新颖的含锰纳米结构

申请号 CN201280046333.7 申请日 2012-09-20 公开(公告)号 CN103930136A 公开(公告)日 2014-07-16
申请人 斯帕果图像有限公司; 发明人 O·阿克塞尔森; 罗德里戈·M·小派特奥瑞欧; F·艾克; 彼得·拉尤瑞特森;
摘要 在此披露了包含一个 聚合物 框架 的纳米结构,该聚合物框架包含至少五个孪位双膦酸酯基,其中这些孪位双膦酸酯基彼此独立地以-R3R4C(P=O(OR1)(OR2))2形式并入,其中R1和R2独立地选自下组,该组由一个负电荷、H、烷基及芳基组成,并且其中R3和R4中至少一个是连接到该聚合物框架的一个基团,其条件是当R3和R4中仅一个是此类连接的基团时,R3和R4中的另一个是一个能够连接到该聚合物框架的基团,或此类基团的残基,或选自由H、OH、OR5及R5组成的组,其中R5是一个低级烷基。该聚合物框架可以包含锰离子。还披露了用于制造这些含锰纳米结构的方法、包含这些含锰纳米结构的组合物及这些含锰纳米结构例如作为MRI 造影剂 的用途。
权利要求

1.一种纳米结构,包含了并入一个聚合物框架中的锰离子,该聚合物框架包含至少五个孪位双膦酸酯基,其中这些孪位双膦酸酯基彼此独立地呈以下形式并入
3 4 1 2
-RRC(P=O(OR)(OR))2
其中:
1 2
R 和R 独立地选自下组,该组由一个负电荷、H、烷基及芳基组成,并且
3 4
R 和R 中至少一个是连接到该聚合物框架,或形成该聚合物框架的一部分的一个基
3 4 3 4
团,其条件是,当R 和R 中仅一个是此类连接的基团时,R 和R 中的另一个是一个能够连
5 5 5
接到该聚合物框架的基团,或此类基团的残基,或选自由H、OH、OR 及R 组成的组,其中R是一个低级烷基。
2.根据权利要求1所述的纳米结构,其中连接到该聚合物框架的该基团,和/或该能够连接到该聚合物框架的基团或此类基团的残基是选自下组,该组由以下各项组成:
x x -
(CH2)nSi(R)3,其中R 独立地为一个低级烷基、OH、O 或O-,-表示连到该聚合物框架的一个键,并且n是1-5,
y y z z z
(CH2)nCOR,其中R 是O-、NH2、NHR、NR2,或连到该聚合物框架的一个键,R 是一个低级烷基并且n是1-5,并且-表示连到该聚合物框架的一个键,及
y y z z z
(CH2)nSO2R,其中R 是O-、NH2、NHR、NR2,或连到该聚合物框架的一个键,R 是一个低级烷基并且n是1-5,并且-表示连到该聚合物框架的一个键。
3.根据权利要求1或2所述的纳米结构,该纳米结构包含原子
3 4
4.根据权利要求1至3中任一项所述的纳米结构,其中R 和/或R 是选自下组,该组x x -
由-(CH2)n-Si(R)3组成,其中R 独立地为一个低级烷基、OH、O 或O-,-表示连到该聚合物框架的一个键,并且n是1-5。
5.根据权利要求1至4中任一项所述的纳米结构,其中这些纳米结构的流体学直径是3-7nm。
6.根据权利要求1至4中任一项所述的纳米结构,其中这些纳米结构的流体动力学直径是10-20nm。
7.根据权利要求1至6中任一项所述的纳米结构,其中该聚合物框架包含了含一个孪位双膦酸酯基和两个有机基硅烷基团的单体残基。
8.根据权利要求1至6中任一项所述的纳米结构,其中该聚合物框架是衍生自聚乙烯亚胺。
9.根据权利要求1至8中任一项所述的纳米结构,其中P/Mn摩尔比是7-20。
10.根据权利要求3或当从属于权利要求3时根据权利要求4至7或9中任一项所述的纳米结构,其中Si/Mn摩尔比是5-20。
11.根据权利要求1至10中任一项所述的纳米结构,其中所述纳米结构另外包含了附接到外部部分的亲性基团。
12.根据权利要求11所述的纳米结构,其中这些亲水性基团包含-(CH2CH2O)nCH3部分,其中n=4-50。
13.一种药物组合物,包含一个根据权利要求1至12中任一项所述的纳米结构。
14.根据权利要求1至12中任一项所述的纳米微粒或根据权利要求13所述的药物组合物作为一种MRI造影剂的用途。
15.一种用于获得根据权利要求1至12中任一项所述的纳米结构的方法,包括:
获得具有一个聚合物框架的纳米结构,该聚合物框架包含孪位双膦酸酯,并且使所述纳米结构与锰离子接触
16.一种包含了聚合物框架的纳米结构,该聚合物框架包含至少五个孪位双膦酸酯基,其中这些孪位双膦酸酯基彼此独立地呈以下形式并入
3 4 1 2
-RRC(P=O(OR)(OR))2
其中:
1 2
R 和R 独立地选自下组,该组由一个负电荷、H、烷基及芳基组成,并且
3 4
R 和R 中至少一个是连接到该聚合物框架或形成该聚合物框架的一部分的一个基团,
3 4 3 4
其条件是,当R 和R 中仅一个是此类连接的基团时,R 和R 中的另一个是一个能够连接到
5 5 5
该聚合物框架的基团,或此类基团的残基,或选自由H、OH、OR 及R 组成的组,其中R 是一个低级烷基。

说明书全文

新颖的含锰纳米结构

技术领域

[0001] 本发明涉及并入了顺磁性锰(II)离子的螯合聚合物纳米结构,以及制备所述纳米结构的方法,以及这些纳米结构用于对生物材料进行观测或成像的用途。

背景技术

[0002] 磁共振成像MRI是一种医学成像模式,其中通过利用原子核的磁化来观测身体的软组织。该技术有许多临床应用,如神经系统成像、血管系统及肿瘤成像。
[0003] 通常,对身体的分子的丰富氢核进行成像。MRI信号的强度取决于这些核的性质、其丰度及其局部磁性环境。这些因素影响了纵向(T1,再磁化时间常数)及横向(T2,信号衰减时间常数)弛豫时间,这些时间又影响了信号强度。因此,MRI中造影的来源是局部核浓度与它们的磁性环境的组合。不同形态特征可以通过加强T1或T2造影来增强。该局部磁性环境可以通过造影剂的存在来改变,并且取决于它们的磁性特性,该信号可以得到增加(正造影)或减小(负造影)。正造影剂经常是优选的,因为当更高的亮度指示更多造影剂的存在时,图像的解释变得更简单。这些正造影剂的原理是纵向弛豫时间T1的缩短,它描述了水分子在每次扫描之后再磁化有多快。在一种正造影剂存在下,可以在一段给定的时间段内收集到更多的信号。
[0004] 此外,一种化合物对T1的影响被指定为弛豫率,因此,高弛豫率得到更强的信号增强。该弛豫率(r)以一种结构依赖性方式与频率相关,它使从来自不同来源的文献得到的数据的比较变得复杂。临床MRI扫描仪具有的磁场通常为1.5或3特斯拉,因此,我们已经测量了在1.91T(对应于81.3MHz的质子共振频率)下的弛豫率,作为一种合理的折衷。测量还可以在其他频率(如60MHz)下进行。可商购的基于钆的造影剂的弛豫率在临床相关领域下接近于4/mMGd/s。
[0005] 水溶性螯合物目前在市场上占主导。由于它们的实际大小较小(<1nm),故它们迅速地分布到细胞外空间(血液加上在组织细胞之间的细胞间隙)中,这多少限制了造影效应。在体内使用如钆等顺磁性金属离子的问题是它们的毒性,并且目前市面上的造影剂中的螯合物相当成功地解决了这一问题。然而,近来已经发现,这些螯合物释放出少量的钆,这在不存在或具有极弱肾功能的患者中成为问题,其中已经发现了称为肾源性系统纤维化NSF的严重副作用(格勒布纳(Grobner)等人,《肾脏病学、透析与移植》(Nephrology,Dialysis and Transplantation)2006,21,1104;希伯(Sieber)等人,《研究性放射学》(Invest.Radiol.)2008,43,65)。
[0006] NSF的问题带来了使用除钆外的某物作为缩短T1的造影剂的论点;锰福地吡(Mangafodipir)是已经被用作造影剂的一种锰(II)螯合物(利桑度G.(Elizondo,G.)等人,《放射学》(Radiology),178,73,1991)。它在体内具有适中的稳定性并且在注射之后,大量的锰以离子形式释放并积累于肝中,从而在健康与癌组织之间产生良好的对比。适量锰的释放不是一个主要问题,因为它是活生物体的一种必需的微量元素并且有多种处理锰的机制。锰福地吡现因销售量差而下市。锰离子的磁性低于钆并且大部分的锰化合物具有较低弛豫率,其中一些值得注意的实例(潘D.(Pan,D.)等人,《WIREs纳米医学与纳米生物技术》(WIREs Nanomed Nanobiotechnol),3,162,2011)显示了基于锰的造影剂的潜。如果可以将这些有益特性合并于一种化学上更易接近、适合大小并且更具生物惰性的结构中,那么它将是一种独特的益处。在本发明中,披露了一组实现此目的的材料。
