体颗 粒,其上形成两种或多种具有不同折射指数、其厚度对应于入射光波长四 分之一的金属氧化物膜。形成这种结构就能够得到反射全部入射光且为白 色的用于磁性墨粉的磁性粉末。在这种粉末上再形成一个彩色层就可以得 到一种磁性彩色墨粉。

本发明者进一步改进了上述粉末并提出了一种包括一种基体颗粒和形 成于其上的非结合的而是交替的多层金属氧化物和金属膜(见未审查公开日 本专利申请7-90310)。根据这种技术,得到一种具有优良性能的磁性彩色墨 粉等的多层包覆粉末。

近年来,上述功能粉末需要进一步改进功能和减少尺寸。

例如,在彩色电成相领域内,越来越有必要获得高分辨率对比度。 正因如此,磁性彩色墨粉不仅需要减小尺寸以提高分辨率,而且还需要染 色成更加鲜艳。

为了满足这一需要,基体颗粒可以按照本发明者提出的上述多层包覆 粉末进行染色,以这样一种方式在基体颗粒表面叠加氧化物膜或氧化物膜 和金属膜的结合,即交替布置高折射指数膜和低折射指数膜,使被包覆颗 粒在某特定波长处具有一个吸收峰或者相反在某特定波长范围具有增强的 反射。

当上述多层包覆粉末用于三基色磁性染色材料粉末时,青绿色(蓝色) 和黄色粉末无疑会增加鲜艳度。但是,在生产深红色粉末时,为了获得更 加鲜艳的颜色而增加膜层数量会导致吸收底部宽度变窄,从而使最终得到 的颜色变蓝。在用于透明白色粉末时,重要的是降低粉末表面的散色和反 射以增加其透明度。然而,上述多层包覆粉末在这一方面还不能满足并且 不可能充分染色一种透明的白色粉末。

这些问题被认为归结于下列事实,由于发明者提出的上述多层包覆粉 末的膜组成限制为金属氧化物的结合或金属氧化物和金属的结合,使最终 可得到的多层包覆膜的折射指数的范围受到限制并且不能对折射指数进行 精细的调节。

此外,用作液晶显示球形分隔器的球形透镜、光纤球形透镜等一方面 要求具有高的入射光传输性(透明度),另一方面要求具有小的颗粒尺寸。但 是,颗粒直径越小,其表面和内部越易于产生散射。因此,减小颗粒直径 通常会降低透明度。

为了提高透明度通常采用提高组成球形透镜物质纯度的方法。但是, 由于各个透镜和与其相邻的物质之间存在折射指数上的差别,所以这些界 面上产生干涉从而又成为新反射源。因此,仅靠提高组成球形透镜的物质 的纯度只能有限地改善其透度明。

用作化妆品等时,粉末需要把有效反射紫外线和红外线的功能与传输 可见光的功能结合起来,以便使作为基体颗粒的颜料本身的颜色可见。但 是,现有的粉末在这一方面还不够。

本发明已经实现了上述种种要求。本发明的目的是提供一种包括一种 本身按需要染色且在可见光区具有高的透光度的基体颗粒的粉末。

上述目的由按照本发明形成的下述粉末实现: (1)一种多层包覆粉末包括一种表面包覆一个多层膜的基体颗粒,该多层包 覆膜包括至少一层包含一种金属硫化物、金属氟化物、金属酸盐或金属 磷酸盐的薄层,其中,金属氟化物、金属碳酸盐或金属磷酸盐中的金属为 金属或碱土金属,并且该多层膜反射某一特定波长的光线; (2)一种多层包覆粉末包括一种表面包覆一个多层膜的基体颗粒,该多层包 覆膜包括至少一层包含一种金属硫化物、金属氟化物、金属碳酸盐或金属 磷酸盐的薄层,其中,金属氟化物、金属碳酸盐或金属磷酸盐中的金属为 碱金属或碱土金属,并且这种多层膜能透过可见光区的光线。

