用于生成具有减低的结晶含量的盐的方法

申请号 CN201480025872.1 申请日 2014-05-02 公开(公告)号 CN105190211A 公开(公告)日 2015-12-23
申请人 安德里茨技术资产管理有限公司; 发明人 保尔·伯恩哈德·克勒尔;
摘要 本 发明 涉及一种用于在 对流 设备中对含结晶 水 的盐进行干燥的方法,该对流设备也可以附加地被间接加热。该方法的特征尤其在于,在干燥气体的规定的含湿量之上进行干燥。干燥期间包围盐颗粒的气体具有特定的湿度。由此,有利地影响干燥速度。
权利要求

1.一种用于在对流设备中对含结晶的盐进行干燥的方法,其特征在于,在干燥气体的规定的含湿量之上进行干燥,例如在超过10%的绝对湿度的情况下进行干燥。
2.根据权利要求1所述的方法,其特征在于,所述干燥气体在规定的湿度值之上的含湿量通过蒸发的水单独进行调整。
3.根据权利要求1所述的方法,其特征在于,所述干燥气体在规定的湿度值之上的含湿量通过部分引回所述干燥气体来进行调整。
4.根据权利要求1所述的方法,其特征在于,所述干燥气体在规定的湿度值之上的含湿量通过完全引回所述干燥气体来进行调整,其中,通过冷凝从循环中提取出蒸发的水,并借助冷凝器温度来调整所述干燥气体的含湿量。
5.根据权利要求2所述的方法,其特征在于,所述干燥气体的含湿量通过借助干燥气体温度匹配水蒸发率来进行调整。
6.根据权利要求2所述的方法,其特征在于,所述干燥气体的含湿量通过借助附加的热交换器面提高水蒸发率来进行调整。
7.根据权利要求1至6中任一项所述的方法,其特征在于,在干燥之前,将灰尘和/或已干燥的产物与含结晶水的潮湿的盐集聚在一起,并且必要时进行混合。
8.根据权利要求1至6中任一项所述的方法,其特征在于,在干燥之前,将已磨碎的超大颗粒与含结晶水的潮湿的盐集聚在一起,并且必要时进行混合。
9.根据权利要求1所述的方法,其特征在于,所述含湿量仅在干燥机的几何结构的部分区域内、例如在进料区内进行调整。
10.根据权利要求1至9中任一项所述的方法,将硫酸七水化合物干燥成一水化合物,其特征在于,产物具有超过1100g/l的堆比重,并且干燥气体在离开干燥机时的绝对湿度大于15%。

说明书全文

用于生成具有减低的结晶含量的盐的方法

技术领域

[0001] 本发明涉及一种用于在对流设备中对含结晶水的盐进行干燥的方法。

背景技术

[0002] 很多盐在结晶时形成水合物级。往往不期望有引入的结晶水,这是因为它提高了运输成本、降低了浓度并且在一些情况下会导致存储不稳定的产物。水合物级的大小,也就是引入的水分子的数量,在一些情况下可以按有利方式通过结晶条件来控制,但在很多情况下无法避免进行热脱水。每个盐分子结合的水分子越多,最后结合的水分子也就越容易再次裂化,也就是说,随着针对每个盐分子已经裂化的水分子的数量增加不仅提高了用于克服结合能所需的能量,而且也提高了裂化所需的温度。高含水的产物,例如芒硝(硫酸镁*10水),在室温略微升高时便排出结晶水并溶化(变成溶液)。该特性是在可能的热干燥之后存在不同产物品质的原因。
[0003] 在技术实践中,视干燥方法而定并且依赖于所选的运行和设计条件,得到易磨损的、含尘的细粒产物,或者得到稳定且含尘少的颗粒或者说中间级,即两种品质的过渡级。典型地,在具有或没有装入的热交换器的回转圆筒干燥机(滚筒干燥机)、气流管干燥机或流化床干燥机中进行干燥。在流化床中也使用喷雾造粒,但是由于水蒸发较高而不太经济。
在部分情况下,干燥方法也彼此组合。
[0004] 所有方法的共同之处在于,产物品质不同而且无法提前确定。很多方法提供了具有800g/1至1000g/1的较低的堆比重的含尘的易磨损的产物、具有1200g/1或更高的其他固体颗粒(例如喷雾造粒、具有装入的热交换器的流化床干燥机)。