[0007] 本领域中已知许多基于纳米微粒的造影剂。其中一些是基于化物,被用作肝特异性造影剂,但因销售量低而不再出售。可获得很多有关那些微粒的实验使用的文献。(例如布特J.W.M.(Bulte,J.W.M.)和莫多M.M.J.(Modo,M.M.J.)编,“《生物医学成像中的纳米微粒》(Nanoparticles in Biomedical Imaging)”施普林格(Springer),2008)。尽管本发明涉及纳米大小的结构,但它们不属于该术语通常所暗指的核-壳类型,而是基于一种高度交联的聚合物。
[0008] 有很多文献是关于带有螯合基团和顺磁性金属离子的用于MRI中的聚合物材料。总的说来,实现了弛豫率的稳固增加,不过没有如本发明中所描述的那么高。据我们所知,所述文献都未披露本发明的带有双膦酸酯的聚合物框架
[0009] 以下文献实例是相关背景公开的实例,这些实例决不应解释为在本发明的范围内。
[0010] 在罗格韦德P.(Rongved P.),《水化合物研究》(Carbohydr Res)214,315(1991)中,描述了具有一个碳水化合物主链和附接的螯合基团的一系列聚合物材料。最接近于本发明的材料是钆(III)-葡聚糖磷酸酯,它在20MHz下具有的弛豫率为16/mMGd/s。实质上低于本发明中所披露的材料。这一材料具有未知的稳定性。磷是以磷酸酯形式并入所结合的磷酸酯基中,与本发明的膦酸酯相对。因此,该材料在本发明的范围外。
[0011] 罗格韦德还披露了一种弛豫率为19.2/mMMn/s的锰(II)-EDTA-蔗糖-表氯醇结合物和一种弛豫率为12.8/mMMn/s的锰(II)-EDTA-基乙基葡聚糖结合物。这两个值实质上低于本发明的材料的那些,尤其是因为它们是在20MHz的较低频率下测量的。这些材料落在本发明的范围外。
[0012] 在WO2010135167中,描述了一种基于聚苯乙烯的双膦酸酯材料。没有制造纳米结构的尝试,而是制造散装材料。
[0013] 描述了具有特定化学结构(如与本发明的基于聚合物的结构相对)和分子量的树枝状聚合物的使用的文献非常多。
[0014] 用作MR造影剂的树枝状聚合物的最著名实例是Gadomer17(图莱切克K.(Turetschek,K.)等人,《磁共振成像杂志》(J.Magn.Reson.Imaging)20,138(2004)),然而,它从未达到临床实践。这一针对纳米大小的结构的途径经历了极其昂贵的化学合成。部分由于众多的化学步骤并且部分来自许多可能的杂质的纯化和鉴别的困难。同样,据我们所知,与本发明的发明人所发现的那些同样高的弛豫率在此领域中从未有过报导。
[0015] 在使用具有高灵敏度和选择性的大分子试剂作为MRI造影剂进行肿瘤诊断的良好结果背后的基本原理是渗透和滞留增强(EPR)效应,又称被动肿瘤靶向。它是基于以下事实:健康组织的毛细管对于大于3-4nm的分子实际上是不可渗透的,而正快速生长的肿瘤组织的毛细管更易渗漏得多。尽管决不是确定的或限制性的,但可想到的是该EPR效应是本发明的有利肿瘤成像特性的基础
[0016] 本领域中已知许多含膦酸酯的钆单体螯合物,而锰-磷组合不太常用,但不是未知的(潘D.等人,《WIREs纳米医学与纳米生物技术》3,162,2011)。它们在其MRI特性方面一点也不突出,并且报导的弛豫率是中等的。带有双膦酸酯的螯合物的一个实例见于维萨T.(Vitha,T.)等人,《道尔顿汇刊》(Dalton Transactions)第3204页(2009)。

发明内容

[0017] 本披露的第一方面涉及包含了纳米大小的结构的纳米结构,这些纳米大小的结构是基于一个聚合物框架或构架,该聚合物框架或构架包含或携带有至少五个孪位双膦酸酯1 2 4 3 1 2 1 2
基-P=O(OR)(OR)(它在本发明的上下文中等于-RRC(P=O(OR)(OR))2),其中R 和R独立地选自一个负电荷、H、烷基及芳基。
[0018] 本披露的第二方面涉及包含了并入纳米大小的结构中的顺磁性锰离子的纳米结构,这些纳米大小的结构是基于一个聚合物框架或构架,该聚合物框架或构架包含或携带1 2
有至少五个孪位双膦酸酯基-P=O(OR)(OR)(如以上所提到的,它在本发明的上下文中等
4 3 1 2 1 2
于-RRC(P=O(OR)(OR))2),其中R 和R 独立地选自一个负电荷、H、烷基及芳基。
[0019] 尽管术语“纳米大小的”一般被解释为涵盖小于100nm的任何事物,但本发明的焦点是具有大致呈球形并且平均大小(流体动力学直径)为1-100nm,或在一些实施例中为2-50nm、3-10nm或3-7nm的高度分支或交联的结构的实体。
[0020] 本披露的第二方面涉及了用于制造这些纳米结构(包含锰离子的那些与不包含这些离子的那些两种)的方法。
[0021] 本披露的第三方面涉及包含了这些纳米结构,特别是包含顺磁性锰离子的那些纳米结构的组合物,如药物组合物,以及这些纳米结构,特别是包含顺磁性锰离子的那些作为具有临床效用的造影剂,特别是用作MRI造影剂的用途。
[0022] 用在此披露的这些纳米结构优于现有技术的一些益处是比目前市面上的材料高一个数量级的弛豫率组合适于在肿瘤组织中选择性积累的大小和良好生物耐受性的组合。这使得本发明的纳米结构,特别是包含顺磁性锰离子的那些纳米结构适于用作MRI并且特别是肿瘤成像的造影剂。
[0023] 此外,使用锰代替钆作为顺磁性组分防止了与钆有关的毒性问题的发生。
[0024] 使用丰富的锰代替相对稀少的钆在该材料的制造中还具有成本益处。具体实施例
[0025] 1.一种纳米结构,包含了并入聚合物框架中的锰离子,该聚合物框架包含至少五个孪位双膦酸酯基,其中这些孪位双膦酸酯基彼此独立地呈以下形式并入
[0026] -R3R4C(P=O(OR1)(OR2))2
[0027] (它等于-R4R3C(P=O(OR1)(OR2))2)
[0028] 其中R1和R2独立地选自下组,该组由一个负电荷、H、烷基及芳基组成,并且其中R34 3 4
和R 中至少一个是连接到该聚合物框架的一个基团,其条件是,当R 和R 中仅一个是此类
3 4
连接的基团时,R 和R 中的另一个是一个能够连接到该聚合物框架的基团,或此类基团的
5 5 5
残基,或选自由H、OH、OR 及R 组成的组,其中R 是一个低级烷基。
[0029] 2.根据实施例1所述的纳米结构,其中这些锰离子是锰(II)离子。
[0030] 3.根据实施例1或2所述的纳米结构,其中R1和R2独立地选自下组,该组由一个负电荷、H、烷基及甲基组成。
[0031] 4.根据实施例1至3中任一项所述的纳米结构,其中连接到该聚合物框架的该基团,和/或该能够连接到该聚合物框架的基团或此类基团的残基是选自下组,该组由以下各项组成:
[0032] (CH2)nSi(Rx)3,其中Rx独立地为一个低级烷基、OH、O-或O-,其中-表示连到该聚合物框架的一个键,并且其中n是1-5,
[0033] (CH2)nCORy,其中Ry是O-、NH2、NHRz、NRz2,或连到该聚合物框架的一个键,其中Rz是一个低级烷基并且n是1-5,并且
[0034] -表示连到该聚合物框架的一个键,及
[0035] (CH2)nSO2Ry,其中Ry是O-、NH2、NHRz、NRz2,或连到该聚合物框架的一个键,Rz是一个低级烷基并且n是1-5,并且
[0036] -表示连到该聚合物框架的一个键。
[0037] 5.根据实施例1至4中任一项所述的纳米结构,该纳米结构包含原子。
[0038] 6.根据实施例1至5中任一项所述的纳米结构,其中R3和/或R4是选自下组,该x x -组由-(CH2)n-Si(R)3组成,其中R 独立地为一个低级烷基、OH、O 或O-,其中-表示连到该聚合物框架的一个键,并且其中n是1-5。
[0039] 7.根据实施例1至6中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是2-50nm。
[0040] 8.根据实施例1至7中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是3-10nm。
[0041] 9.根据实施例1至8中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是3-7nm。
[0042] 10.根据实施例1至7中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是10-50nm。
[0043] 11.根据实施例1至7或10中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是10-20nm。