由于组成上述多层包覆膜的物质的折射指数各不相同,因此通过适当 地调节膜的厚度或膜叠加的顺序可以使整体多层包覆膜反射特定波长的光 或完全传输特定波长的入射光。

因此,通过给各种基体颗粒施加上述多层包覆膜,可以得到一种既具 有基体颗粒的性能又按所需被染色或透明的功能粉末。

例如,当利用一种由磁性材料制成的基体颗粒时,可以获得一种色彩 鲜艳的磁性彩色墨粉。当利用一种由玻璃或透明树脂制成的基体颗粒时, 可以获得一种具有高透明度并且适合于用作液晶显示球形分隔器的球形透 镜、适合于用作光纤的球形透镜,等等。此外,当利用一种颜料作为基体 颗粒时,可以获得一种反射紫外线和红外线的化妆品。

下面将详细描述根据本发明形成的多层包覆粉末。

本发明中堆叠具有不同折射指数的物质,同时调节各层的厚度或改变 各种物质的结合或各叠层的顺序,从而使形成的整体多层包覆膜反射特定 波长的光线或者完全传输特定波长的光线。

本发明者在未审查公开日本专利申请6-228604和7-90310中提出了通 过改变组成多层包覆膜物质的结合或通过调节膜厚来染色基体颗粒的方 法。但是本发明中,使用一组具有一用现有方法无法得到的折射指数范围 的物质赋予多层包覆膜更多的光线反射或吸收性能。

适合于组成本发明多层包覆膜的物质有金属硫化物、金属氟化物、金 属碳酸盐,以及金属磷酸盐。

金属硫化物的折射指数比金属氧化物的更高。具体地,硫化的折射 指数为2.6,而硫化锌的为2.3到2.4。

金属氟化物具有金属氧化物达不到的低折射指数。特别优选碱金属或 碱土金属的氟化物。

具体地,氟化钙的折射指数为1.23到1.26,氟化钠的折射指数为1.34, 氟化三钠的为1.35,氟化锂的为1.37,氟化镁的为1.38。

金属磷酸盐或金属碳酸盐的折射指数介于金属硫化物和金属氟化物的 折射指数之间。优先选用碱金属或碱土金属的磷酸盐或碳酸盐。由于选用 了这些金属磷酸盐或金属碳酸盐,膜的选择范围更宽,整体多层包覆膜的 折射指数可以微调以实现更多的折射指数配合。

具体说,磷酸钙的折射指数为1.6;磷酸钠为1.8;磷酸镧为1.8;碳 酸钙为1.66;碳酸镁为1.6至1.7;碳酸钡为1.6;碳酸锶为1.5至1.6。

向膜材料中加入金属硫属化物而非上述金属硫化物和金属氧化物是可 能的。在这种情况下,金属并不特别限定,只要具有所需的折射指数就可 以选取。

金属硫属化物的例子包括金属碲化物和金属硒化物。这些金属硫属化 物的折射指数大致在2.4~3.0之间,尽管它们取决于金属的种类。

金属氧化物的例子包括本发明的发明者提交的未审查公开日本专利申 请6-22286和7-90310。但是金属氧化物并不仅限于上述专利所提出的。这 些金属氧化物的折射指数大致在1.8~2.6之间,尽管它们取决于金属的种 类。

如果必要,还可以加入金属譬如、钴、镍、铁及它们的合金的薄膜

通过使用这些薄膜,多层包覆膜就可以被调节成具有更多不同的折射 指数。

从膜均匀性和膜厚可调性的优点出发,优先选用下列方法用于形成包 括上述金属硫化物、金属氟化物、金属碳酸盐和金属磷酸盐的膜: A.液相固体沉积成膜; B.气相沉积膜(CVD和PVD)

可以按照现有的步骤,根据材料使用适合于各个步骤的条件进行成 膜。

在加入金属氧化物膜的情况下,优先选用使用未审查日本专利申请6- 22286和7-90310所述的金属醇盐的成膜方法。

在加入金属膜的情况下,可以用无电涂接触电镀或溅射成膜。但 是,用接触电镀或溅射形成的薄膜的厚度颗粒与颗粒之间可能存在差别, 其原因为,在接触电镀中,未接触电极的颗粒未被镀上,在溅射中金属蒸 气未均匀碰撞粉末颗粒。因此,优先选用无电涂镀法成膜。