发明内容

[0005] 因此本发明目的是,不依赖于所使用的方法来生成具有特定特性的具有减低的结晶水含量的盐,其中,这些特性主要依赖于堆比重。
[0006] 因此,本发明的特征在于,在干燥气体的规定的含湿量之上,例如在超过10%的绝对湿度的情况下,进行干燥。因此,干燥期间包围盐颗粒的气体具有特定的湿度。由此,会影响干燥速度。在高速度的情况下,水首先自发在表面上蒸发,由于温度升高,于是在颗粒内部其他结晶水被释放、蒸发并穿过表面上的孔和毛细管。由于质量流量较高,所以毛细管和孔被扩张并且形成具有低密度和弱化结构的多孔颗粒。在干燥速度较低的情况下,裂化的结晶水较长时间地保持在液态状态下,局部形成的盐溶液可以再次部分地封闭住孔、缝隙和毛细管或使其缩小。得到了高密度的固体颗粒。
[0007] 本发明的一个有利改进方案的特征在于,干燥气体在规定的湿度值之上的含湿量通过蒸发的水单独进行调整,其中,干燥气体的含湿量可以通过借助干燥气体温度或替选地借助附加的热交换器面匹配水蒸发率来进行调整。
[0008] 本发明的一个替选设计方案的特征在于,干燥气体的含湿量通过部分引回干燥气体来进行调整,其中,干燥气体的在规定的湿度值之上的含湿量也可以通过完全引回干燥气体来进行调节,并且在此通过冷凝从循环中提取出蒸发的水,并借助冷凝器温度来调整干燥气体的含湿量。
[0009] 尤其是具有较高的结晶水含量的盐,例如像芒硝(硫酸钠)那样的十水合物,在较低温度(在100°之下很多)的情况下就已经排出结晶水。由于温度较低,所以不会导致足够的蒸发并使盐融化或使其被烘烤
[0010] 因此,本发明的一个有利改进方案的特征在于,在干燥之前将灰尘和/或已干燥的产物与潮湿的含结晶水的盐聚集在一起,并且必要时进行混合。在此,多余的自由结晶水可以通过重组来结合并且获得了可以再次进行干燥的非临界的(unkritisch)混合物。典型地,该逆混在前置于干燥机的搅拌器内进行,但是通过干燥机几何结构的相应设计也可以在干燥机内进行。
[0011] 本发明的一个有利改进方案的特征在于,在灰尘和/或除了灰尘之外已磨碎的超大颗粒的部位与含结晶水的潮湿的盐集聚在一起(“Abpudern,洒粉”)。
[0012] 本发明的一个有利改进方案的特征在于,仅在干燥机的几何结构的部分区域内,例如在进料区内对含湿量进行调整。
[0013] 在根据本发明的方法将硫酸七水化合物(绿盐)干燥成一水化合物时,已被证实为有利的是,将干燥气体离开干燥机时的绝对湿度调节到大于15%,以便生成堆比重超过1100g/1的产物。
[0014] 根据所提出的方法的教导得到多个调整出有利条件的可行方案。在所应用的干燥机组中,气体进一步引导蒸发的水,能量输送同样可以通过气体并且/或者通过接触面进行。
[0015] 在纯对流机组中,废气湿度通常较低,因此借助能量平衡选择热气温度和热气流量,使得由此蒸发的水在期望范围内提高了废气湿度。这不是强制性要在所有类型的盐和干燥机内进行的。对于温度的提高是有限制的(产物损坏、材料稳定性、可用的能量源、……),虽然体积流量提高给设备输送更多能量,但并没有朝期望的方向改变废气状态。
[0016] 具有间接加热的对流设备可以不依赖于体积流量地一方面经由对流设备的加热面的温度,另一方面经由对流设备的大小来调整水蒸发率。这意味着例如针对具有装入的2
热交换器的流化床干燥机来说,当温度的提高已经不再升高时,则通过加大充填密度(m热
3
交换面积/m床层容积)来提高传递面积,或者在充填密度不变时加大床层深度。由此,在涌流不变的情况下增加了水蒸发并如所期望的那样提高了废气湿度。
[0017] 此外,通过废气部分或完全引回而具有任意调整废气状态的可能性。在部分引回的情况下,导出一部分潮湿的废气,其余被引回。气流比例确定了废气湿度,并且全部的水蒸发利用分流导出。
[0018] 在闭路的气体循环中进行完全引回的情况下,蒸发的水在冷凝器中冷凝并且从循环中被提取出去。冷凝器温度确定了废气湿度。
[0019] 实施例1:在具有装入的热交换器的流化床干燥机中,在床层中,表面潮湿的硫酸铁七水化合物被干燥成一水化合物。420kg/h的潮湿的七水化合物和260kg/h的干燥的返回物料(一水合物产物和来自干燥装置的灰尘)经由搅拌器输送给干燥机。干燥空气(1300kg/h)的温度为185℃,热交换器的温度为195°,产物层的温度为117℃。连同10g/kg的干燥空气的初始载量一起,通过蒸发的水得到了对应于12.7%的绝对湿度和约63℃的露点的146g/kg的干燥空气的废气载量。在湿度较低时,这种干燥的结果是轻的含尘的一水合物颗粒,其具有710g/1的堆比重、250μm的平均颗粒直径和在干燥期间伴随66%的废气的灰尘输出量。
[0020] 实施例2:在相同的干燥机中,七水化合物、由一水合物构成的返回物料和由来自干燥装置的灰尘的等量混合物利用几乎相等的温度进行干燥(空气178°、热交换器195°、产物床层120°)。与示例1的主要区别是,完全引回空气并且在洗涤机中使蒸发的水冷凝。由于变化的产物,循环空气运送必须提高至1730kg/h。洗涤机的温度为65°,这导致再次输送给干燥机的空气的205g水/kg的干燥空气的总载量。于是,连同蒸发的水一起,废气在干燥机之后具有329g/kg的载量,这相当于24.8%的绝对湿度和约73°的露点。
通过干燥期间的该潮湿环境,生成稳定且重的一水合物,其具有1195g/1的堆比重、450μm的平均颗粒直径和仅具有15%的废气的灰尘输出量。
附图说明
[0021] 在接下来的附图中,以流化床干燥机为例说明方法变型方案。但这些方法变型方案在意义上也适用于上面列出的其他的干燥机结构类型。
[0022] 图1示出包括返回物料流的根据本发明的系统;
[0023] 图2示出包括部分气体引回的根据本发明的系统;以及
[0024] 图3示出包括完整气体循环闭路的根据本发明的系统。