[0044] 12.根据实施例1至11中任一项所述的纳米结构,其中该聚合物框架包含了含一个孪位双膦酸酯基和两个有机氧基硅烷基团的单体残基。
[0045] 13.根据实施例1至11中任一项所述的纳米结构,其中该聚合物框架是衍生自聚乙烯亚胺。
[0046] 14.根据实施例13所述的纳米结构,其中P/N摩尔比为0.1-3。
[0047] 15.根据实施例1至14中任一项所述的纳米结构,其中P/Mn摩尔比是7-20。
[0048] 16.根据实施例5或当从属于实施例5时6至12或14至15中任一项所述的纳米结构,其中Si/Mn摩尔比是5-20。
[0049] 17.根据实施例5或当从属于实施例5时6至16中任一项所述的纳米结构,其中Si/P摩尔比是0.7-1.3。
[0050] 18.根据实施例1至17中任一项所述的纳米结构,其中这些锰离子与这些膦酸酯基配位。
[0051] 19.根据实施例1至18中任一项所述的纳米结构,其中所述纳米结构另外包含了附接到外部的部分的亲水性基团。
[0052] 20.根据实施例19所述的纳米结构,其中这些亲水性基团包含-(CH2CH2O)nCH3部分,其中n=4-50。
[0053] 21.根据实施例1至20中任一项所述的纳米结构,其中该聚合物框架包含了具有以下一般结构的单体残基
[0054] {(X7aO)(X7bO)PO}2-(C){(CH2)nSi(OX7c)(OX7d)(OX7e)}{(CH2)oSi(OX7c)(OX7d)(OX7e)}[0055] 其中
[0056] X7a、X7b、X7c、X7d、X7e独立地选自H、C1-8烷基及苯甲基;并且
[0057] n和o独立地选自1-5。
[0058] 22.一种组合物,包含一个根据实施例1至21中任一项所述的纳米结构。
[0059] 23.一种药物组合物,包含一个根据实施例1至21中任一项所述的纳米结构。
[0060] 24.根据实施例1至21中任一项所述的纳米微粒或根据实施例22或23所述的组合物作为一种MRI造影剂的用途。
[0061] 25.一种用于获得根据实施例1至21中任一项所述的纳米结构的方法,包括:
[0062] 获得具有一个聚合物框架的纳米结构,该聚合物框架包含孪位双膦酸酯,并且使所述纳米结构与锰离子接触
[0063] 26.根据实施例25所述的方法,另外包括一个步骤,其中这些纳米结构通过超滤进行纯化。
[0064] 27.一种用于获得根据实施例13或当从属于实施例13时14至21中任一项所述的纳米结构的方法,其中一个孪位双膦酸酯被接枝到衍生自聚乙烯亚胺的一个聚合物框架,该聚合物框架随后被装载锰离子。
[0065] 28.一种用于获得根据实施例12或当从属于实施例12时13至21中任一项所述的纳米微粒的方法,其中所述硅烷被提供于包含水和一种或多种与水可混溶的其他溶剂的一种溶剂混合物中。
[0066] 29.一种通过根据实施例25至28中任一项所述的方法可获得的产物。
[0067] 30.一种包含了聚合物框架的纳米结构,该聚合物框架包含至少五个孪位双膦酸酯基,其中这些孪位双膦酸酯基彼此独立地呈以下形式并入
[0068] -R3R4C(P=O(OR1)(OR2))2
[0069] (它等于-R4R3C(P=O(OR1)(OR2))2)
[0070] 其中R1和R2独立地选自下组,该组由一个负电荷、H、烷基及芳基组成,并且其中R34 3 4
和R 中至少一个是连接到该聚合物框架的一个基团,其条件是,当R 和R 中仅一个是此类
3 4
连接的基团时,R 和R 中的另一个是一个能够连接到该聚合物框架的基团,或此类基团的
5 5 5
残基,或选自由H、OH、OR 及R 组成的组,其中R 是一个低级烷基。
[0071] 31.根据实施例30所述的纳米结构,其中R1和R2独立地选自下组,该组由一个负电荷、H、烷基及甲基组成。
[0072] 32.根据实施例30或31所述的纳米结构,其中连接到该聚合物框架的该基团,和/或该能够连接到该聚合物框架的基团或此类基团的残基是选自下组,该组由以下各项组成:
[0073] (CH2)nSi(Rx)3,其中Rx独立地为一个低级烷基、OH、O-或O-,其中-表示连到该聚合物框架的一个键,并且其中n是1-5,
[0074] (CH2)nCORy,其中Ry是O-、NH2、NHRz、NRz2,或连到该聚合物框架的一个键,Rz是一个低级烷基并且n是1-5,并且-表示连到该聚合物框架的一个键,及
[0075] (CH2)nSO2Ry,其中Ry是O-、NH2、NHRz、NRz2,或连到该聚合物框架的一个键,Rz是一个低级烷基并且n是1-5,并且-表示连到该聚合物框架的一个键。
[0076] 33.根据实施例30至32中任一项所述的纳米结构,该纳米结构包含硅原子。
[0077] 34.根据实施例30至33中任一项所述的纳米结构,其中R3和/或R4是选自下组,x x -该组由-(CH2)n-Si(R)3组成,其中R 独立地为一个低级烷基、OH、O 或O-,其中-表示连到该聚合物框架的一个键,并且其中n是1-5。
[0078] 35.根据实施例30至34中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是2-50nm。
[0079] 36.根据实施例30至35中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是3-10nm。
[0080] 37.根据实施例30至36中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是3-7nm。
[0081] 38.根据实施例30至35中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是10-50nm。
[0082] 39.根据实施例30至35或38中任一项所述的纳米结构,其中该纳米结构的流体动力学直径是10-20nm。
[0083] 40.根据实施例30至39中任一项所述的纳米结构,其中该聚合物框架包含了含一个孪位双膦酸酯基和两个有机氧基硅烷基团的单体残基。
[0084] 41.根据实施例30至40中任一项所述的纳米结构,其中该聚合物框架是衍生自聚乙烯亚胺。
[0085] 42.根据实施例41所述的纳米结构,其中P/N摩尔比为0.1-3。
[0086] 43.根据实施例33或当从属于实施例33时34至42中任一项所述的纳米结构,其中Si/P摩尔比是0.7-1.3。
[0087] 44.根据实施例30至43中任一项所述的纳米结构,其中所述纳米结构另外包含了附接到外部部分的亲水性基团。
[0088] 45.根据实施例44所述的纳米结构,其中这些亲水性基团包含-(CH2CH2O)nCH3部分,其中n=4-50。
[0089] 46.根据实施例30至45中任一项所述的纳米结构,其中该聚合物框架包含了具有以下一般结构的单体残基
[0090] {(X7aO)(X7bO)PO}2-(C){(CH2)nSi(OX7c)(OX7d)(OX7e)}{(CH2)oSi(OX7c)(OX7d)(OX7e)}[0091] 其中
[0092] X7a、X7b、X7c、X7d、X7e独立地选自H、C1-8烷基及苯甲基;并且
[0093] n和o独立地选自1-5。
[0094] 术语的定义
[0095] 如在此所使用,术语“纳米结构”涉及总直径从1-100nm的基本上呈球形的一个实体(即,排除薄片、杆、管及带)。如在此所使用,该术语排除了具有一个矿物质或金属核和一个有机涂层的经常称为“核-壳型纳米微粒”或仅称为“纳米微粒”的结构。