在上述成膜方法中,按下述方法设计膜。

在每个颗粒表面交替形成折射指数不同的包覆膜以满足下列方程(1)。 即,按合适的厚度和数量形成各层膜,使得组成膜的物质的折射指数为n 和膜厚d为可见光波长四分之一的m(整数)倍。结果,具有特定波长λ的光 线(利用Fresnel干涉反射的光线)被反射或吸收。

                   nd=mλ/4             (1)

根据这一原理进行膜的设计,就可能形成一个反射特定波长光线的 膜,从而显示对应于反射光的颜色。另外,也可以形成一种传输入射光全 部波长范围因而透明的膜。

在实际成膜工艺中,通过光谱仪等测定光学膜厚度变化设计每层的膜 厚,其为膜的折射指数和膜厚的乘积,作为反射波形,使其符合目标颜色 的波形。例如,当多层膜由在可见光区具有互相分离在两个或多个反射波 形峰值的整体包覆膜组成时,该多层膜为完全反射可见光的白色膜。当调 节该整体包覆膜使反射波形峰值都处在同一位置时,该多层膜为单色,例 如蓝色、绿色、或黄色,不用染料或颜料。

此外,通过降低反射指数至某一很低的平时,可以得到一种透明膜。

另一方面,本发明的基体颗粒可以根据其目的选择不同的材料。也就 是说,上述多层包覆膜的粉末为一种功能粉末,它具有基体颗粒所具有的 性能和按需要调成的颜色或者透明。 例如,当用一种磁性材料作为基体材料时,可以获得一种色彩鲜艳的磁性 彩色墨粉。当选用一种由玻璃或透明树脂制成的基体颗粒时,可以获得具 有高透明度的球形透镜,它适合于用作液晶显示球形分隔器、光纤球形透 镜等等。另外,当用一种颜料作为基体颗粒时,可以获得一种反射紫外线 和红外线的化妆品。

图1为简单示意本发明多层包覆粉末一个颗粒的结构的一个截面图。该颗 粒包括一个核心基体颗粒1和在该核心表面顺序叠加的膜2、膜3和膜4, 每层都选自金属硫化物、金属氟化物、金属碳酸盐和金属磷酸盐并调节使 之具有一个特定厚度。

参照下列例子可以更清楚地理解本发明。但是,这些例子并不限定本 发明。 例1(透明粉末)

预先将11.3g氯化钙溶于600ml水中(0.25mol/l)制成水溶液,将50g平 均颗粒直径为33μm的玻璃珠分散于制备好的水溶液。把预先通过在 600ml水中溶解20g碳酸钙制备好的水溶液在搅拌条件下缓缓滴入上述分散 剂至1小时。

滴入之后,在60℃下保温使其反应。反应完成之后,用足量去离子水 冲洗反应混合物并用沉淀法分离之,过滤出固体物质。把所得到的碳酸钙 包覆的粉末干燥并放入真空干燥器中加热于180℃保持8小时。

这样得到的粉末是玻璃珠表面具有一个碳酸钙膜(折射指数为1.65)的 粉末,其膜厚为278nm。

然后,将40g这种碳酸钙包覆粉末加入到预先通过在200ml异丙醇溶 解12.8g丁氧基锆制成的溶液中。再将预先通过混合3.7g水和25g丙醇而 制成的溶液在搅拌条件下在1小时内缓缓滴入上述溶液,同时维持温度于 55℃。

滴入之后,使混合物反应7小时。用足量丙醇洗涤反应混合物,倾去 清液,过滤出固体物质,然后将其放入真空干燥器中于180℃加热保温8 小时。

这样便得到了氧化锆-碳酸钙包覆的粉末。其氧化锆膜的折射指数为 2.10,厚度为143nm。

然后,将20g氧化锆-碳酸钙包覆粉末放入真空旋转流态床中搅拌。 搅拌的同时,加热布置于旋转流态床装置并装满氟化镁粉末的钨板。这样 便产生了氟化镁蒸汽,用其对上述包覆粉末处理2小时,便获得一种氟化 镁-氧化锆-碳酸钙包覆的粉末,其氟化镁膜折射指数为1.38,膜厚为 109nm。