具体实施方式

[0025] 送机10(参见图1)将外界空气挤压过热风调节器11到干燥机组(在此是流化床干燥机)12中,在干燥机组中,盐可选也通过热交换器13加热并且排出结晶水。潮湿的干燥气体离开干燥机,在过滤器或旋风分离器14中除尘并且在可选的附加的气体清洁之后经由抽风机18到达户外19。在搅拌机21中利用从旋风分离器或过滤器14中沉积出的灰尘并且可选地利用引回的产物对表面潮湿的含结晶水的盐20进行洒粉并输送给干燥机12。干燥后,盐离开干燥机12,并且在可选的筛网22中分离出超大颗粒,将其磨碎23并输送给搅拌器21。部分物料进入溢出料仓24,从其中可选地将用于搅拌器21的返回物料利用定量供给螺旋输送机25取出,以及将最终产物26用于继续处理。
[0026] 图2示出干燥过程的变型方案,其包括部分气体引回,以调整出干燥机内的限定的气体湿度,也就是说,规定的含湿量。产物处理与图1所描述的相同并为了清楚起见不示出。鼓风机10挤压循环中的气体穿过热风调节器11、干燥机12和除尘机14。借助节流机构16,定量供给经由可选的过滤器15被清洁的新鲜空气分流。由此来调整干燥机12内的气体的含湿量。相应量的潮湿废气经由通风机的压侧上的受压力调节的节流机构17被抽出。该废气流19也包含产物的蒸发的水量。新鲜空气分流越小,气体湿度就越高。
[0027] 在完全循环闭路(参见图3)中,必须有选择地从循环气体中去除蒸发的水。适宜地,这通过在表面冷凝器或洗涤冷凝器30内进行冷凝来实现。洗涤水在循环中被送31,冷凝热经由冷却器32抽走。也相当于产物中的蒸发水量的冷凝水量受水平调节地33从过程中抽走。借助冷却器32可以将洗涤水的温度调整成,使得经由水的部分蒸汽压力得到循环气体的所需初始湿度。初始湿度根据所期望的废气湿度减去由产物中的水蒸发生成的份额计算得出。循环气体在循环中从鼓风机10开始运动经过热风调节器11、干燥机12、除尘机14和洗涤冷凝器30。产物路径在此相应于图1并且为了清楚起见不再示出。
[0028] 所示的系统仅是示例性的且以流化床干燥机(具有或没有装入的热交换器)为例示出。但也可以使用回转圆筒干燥机(滚筒干燥机)、气流管干燥机或流化床喷雾造粒机。
QQ群二维码
意见反馈