[0096] 如在此所使用,术语“聚合物框架”涉及了形成多分支树状结构或具有多个交联的网络结构的一个共价结合的原子团。聚合物框架是由单体和/或低聚物和/或交联剂经由共价键连接而形成的。典型的单体可见于聚合物化学的教科书中,如J.R.弗雷德(J.R.Fried),“《聚合物科学与技术》(Polymer Science and Technology)”,普林提斯霍尔(Prentice Hall)1995。单体的一些实例是苯乙烯、丙烯、乙烯、四氟乙烯、三氟乙烯、二氟乙烯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸羟乙酯、丙烯酰胺、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸羟乙酯、H2N-(CH2)n-COOH(其中n为1-10)、3-氨基苯甲酸、4-氨基苯甲酸、N-乙烯基吡咯烷及硅酮前驱物,如(CH3COO)2Si(CH3)2。聚合物的一些实例是由如对苯二甲酸+1,4二氨基苯、对苯二甲酸+乙二醇,及HCOO-(CH2)nCOOH+H2N-(CH2)m-NH2(其中n和m独立地为1-10)等单体的匹配对形成的聚合物。连接有2-10个单体单元的低聚物可以用作前驱物。与以上单体的连接基团不同的低聚物的一些实例是环状或多环状硅烷,如六甲基环三硅氧烷、2,4,6,8-四甲基环四硅氧烷及十甲基环五硅氧烷。典型的交联剂可见于聚合物化学的教科书中,如J.R.弗雷德,“《聚合物科学与技术》”,普林提斯霍尔1995。交联剂的一些实例是N,N′-亚甲基双(丙烯酰胺)、表氯醇、二乙烯基苯、1,3-二乙烯基四甲基二硅氧烷、1,3-亚苯基二异氰酸酯、3,3′-联苯四甲酸二酐、1,4-丁二醇二乙烯基醚、四乙氧基硅烷、低聚硅酸酯(如偏硅酸酯)或倍半硅氧烷、有机硅烷(如双(三乙氧基硅烷基)甲烷、双(三乙氧基硅烷基)乙烷、双(三乙氧基硅烷基)丙烷、双(三乙氧基硅烷基)丁烷、甲基三乙氧基硅烷、乙基三乙氧基硅烷及丙基三乙氧基硅烷)。
[0097] 这一聚合物框架构成了该纳米结构的骨架。熟练的业内人士认识到,聚合过程的随机性使这些材料成为具有许多类似但不相同的分支模式、交联位置及分子量的混合物。
[0098] 术语“孪位双膦酸酯基”是指由一个碳原子分隔的两个膦酸酯基,即,这些膦酸酯基结合到同一碳原子。包含此类孪位双膦酸酯基的化合物经常称为1,1-双膦酸酯(或1,1-二膦酸酯)。该孪位双膦酸酯基中的膦酸酯基可以被取代。在一些实施例中,这些膦酸
1 2 1 2
酯基各自具有化学式-P=O(OR)(OR),其中R 和R 独立地选自下组,该组由一个负电荷、H、烷基及芳基组成。
[0099] 术语“连接到该聚合物框架的基团”是指这样一种化学基团,其中一个共价键在形式上取代了该聚合物框架的一个氢原子。这一定义所涵盖的化学基团一般为、醚、酰胺或酯的短的线性残基。一些典型实例是-(CH2)n-、-(CH2)nCO-、-(CH2)nCOO-、-(CH2)nCONH-及-(CH2)nSi(O-)3。在此上下文中,术语“短”意思指n是1-8。
[0100] 术语“形成该聚合物框架的一部分的基团”是指这样一种情形,其中该两个膦酸酯基是位于该聚合物框架的同一碳原子上。
[0101] 术语“能够连接到该聚合物框架的基团”是指称为连接到该聚合物框架的以上基团的前驱物。一些实例是-(CH2)nOH、-(CH2)nBr、-(CH2)nCOCl-、-(CH2)nCOCH3、-(CH2)nCOCH2CH3、-(CH2)nCOO-、-(CH2)nCONH2及(CH2)nSi(OEt)3。
[0102] 如在此所使用,术语“生物惰性”是指生物可相容(即,对活生物体无害并且同时对体内降解稳定的)的一种材料。
[0103] 如在此所使用,术语“DLS”是动态光散射(一种微粒大小测定方法)的缩写词,并且也可以称为光子相关光谱法或准弹性散射。如果没有具体说明任何别的事物,那么如文本中和权利要求书中陈述的,所给出的DLS大小是指在25℃下于离子强度对应于150mM NaCl的中性水溶液中所测量的样品的体积平均峰值最大值的位置。
[0104] 如在此所使用,术语“球形”意在描述纳米结构具有的形状使得短轴是长轴的不超过一半,即,穿过该结构的中心(重量点)的最长轴是穿过同一点的最短轴的长度的不超过两倍。
[0105] 如在此所使用,术语“亲水性有机残基”是指促进在水性溶剂中的溶解性的一种有机残基,并且在本发明中,暗含的意思是它们是生物惰性的,这排除了多肽和复杂的碳水化合物。适合亲水性有机残基的实例是具有分子组成(aO+bN)/(cC+dS+eSi+fP)>0.3的任何含碳基团,其中a、b、c、d、e及f对应地为氧(O)、氮(N)、碳(C)、硫(S)、硅(Si)及磷(P)的摩尔百分含量。
[0106] 如在此所使用,术语“活化的硅烷”是指以下类型RnSi(X)4-n的硅烷,其中X是一个烷氧基、芳氧基、一个卤素、一个二烷基氨基、一个含氮杂环或一个酰氧基。
[0107] 如在此所使用,术语“氧基硅烷”是指一个或多个氧原子附接到硅原子的任何有机化合物。其非限制性实例为:
[0108]
[0109] 如在此所使用,术语“有机硅烷”是指包含了一个或多个碳硅键的有机化合物。
[0110] 如在此所使用,术语“有机氧基硅烷”是指包含了一个或多个碳原子和一个或多个附接到硅原子的氧原子的有机化合物。其非限制性实例为:
[0111]
[0112] 术语“烃”和“烃链”在此用于表示由氢和碳组成的一种有机残基。该烃可以是完全饱和的或它可以包含一个或多个不饱和度。该烃可以包含介于1与50之间的任何数量的碳原子。
[0113] 如在此所使用,术语“烷基”是指直链或分支烃链完全饱和(无双键或三键)的烃基。该烷基在本文中可以具有1到15个碳原子。这些化合物的烷基可以指定为“C1-15烷基”或类似名称。典型的烷基包括(但决不限于)甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、己基等。
[0114] 如在此所使用,术语“低级烷基”是指具有1-8个碳原子的一种烷基。
[0115] 如在此所使用,术语“低级醇”是指具有1-8个碳原子的一种醇。
[0116] 每当它在此使用时,除非另作陈述,否则数值范围,如“1到8”或“1-8”是指在该给定的范围中的每个整数,例如“1到8个碳原子”意思指该烷基可以由1个碳原子、2个碳原子、3个碳原子等,至多并且包括8个碳原子组成。然而,存在一些例外,这些例外是熟练的业内人士所清楚的。具体说来,每当在此给定摩尔比(如纳米结构中的P/N摩尔比或Si/P摩尔比)、直径或大小、pH、时间段、浓度、摩尔渗透压浓度或温度的范围时,该范围还包括在该范围内的所有十进位数。
[0117] 如在此所使用,术语“烷氧基”是指化学式-OR,其中R是C1-8烷基,例如甲氧基、乙氧基、正丙氧基、1-甲基乙氧基(异丙氧基)、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、戊氧基、异戊氧基等。烷氧基可以任选地被取代。
[0118] 如在此所使用,术语“芳氧基”是指RO-,其中R是一个芳基,其中“芳基”是指具有一个完全离域的π-电子系统的碳环(全碳)环或者两个或更多个稠合环(共用两个相邻碳原子的环)。芳基环可以是一个4-20元环。芳基的实例包括(但不限于)苯、及甘菊环。芳基可以是任选被取代的,例如苯氧基、萘氧基、甘菊环基氧基、蒽氧基、萘硫基、苯硫基等。芳氧基可以任选地被取代。
[0119] 如在此所使用,术语“酰基”是指羰基,即,-C(=O)-。
[0120] 如在此所使用,术语“酰氧基”是指经由羰基连接的一个氧原子,即,-C(=O)-O-。
[0121] 如在此所使用,术语“杂环”是指一个稳定的3-18元环,该环由碳原子和从一个到五个杂原子组成,这些杂原子选自下组,该组由氮、氧及硫组成。该杂环可以是单环、双环或三环的。
[0122] 如在此所使用,术语“强”在此上下文中是指比氢氧化物更强并且与水性环境不可相容的碱。
[0123] 如在此所使用,术语“流体动力学直径”是指以与微粒相同的速度扩散的假设的硬球的直径。水合作用和形状被包括在该球的行为中。该术语又称为“斯托克斯直径(Stokes diameter)”或“斯托克斯-爱因斯坦直径(Stokes-Einstein diameter)”。
[0124] 如在此所使用,术语“结合物”是指这样一种分子实体,它是一种荧光标记物、染料、自旋标记、放射性标记物、针对一种生物受体的配体、螯合物、酶抑制剂、酶底物、抗体或抗体相关结构。有关该主题的背景,参看例如,“《生物结合技术》(Bioconiugate Techniques)”,格雷戈T.赫曼森(Greg T.Hermanson)第二版,爱思唯尔(Elsevier)2008,ISBN978-0-12-370501-3。
[0125] 术语“结合柄(handle for coniugation)”和“附接点”都是指可以结合到或被合并到聚合物网络中但留下一个可以连接到一种结合物(如以上所定义)的反应性基团的一种双官能性分子。典型但非排他性的实例将为(EtO)3SiCH2CH2CH2NH2。
[0126] 缩写词TEOS代表四乙氧基硅烷。
[0127] 缩写词DCM代表二氯甲烷。
[0128] 缩写“bisbis”代表1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷,实例1b的产物。
[0129] 发明的详细说明