这样得到的三层包覆玻璃珠在380nm至780nm范围内具有显著降低的 反射率0.7%或更低。这可能是由于形成多层膜后造成玻璃珠散射降低。 例2(紫色磁性颜料) 第一层:氧化膜:

将50g平均颗粒直径为1.8μm由BASF公司制造的羰基铁粉分散于 500ml乙醇中。然后加入20g乙氧基硅,15g 29%的水和20g水。在搅 拌条件使其反应5小时。反应之后,用乙醇稀释并洗涤反应混合物并过滤 之。之后,将固体物质放入真空干燥箱于110℃加热保温3小时。干燥之 后,将所得粉末放入一个旋转涡轮炉内于650℃加热保温30分钟,获得氧 化硅包覆粉末A。

加热后,将获得的40g氧化硅包覆粉末A重新分散在400ml乙醇中。 并加入12g乙氧基硅和16g 29%的氨水。使其反应5小时,再用与第一层 相同的方法在真空下干燥和加热。这样便得到氧化硅包覆的粉末B。

这种氧化硅包覆粉末B具有优良的分散性且为独立的颗粒。这种形成 于羰基铁粉表面的氧化硅膜的折射指数为1.51,膜厚为300nm。 第二层:硫化锌膜:

在预先通过溶解1.34g乙氧基锌的溶液中加入30g氧化硅包覆粉末B。 在搅拌条件下以30ml/min的速度通入硫化氢气体鼓泡3小时。用足量乙醇 将所得反应混合物稀释和冲洗,在真空干燥器内干燥1小时,再放入旋转 涡轮炉内于650℃加热保温30分钟,得到一种硫化锌-氧化硅包覆粉末。

这样得到的硫化锌-氧化硅包覆粉末具有优良的分散性且为独立颗 粒。这种粉末在其光谱反射曲线上在770nm波长处具有一个峰值,峰值处 的反射率为50%。它为鲜艳的黄色。这种硫化锌-氧化硅包覆的粉末的硫 化锌膜的折射指数为2.3,其硫化锌膜厚为12nm。 第三层:氟化镁膜:

在真空旋转式流态化床中搅拌20g上述硫化锌-氧化硅包覆粉末。搅 拌的同时,加热布置于旋转式流态化床装置内且装有氟化镁粉末的钨板。 这样便产生氟化镁蒸汽,对上述包覆粉末处理2小时便得到氟化镁-硫化 锌-氧化硅包覆的粉末。

这种氟化镁-硫化锌-氧化硅包覆粉末的氟化镁膜的折射指数为 1.38、膜厚为124nm。

这种三层包覆羰基铁粉在525nm处具有一个吸收谷,其反射率为15 %。这一反射率与780nm处的最高反射率60%之差为35%。这种粉末为 鲜艳的紫色。

综上所述,由于组成本发明多层膜的物质的折射指数各不相同,通过 适当地改变膜厚或膜层叠加顺序就可以使整体多层膜反射某一特定波长的 光线或者完全透过特定波长的光线或入射光线。

因此,把上述多层膜施加于任何种类的基体颗粒就可以获得功能粉 末,这种粉末即具有基体颗粒的性能,同时又被制成鲜艳的色彩或者透明。

例如,当选用一种由磁性材料制成的基体颗粒时,可以获得一种色彩 鲜艳的磁性彩色墨粉。当选用一种由玻璃或透明树脂制成的基体颗粒时, 可以获得具有高透明度并且适合于用作液晶显示的球形分隔器的球形透 镜、光纤球形透镜、等等。另外,当选用一种颜料作为基体颗粒时,就可 以获得一种能反射紫外线和红外线的化妆品。

QQ群二维码
意见反馈