[0130] 在一个第一方面,本发明涉及并入纳米大小的结构(纳米结构)中的顺磁性锰离子,这些结构是基于一个聚合物框架或构架,该聚合物框架或构架包含或携带有多个膦酸1 2 1 2 1 2
酯基-P=O(OR)(OR),其中R 和R 独立地选自一个负电荷、H、烷基或芳基。当R 或R 中至少一个是H时,所得膦酸被离子化到一个取决于pH的程度。
[0131] 如以上所提到的,术语“纳米结构”涉及总直径为1-100nm的一种结构。
[0132] 在本发明的一些实施例中,R1和R2独立地选自下组,该组由一个负电荷、H及甲基组成。
[0133] 对于分隔这些双膦酸酯基的碳原子(即,介入的碳原子)来说,存在一个或多个连到该聚合物框架的键。因此,该介入的碳原子可以是该聚合物框架的一部分,或附接到该聚3 4 1 2 1 2
合物框架。特别值得关注的是类型(RRC(P=O(OR)(OR))2的结构,其中R 和R 独立地
3 4
选自H或烷基或芳基,并且R 和R 中的至少一个是能够连接到该材料的聚合物框架的一个
3 4
基团。在R 和R 中仅一个是此类基团的情况下,剩余基团选自下组,该组由以下各项组成:
5 5
H、OH、OR(其中R 是低级烷基)及低级烷基。
[0134] 在本发明的一些实施例中,R3和/或R4是选自下组,该组由-(CH2)n-Si(Rx)3组成,x -其中R 独立地为一个低级烷基、OH、O 或O-,其中-表示连到该聚合物框架的一个键,并且其中n是1-5。
[0135] 在本发明的一些实施例中,R3是-(CH2)nCO-(其中羰基形成连到该聚合物框架的4
键)并且R 是H,并且n=1-5。在这些实施例的一些中,n=1。
[0136] 在本发明的一些实施例中,R3和R4独立地为-(CH2)n-SiO3,其中n=1-5,并且硅烷通过形成Si-O-Si键而成为该聚合物框架的一部分,如在本文稍后所详述的。
[0137] 在本发明的一些实施例中,R3和R4都为-(CH2)n-SiO3,其中n=3并且硅烷是按以上方式成为所述聚合物框架的一部分。
[0138] 还可想到的是,使用膦酰胺、氯化物或氟化物代替膦酸酯或酸作为在此描述的化合物的组分或起始物质。这些膦酸酯可以呈它们的游离形式或作为酯或作为酰胺或其任何混合物存在。
[0139] 在本发明的一些实施例中,这些膦酸酯是游离膦酸酯与所述膦酸酯的甲基酯的混合物。
[0140] 所述膦酸酯基所连接的聚合物框架可以由大量众所周知的单体构造,如可以见于有关聚合物化学的任何书籍(例如J.R.弗雷德,“《聚合物科学与技术》”,普林提斯霍尔1995)。一些非限制性实例是聚丙烯酸酯、聚甲基丙烯酸酯、聚酰胺、聚苯乙烯、聚二甲基硅氧烷(硅酮)、聚有机硅烷、聚胺(如聚乙烯亚胺),或碳水化合物;尤其是高度分支或交联的结构。
[0141] 根据本披露的纳米结构是如以上所提及的大致呈球形并且平均大小(流体动力学直径)为1-100nm的结构;在一些实施例中,该平均大小可以是2-50nm,在其他实施例中,该平均大小可以是3-10nm,或3-7nm,或10-50nm,或10-20nm。
[0142] 在本发明的一些实施例(一个非限制性实例是用作静脉内造影剂)中,这些纳米结构的平均流体动力学直径是3-7nm。
[0143] 在本发明的一些实施例(例如该材料被用于淋巴结成像的实施例)中,这些纳米结构的平均流体动力学直径是10-50nm或10-20nm。
[0144] 所提到的流体动力学直径是如根据斯托克斯-爱因斯坦方程,由扩散系数计算的等效硬球的直径。该扩散系数又是由通过动态光散射(DLS)技术获得的依赖于时间的光散射数据计算的。作为一个比较,通过DLS在水溶液中测量出血清白蛋白具有的流体动力学直径为6.5nm,与晶体结构非常一致。取决于是使用数量平均值、体积平均值还是散射强度平均值,这些值可能略有不同。体积平均值一般是最有用的,因为它显示了材料主体所具有的粒度。在本文中提到的平均直径是指体积平均值。
[0145] 有利的是使用呈分支或网络状结构的结构来形成本发明中所希望的球形结构。实现网络结构的一种确定的方式是通过在聚合过程中经由并入一小部分双官能性单体来引入交联。一个众所周知的实例是聚苯乙烯与二乙烯基苯的交联。
[0146] 分支结构可以通过在单体中具有超过一个反应性位置来形成(“高度分支的分子的结构和表面行为(The architecture and surface behavior ofhighly branched molecules)”,派勒夏科S.(Peleshanko,S.),图库科V.V.(Tsukruk,V.V.),《聚合物科学进展》(Prog.Polym.Sci.)33,523(2008))。一个众所周知的实例是通过氮丙啶聚合来形成高度分支的聚乙烯亚胺。聚乙烯亚胺包含伯、仲及叔氨基的混合物,并且它具有一种分支的无规结构,如以下方案中所指示。确切结构仅被解释为典型的并且决不是对本发明的限制。对于本发明至关重要的双膦酸酯可以附接到伯和/或仲氨基。
[0147] 在本发明的一些实施例中,该聚合物框架是聚乙烯亚胺。以下显示了一个典型的聚乙烯亚胺结构片段。虚线的键指示该聚合物网络继续。
[0148]
[0149] 当在一个聚丙烯酸酯框架中并入该双膦酸酯时,可想到的是该双膦酸酯通过一个短连接基附接到酰胺氮。来自此类材料的一个结构片段的一个典型但非限制性实例是以下1 2
结构,其中R 和R 如早先在本文中所定义的,n从1-5,并且虚线的键指示该片段属于一种聚合物。还可想到的是,该双膦酸酯直接地附接到碳骨架。
[0150]
[0151] 也可以预想基于如聚苯乙烯或聚乙烯基吡啶等多环芳香烃的框架。然后,该双膦酸酯附接到该芳香族系统。聚酰胺(如聚乙烯吡咯烷酮)也是可想到的。
[0152] 适合的交联程度是形成本发明的球形纳米结构所需的。优选并入1%-100%的二-、三-或四官能性交联剂。典型交联剂的非限制性清单是N,N′-亚甲基双(丙烯酰胺)、表氯醇、二乙烯基苯、1,3-二乙烯基四甲基二硅氧烷、1,3-亚苯基二异氰酸酯、3,3′-联苯四甲酸二酐、1,4-丁二醇二乙烯基醚、四乙氧基硅烷、低聚硅酸酯(如偏硅酸酯)或倍半硅氧烷、有机硅烷(如双(三乙氧基硅烷基)甲烷、双(三乙氧基硅烷基)乙烷、双(三乙氧基硅烷基)丙烷、双(三乙氧基硅烷基)丁烷、甲基三乙氧基硅烷、乙基三乙氧基硅烷及丙基三乙氧基硅烷)。
[0153] 通过操纵如本领域中已知的工艺参数来调整聚合程度以得到具有希望的大小的产物。该希望的大小不仅可以表示为流体动力学直径,而且还表示为聚合程度(单体的平均数目)。它不如该流体动力学直径有用,但它是使这些结构概念化的另一种方式并且不是作为限制而是作为参考包括在内。举例来说,对于一种密度接近于1g/ml的聚合物,优选的大小在从25-3000000个或25-375000个或80-3000个或80-1000个单体的范围内。
[0154] 可想到的是通过在聚合之前混合这些单体,或通过将一种第二聚合物接枝到一种第一聚合物,以任何化学上可相容的组合来混合所有的所述聚合物框架。
[0155] 一个特别有益的框架是通过三烷氧基有机硅烷R5-Si(OR6)3的缩聚反应形成的,其5 6
中R 是H或一个有机残基,并且R 独立地为一个低级烷基或芳基。此类框架具有了高极性的特性,因此与水可相容,并且可以在制造期间通过工艺参数来控制交联程度。有益的是,使用存在超过一个三烷氧基硅烷基的单体。
[0156] 在本发明的一些实施例中,在该单体中存在两个烷氧基硅烷基团。
[0157] 在本发明的一些实施例中,所述烷氧基硅烷由1-10个碳原子或3-9碳原子分隔。
[0158] 在本发明的一些实施例中,所述烷氧基硅烷是由7个碳原子分隔。
[0159] 在本发明的一些实施例中,所述烷氧基硅烷是由三个或五个碳原子分隔。
[0160] 在本发明的一些实施例中,这两个膦酸酯基是基团R5的一部分。
[0161] 在本发明的一些实施例中,所述两个硅烷是由7个碳原子分隔并且这两个膦酸酯5
基是基团R 的一部分。
[0162] 在本发明的一些实施例中,所述硅烷具有以下一般结构:
[0163] {(X7aO)(X7bO)PO}2-(C){(CH2)nSi(OX7c)(OX7d)(OX7e)}{(CH2)oSi(OX7c)(OX7d)(OX7e)}[0164] 其中
[0165] X7a、X7b、X7c、X7d、X7e独立地选自H、C1-8烷基及苯甲基;并且
[0166] n和o独立地选自1-5。
[0167] 在一些实施例中,将一个第二硅烷(如二硅烷)接枝到由第一个二硅烷形成的聚合物框架上。
[0168] 三烷氧基硅烷对于聚合的反应性随R6基团的身份而变化。已经发现这是在制造期间控制分子大小的一个关键因素并且发现甲基和乙基,特别是后者,适合于得到本发明的结构,不过可想到的是使用任何其他低级烷基、芳基、硅烷基酰胺、酰基、氟硅烷或氯硅烷。
[0169] 在本发明的一些实施例中,R6是乙基。
[0170] 三烷氧基硅烷可以经由Si-O-Si键连接存在许多不同的方式。二聚物结构元件以及线性、分支及环状是已知的(R.J.费森顿(R.J.Fessenden),J.S.费森顿(J.S.Fessenden),“方机硅生物研究的趋势(Trends in Organosilicon Biological Research)”,《有机金属化学进展》(Advances in Organometallic Chemistry)第18卷第275页)。从文献中也众所周知硅-氧笼形结构(汉森R.J.M.(Hanssen,R.J.M.)等人,《欧洲无机化学杂志》(Eur.J.Inorg.Chem)675(2004))并且还可以在不同程度上存在残留烷氧基或游离硅烷醇基团。还可想到的是,在某种程度上对于本发明至关重要的顺磁性金属离子是由Si-O-基团配位的。可以存在于这些结构中的一些结构元件(虽然决不应解释为限制性的)显示于方案1中。
[0171] 方案1:可以用于本发明中的一些Si-O-Si结构的图示;R是任何有机残基[0172]
[0173]
[0174] 众所周知,作为本发明的核心的孪位双膦酸酯结构R3R4C(P=O(OR1)(OR2))2较强地结合如等多价阳离子。本发明的这些材料的一个益处是在生理浓度下,它们显示的对锰的偏好优于钙和镁(这在以下实例15中进一步说明)。
[0175] 这些膦酸酯基可以完全地以它们的酯形式存在,完全地或部分地水解成它们的酸形式并且随后根据周围介质的pH值而离子化达到从部分到完全的某种程度,或其任何混合物。最佳的是在中性或碱性pH下将锰离子装载到该聚合物中。从pH12到6或pH11到8或优选地10.5到9.5的任何值都是有用的。这指示它至少部分或者有时或甚至完全地为水解的膦酸酯的阴离子形式,该形式在金属离子的结合中起到重要作用。不仅膦酸酯或酸而且膦酰胺都可以被涵盖作为该材料的一部分或用作起始物质。
[0176] 已经发现,当将双膦酸酯结构并入一个聚合物框架(优选地为亲水性的)中并且使其结合锰(II)时,实现了弛豫率的大幅增加。单体双膦酸酯唑来膦酸(zoledronic acid)的锰螯合物具有的弛豫率为2.3/mM Mn/s(如实例17中所显示)并且锰加上单体双膦酸酯亚甲基二膦酸具有的弛豫率为1/mM Mn/s。本发明的装载有锰的聚合物材料的弛豫率在从24-48/mMMn/s的范围内。
[0177] 具体说来,当如实例9中所描述,用孪位双膦酸酯的活化酯对聚乙烯亚胺进行衍生化,并且随后,装载锰(II)离子时,获得了弛豫率为24/mM Mn/s的材料。这实质上高于先前提到的唑来膦酸络合物的弛豫率,因此显示了在聚合物框架中并入双膦酸酯的益处。在这些材料中磷与氮的摩尔比可以在从0.1到3的范围内并且它优选地介于0.2与0.8之间。
[0178] 为了进一步显示该弛豫率源自于孪位双膦酸酯与一种聚合物的组合,还对相应的“裸”聚合物进行了测试。无任何添加剂的聚乙烯亚胺非常弱地结合锰,并且结合到该聚合物的仅有的一点的弛豫率极低(0.8/mM/s)。由(EtO)2P=O-CH2-CH2-Si(OEt)3形成的聚有机硅烷在装载锰之后也得到相当不令人信服的弛豫率3.0/mM Mn/s。总的说来,这证明了本发明的材料固有的意外地高的弛豫率来自于带有孪位双膦酸酯并且并入了如锰等顺磁性金属的聚合物的所有特征的组合。
[0179] 在实例22中描述了结合到聚乙烯亚胺聚合物框架的1,3-双膦酸酯(它在本发明的范围外)如何具有比本发明的孪位双膦酸酯(>=24/mM/s)更低的弛豫率(18.5/mM/s)。它还在曾使用的离子交换测试中具有弱稳定性。因此,合理的情形是,预期1,2-双膦酸酯以及任何1,n-双膦酸酯(其中n>2)不如本发明的孪位双膦酸酯理想。
[0180] 推测起来(但决不是对本发明的限制),顺磁性金属离子与膦酸酯基螯合,并且10-15的磷与锰比率看来是弛豫率与稳定性之间的最佳折衷,而介于7与20之间的任何值都是可想到的。在实例11的表1中,详细描述了改变磷与锰比率的影响。
[0181] 优选的硅与锰比率则将在从5-20范围内并且磷与硅比率应为约1,如介于0.7与1.3之间。
[0182] 可任选地,可以将亲水性、生物惰性材料接枝到本发明的纳米结构的外部部分上。所述外部部分是该纳米结构的与衍生化试剂易于发生反应的那些部分。这对于该材料的生物相容性可以为有益的,并且可以考虑许多亲水性材料,如碳水化合物或亲水性人造聚合物。特别值得关注的是聚醚化合物,并且尤其是聚乙二醇(PEG)衍生物。尽管不是限制,但是优选甲氧基封端的PEG衍生物(m-PEG)。它们可以在金属螯合之后按任何化学上可接受的方式接枝到聚合物框架,如氧、氮或碳原子,如残留膦酸或硅烷醇基团,或作为替代方案,直接地接枝到无金属的聚合物。线性PEG衍生物的适合链长度是从4到50个-CH2CH2O-单元。最理想的是包含从5到20个单元并且平均起来约10或11个单元的混合物。最便利地偶合到这些纳米结构的试剂是氨基封端的并且可以偶合到残留的膦酸酯基。分支的PEG衍生物也是值得关注的并且尤其是如实例8中的那些的结构,这些结构在保护表面方面比分子量类似的线性PEG衍生物更致密并且更好。
[0183] 在每个纳米结构实体上生物惰性聚合物基团的数量可以在从10到1000或从10到100或从10到50的范围内。
[0184] 在一些实施例中,本发明的聚合的、装载锰的双膦酸酯纳米结构包含了通过酰胺键偶合到一部分膦酸酯基的、链长度为5到20个单体残基的线性m-PEG基团。
[0185] 在一些实施例中,本发明的聚合的装载锰的双膦酸酯纳米结构包含了通过酰胺键偶合到一部分膦酸酯基的、具有结构X1(实例8h)的分支PEG基团。
[0186] 可想到的是,将本发明纳米结构的结合柄引入不同活性分子实体(如生物标记物或报告子实体)中。典型实例的非限制性清单将为肽、类肽、蛋白质、抗体、DNA片段、RNA片段、PNA、片段、荧光团、螯合物或小分子药理学配体。
[0187] 本发明的第二个主要方面是一种制造所述纳米结构的方法。在其最广泛意义上,它首先涉及包含了多个双膦酸酯基的球形、纳米大小的聚合物实体的形成,随后是使第一步骤的产物与锰(II)离子接触的步骤。可任选地,这两个步骤尽管在化学上相异,但可以在同一反应容器中同时地进行。该方法的主要特征略述于图1中。在该方法的一种或多种情形中,并入了通过超滤进行的大小选择或纯化步骤。
[0188] 包含了多个双膦酸酯的纳米大小的聚合物球是经由接枝(002)到现有的聚合物球(通过聚合步骤001获得)或通过包含双膦酸酯的单体混合物的聚合(003)来获得。取决于希望何种聚合物框架,可以涵盖许多不同的聚合引发剂。对于如苯乙烯和丙烯酸酯等不饱和单体来说,不同的自由基引发剂,如过氧化苯甲酰或偶氮双异丁腈,是优选的。对于本发明的一个优选的实施例的基于三烷氧基硅烷的单体来说,有可能使用自发水解和缩合来实现聚合或使用酸或碱催化。使用将pH稳定性盐,如碳酸氢盐(特别是碳酸氢钠)或羧酸盐(如乙酸钠、甲酸钠或四甲基甲酸铵)添加到反应混合物中来优化大小在从3-10nm范围内的产物的产率,有时被证明是有益的。
[0189] 一种溶剂对于步骤003经常是所希望的,并且尽管本领域的普通技术人员可以预想许多不同的溶剂,但希望的是避免有毒溶剂,因此,优选水以及如丙醇、丁醇、乙二醇或1,3-丙二醇等低级醇。通过使用溶剂混合物来优化产物的产率和质量经常是所希望的。
[0190] 在该方法的一些实施例中,在步骤003中使用了5%-25%的水在低级醇中的混合物。
[0191] 在该方法的一些实施例中,在步骤003中使用了5%-25%的水在乙醇、1-或2-丙醇、乙二醇或者1,2-或1,3-丙二醇中的混合物。
[0192] 已经发现,对于步骤003使用高于室温的温度,如40℃-130℃,或80℃-120℃,或100℃-120℃的温度是有益的。当使用低级醇时,有必要用封闭的耐压容器工作以达到希望的反应温度。
[0193] 步骤003的持续时间取决于聚合物框架和引发模式,并且可以在从数秒到数天或数周的范围内。对于本发明的一些优选实施例中的三烷氧基硅烷来说,已经证明有益的是,在步骤003中使用时间6-200小时,或6-48小时,或12-36小时,或约24小时。
[0194] 在本发明的一些实施例中,步骤003的条件是105℃-115℃的温度和20-30小时的持续时间。
[0195] 在本发明的一些实施例中,步骤003的条件是105℃-115℃的温度和30-60小时的持续时间。
[0196] 在本发明的一些实施例中,步骤003的条件是首先90℃-100℃的温度持续40-50小时,并且然后105℃-115℃再持续20-30小时。
[0197] 步骤003中单体的浓度取决于希望何种聚合物框架并且可以在从一个摩尔浓度到无溶剂条件的范围内。然而,对于本发明的一个优选实施例中的三烷氧基硅烷来说,已经证明有益的是以10-500mM或20-100mM并且特别是40-80mM的单体浓度工作。
[0198] 在本发明的一些实施例中,步骤003的条件是首先90℃-100℃的温度持续20-50小时,随后105℃-125℃持续20-30小时,并且单体浓度为40-60mM。
[0199] 在涉及双膦酸酯试剂接枝到聚合物框架的步骤002中,这些条件略有不同。尤其是温度和浓度要求更宽松。已经发现,在与液体水可相容的温度(如室温)下,以聚乙烯亚胺在任选地掺合有共溶剂的水中的溶液起始,并且在一定温度(如室温)下,在偶合剂(如N-(二甲基氨基丙基)-N′-乙基碳化二亚胺)存在下能够形成反应性酯中间物的化合物(如N-羟基磺基琥珀酰亚胺钠盐)的存在下,使其与能够与所述聚乙烯亚胺反应的双膦酸酯(如3,3-双(二甲氧基磷酰基)丙酸)接触一段1-48小时(如20-24小时)的时间,产生了双膦酸酯接枝到聚合物框架的一种材料。
[0200] 大小选择步骤(004)是针对纳米结构前驱物(X)的溶液进行以移除不希望的较大或较小实体。反应混合物中的起始物质和溶剂残留物也在这一阶段被移除。超滤是一种优选的纯化方法,尤其是当以通常标记的层流过滤或透滤形式使用时。优选的是,通过使该溶液穿过具有相当大的孔的过滤器来移除不希望的较大纳米结构和/或聚集体,步骤004a。这些过滤器的优选标称截止值是300kDa,或100kDa,或50kDa。在步骤004b中,希望的材料被收集在具有更小孔径的过滤器上。对于步骤004b来说,优选的孔径具有的标称截止值是
50kDa、30kDa或10kDa。
[0201] 如果起始物质具有较窄的大小分布,那么可能不需要大小选择步骤(004)。
[0202] 在本发明的一些实施例中,使由方法步骤002或003获得的溶液首先穿过100kDa过滤器(步骤004a)并且随后收集于30kDa过滤器上(步骤004b)。
[0203] 在本发明的一些实施例中,使由方法步骤002或003获得的溶液首先穿过300kDa过滤器(步骤004a)并且随后收集于100kDa过滤器上(步骤004b)。
[0204] 在本发明的一些实施例中,使由方法步骤002或003获得的溶液首先穿过50kDa过滤器(步骤004a)并且随后收集于30kDa过滤器上(步骤004b)。
[0205] 在本发明的一些实施例中,使由方法步骤002或003获得的溶液首先穿过100kDa过滤器(步骤004a)并且随后收集于10kDa过滤器上(步骤004b)。有益的是在步骤004b之后,用若干份水洗涤该材料以进一步移除来自步骤001、002或003的单体或溶剂残留物。
[0206] 也可以使用其他超滤方法,如自旋过滤器或透析,不过它们是不易缩放的。
[0207] 具有希望的大小范围的微粒还可以通过大小排阻色谱法(又称凝胶过滤)进行选择。
[0208] 步骤005,其中对所述聚合物装载锰(II),涉及使所述聚合物的溶液得到锰(II)离子。所述离子可以呈固体形式或以溶液形式添加到反应混合物中。锰(II)的可溶盐,如氟化物、氯化物、溴化物、乙酸盐、硝酸盐或硫酸盐,是优选的。还可想到的是,使用不太易溶的锰来源,如MnO。取决于聚合物浓度,有用的锰离子浓度是从0.1mM-5M,如0.1-600mM或0.1-10mM。如先前所论述的,磷与锰的比率是很重要的。最佳的是在中性或碱性pH下将锰离子装载到该聚合物中。从pH12到6或pH11到8或优选地10.5-9.5的任何值都是有用的。添加锰应当在使pH在所希望的值稳定一段时间之后发生。已经发现从10分钟到24小时(如从半小时到两小时)的时间是足够的。在向这些纳米结构装载锰之后,将pH调整到中性(介于8与6之间或介于7.7与7之间)。用于进行装载的温度可以是从所论及的溶剂或溶剂混合物的凝固点到沸点的任何温度,并且优选从室温到60度。
[0209] 在任选的步骤006中,将具有希望的大小范围的微粒与不希望的较大或较小物质分离。这经常是不必要的,因为当添加锰时,这些纳米结构的大小仅微小地改变。步骤006可以具有若干子步骤006a、006b等等,或对于无特定次序的子步骤,006x。
[0210] 超滤是大小选择步骤006x的一种优选方法,尤其是当以通常标记的层流过滤或透滤形式使用时。优选的是,通过使该溶液穿过具有相当大的孔的过滤器来移除不希望的较大纳米结构和/或聚集体,步骤006a。这些过滤器的优选标称截止值是300kDa,或100kDa,或50kDa。在步骤006b中,希望的材料被收集在具有更小孔径的过滤器上。对于步骤006b来说,优选的孔径具有的标称截止值是50kDa、30kDa或10kDa。
[0211] 在本发明的一些实施例中,使由方法步骤005获得的溶液首先穿过100kDa过滤器(步骤006a)并且随后收集于30kDa过滤器上(步骤006b)。
[0212] 在本发明的一些实施例中,使由方法步骤005获得的溶液首先穿过300kDa过滤器(步骤006a)并且随后收集于100kDa过滤器上(步骤006b)。
[0213] 在本发明的一些实施例中,使由方法步骤005获得的溶液首先穿过50kDa过滤器(步骤006a)并且随后收集于30kDa过滤器上(步骤006b)。
[0214] 有益的是在步骤006b之后,用若干份水洗涤该材料以进一步移除来自步骤005的残留金属离子、单体或溶剂残留物。
[0215] 也可以在步骤006x中使用其他超滤方法,如自旋过滤器或透析。
[0216] 具有希望的大小范围的微粒还可以在步骤006x中通过大小排阻色谱法(又称凝胶过滤)进行选择。
[0217] 任选地,所述富含锰的聚合物膦酸酯产物可以在步骤007中进行纯化。步骤007可以具有若干子步骤007a、007b等等,或对于无特定次序的子步骤,007x。
[0218] 纯化步骤007x的一种优选的方法是用少量的阳离子交换剂,如磺酸化聚苯乙烯,以移除过量的锰或松散地结合的锰。可商购的离子交换树脂经常具有1-2mmol/g树脂的容量,并且典型地来自步骤b)的包含1摩尔锰的粗物质将用离子交换树脂的钠或形式1-100g进行处理。
[0219] 在本发明的一些实施例中,步骤007x涉及又另一透滤,将该材料收集于一个30kDa过滤器上。
[0220] 在本发明的一些实施例中,步骤007x涉及用聚苯乙烯磺酸酯型离子交换树脂的钠形式处理来自步骤006的产物。
[0221] 还可以添加随后的纯化步骤007x以移除亲脂性杂质,如痕量的内毒素(死细菌的残留物)。
[0222] 在该方法的一些实施例中,用活性炭对步骤006的产物进行处理。
[0223] 在该方法的一些实施例中,使步骤006的产物通过聚乙烯,或聚丙烯,或PVDF过滤器。
[0224] 在该方法的一些实施例中,用固定的多粘菌素B对步骤006的产物进行处理。
[0225] 可任选地,如图1中所指示的,可以插入步骤009,其中将生物惰性表面改性剂接枝到该纳米结构的可接近部分。
[0226] 可任选地,可以如图1中所指示的,通过在该方法中的许多地方并入交联剂来实现交联(步骤010)。通过在步骤001中混入交联剂来进行交联是一种标准程序。该单体还可能固有地倾向于如在本发明的一个优选实施例中的三烷氧基硅烷一样进行交联,由此使步骤002中形成的材料为已交联的。
[0227] 在本发明的第三个主要方面,该材料被用作诊断程序并且特别是磁共振成像(MRI)的造影剂。本发明的材料具有低毒性和高弛豫率的特性,这使得其适用作生物体,特别是人体MRI检查中的造影剂。
[0228] 对于流体动力学直径大于3nm或大于4nm或大于5nm的那些本发明的实施例来说,高弛豫率与适合大小的特性组合使包含本发明的纳米结构的组合物适于通过MRI进行肿瘤,特别是实心肿瘤的成像。还可想到的是,使用所述本发明组合物作为供一般解剖成像的造影剂,例如,血管造影术,特别是心脏的精细冠状动脉的血管造影术,或颈动脉、或肾动脉或主动脉的血管造影术,能够通过本发明的高弛豫率和对比度实现。脑、内脏器官或四肢中结构的成像也是值得关注的。在内脏器官中,肝、胰脏及肠是特别值得关注的。结肠成像可以通过静脉内给药或以灌肠剂形式给药来实现。对于胃、肝及上消化道成像,可想到的是口服给与该造影剂。
[0229] 由于本发明材料的毒性低并且弛豫率高,故它们适用作细胞标记剂。向患者体内用于诊断或治疗应用的细胞(如干细胞或巨噬细胞)离体装载本发明的纳米结构,并且随后对所述患者给药,并且可以用MRI观测它们在体内的分布。
[0230] 在本发明的一些实施例中,这些纳米结构的溶液经常(但不限于)是皮内或皮下注射到组织中,并且随后被用于通过MRI来观测患者的淋巴结构。特别值得关注的是淋巴结成像,淋巴结是转移性肿瘤的常见位置。特别适用于这一目的的是大小为约10nm(如7-50nm,或7-25nm,或7-15nm)的纳米结构。
[0231] 在本发明的一些实施例中,将平均流体动力学直径在8-15nm范围内的本发明纳米结构的配制品皮下给与患者,并且通过MRI程序观测所述患者的淋巴结。
[0232] 由于本发明的纳米结构具有高弛豫率和低毒性的特性,故可想到的是使用该材料进行细胞标记。在这种情况下,在哺乳动物身体(例如人体)外部向细胞(例如干细胞或巨噬细胞)装载纳米结构,并且然后插入所述哺乳动物中并通过MRI扫描生成图像。然后,有可能在细胞被运输通过生物体时对其进行跟踪
[0233] 在体内使用本发明的纳米微粒需要根据本领域的普通技术人员众所周知的最佳实践以药理学上可接受的方式对其进行配制。优选的给药模式是肠胃外,静脉内途径是特别有益的,而动脉内在某些情形下可能具有益处。肠胃外给药经常需要液体配制品。水是使本发明的纳米结构形成溶液的一种优选的溶剂,但可以添加0.1%-10%的一种或多种共溶剂或添加剂来改善溶液的稳定性。可接受的共溶剂是醇类,如乙醇或甘油;生物可相容的聚合物,如乙二醇或聚乙烯醇、二甲亚砜或N-甲基吡咯烷酮。添加如甘露糖醇、山梨糖醇、乳糖、葡萄糖或者其他糖或糖醇等一种或多种渗透压调节剂也可以是有益的。希望的是,该配制品与体液等渗。优选地,供静脉内使用的溶液具有从270-2000mOsm,或280-1000mOsm,或280-500mOsm,或特别是从280-300mOsm的摩尔渗透压浓度。所述添加剂中有许多还可以履行低温防护剂的功能,从而增大在冷冻干燥之后的复水效率。添加电解质以降低注射的溶液的生理效应也会是有益的。优选的电解质将是无毒钠、钙或和/或镁盐的组合。可注射溶液的pH的调节是可优选的,并且可以涵盖适于注射的任何缓冲剂,但优选的是Tris-HCl。还可以涵盖金属离子清除剂作为添加剂。一些典型实例将为EDTA(乙二胺四乙酸)、DTPA(二乙烯三胺五乙酸)及DOTA(1,4,7,10-四氮杂-环十二烷-N,N′,N″,N″′-四乙酸)或福地吡(fodipir)。还可以涵盖被添加到贮藏瓶中的固相离子清除树脂的使用。
[0234] 纳米结构的浓度可以按许多不同的方式描述,但两种最相关的是以g/l溶液给出的质量浓度和以mmol/l溶液给出的锰浓度。适于作为造影剂给药的配制品中锰的浓度范围在从1-500mM,或10-300mM,或10-200mM,或50-200mM,或100-200mM的范围内。当以质量浓度给出并且假定磷锰比率为约6时,适于造影剂配制品的质量浓度在0.5-300g/l,或5-200g/l,或5-250g/l,或5-100g/l,或100-250g/l的范围内。这些质量浓度大致匹配以mM锰给出的浓度,但该对应将取决于聚合物框架、交联程度及生物惰性涂层的存在而变化。
[0235] 本发明的一个实施例构成了一种供静脉内给药的药学上可接受的配制品,其中锰浓度为100-300mM并且磷与锰比率为7-20。
[0236] 本发明的一些实施例涉及一种供静脉内给药的药学上可接受的配制品,其中锰浓度为10-300mM并且磷与锰比率为7-20。
[0237] 本发明的一个替代性实施例是一种包含了聚合物框架的纳米结构,该聚合物框架包含至少五个孪位双膦酸酯基,其中这些孪位双膦酸酯基彼此独立地呈以下形式并入[0238] -R3R4C(P=O(OR1)(OR2))2
[0239] (它等于-R4R3C(P=O(OR1)(OR2))2)
[0240] 其中R1和R2独立地选自下组,该组由一个负电荷、H、烷基及芳基组成,并且其中R34 3 4
和R 中至少一个是连接到该聚合物框架的一个基团,其条件是,当R 和R 中仅一个是此类
3 4
连接的基团时,R 和R 中的另一个是一个能够连接到该聚合物框架的基团,或此类基团的
5 5 5
残基,或选自由H、OH、OR 及R 组成的组,其中R 是一个低级烷基;即,如以上所论述但不包含任何锰离子的一种纳米结构。此类纳米结构适用作根据先前所论述的实施例来制造纳米结构的中间物。此类结构可以结合除锰以外的阳离子并且在该能力方面是有用的。
[0241] 附图简要说明
[0242] 在以下实例中,参考了附图,其中:
[0243] 图1是用于获得根据本发明的纳米微粒的一种方法的示意图,并且
[0244] 图2图示了在具有肿瘤的小鼠体内注射之后5小时造影增强。
[0245] 图3a、3b及3c是与实例23中所描述的电导滴定实验的曲线。
[0246] 图4a和4b图示了来自免疫前(图4A)和免疫柱(图4B)的部分1-10中SI055的回收率。
[0247] 实例
[0248] 实例1:1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷的合成[0249] 1a:1,1-二烯丙基-1,1-双(二甲基膦酸基)甲烷
[0250]
[0251] 在真空下,在130℃下对配备有一个机械搅拌器的2L反应器进行干燥,并且然后使其在正氮气压力下冷却。在惰性气体下,通过管转移在该反应器装入无水THF(11)(阿尔德里奇(Aldrich)无水的,99.9%,含250ppm BHT)。添加四甲基亚甲基二(膦酸酯)(97.4g,420mmol)和烯丙基溴(183ml,255g,2.11mol)(没有放出热,没有检测到酸性气体)。夹套温度设定到0℃并且在6℃内温下,添加(分6份)叔丁醇钾(总共140.3g,1.25mol)。在每次添加之后,温度升到约12℃并在下一次添加之前使其回到6℃(或更低)。进行烯丙基溴(9.4ml,0.11mol)和叔丁醇盐(7.3g,65mmol)的最后一次添加以转化最后的数百分比的单烯丙基化产物(没有检测到放热)。夹套中的温度设定到15℃,保持约2小时,并且然后在
0℃的夹套温度下,将浓稠的白色反应混合物搅拌过夜。用50ml的饱和NH4Cl(水溶液)淬灭反应(温度从2℃升高到5℃),并且然后添加甲苯(11),并蒸馏出11以馏出THF和过量的烯丙基溴。在从70-100度的夹套温度下,经2小时从63℃-73℃进行收集。向该残留物中添加硅胶(100g)和活性炭(15g)。搅拌反应混合物数分钟,并且用一个熔料滤棒虹吸抽出液体(或通过一个标准沃特曼玻璃纤维过滤器(Whatman glass fiber filter)过滤)。
残留的滤饼用甲苯(3×100ml)洗涤。使合并的滤液通过一个沃特曼玻璃纤维过滤器过滤以移除最后的痕量活性炭(由浅绿色指示)并且在旋转蒸发器(浴温40℃)上浓缩,得到呈淡黄色液体状的标题化合物。粗产物再引入干净的反应器中,并溶解于甲苯(50ml)与庚烷(380ml)的混合物中。可以在12℃-9℃内温下,通过接晶种来诱导结晶。经2小时的时间将夹套温度降到-25℃,并在该温度下再保持两小时以完成结晶。通过一个烧结的滤棒移除母液并用两份预先冷却的庚烷(40ml)对晶体浆液进行洗涤。晶体溶解于EtOAc中并且该溶液通过底洗出。在减压下移除溶剂,得到70.0g(224mmol,53%)呈固体状的产物,其中mp略高于室温。
[0252] 1H-NMR(CDCl3);6.35(m,2H),5.20(m,4H),3.68(d,12H),3.00(abx,4H)。
[0253] 在一个短路径、薄膜蒸馏设备中对该产物进行蒸馏也是可能的。
[0254] 1b:1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷
[0255]
[0256] 在具有温度控制夹套、内部温度计及一个机械搅拌器的21反应器中装入甲苯(330ml,阿尔德里奇无水,确保加盖密封)、四甲基-1,1-双烯丙基-亚甲基双(膦酸酯)(70g,224mmol)及三乙氧基硅烷(123ml,655mmol)。通过三个真空-氮气循环使该反应混合物脱氧,小心保持短时真空循环以避免甲苯和硅烷损失。氧气移除是很关键的。夹套温度设定到30℃。以0.5ml分数份注入卡斯特催化剂(Karstedt′s catalyst)(4.5ml,2%于甲苯中,0.053mmol),其间间隔30分钟(总计4.5小时)。在催化剂的添加完成之后,温度控制夹套设定到30℃并使该混合物搅拌过夜。次日早晨,该夹套温度设定到40度,添加蒸馏头并在从62到13毫巴的压力下,蒸馏出甲苯和过量的硅烷。持续时间为2小时。添加乙醇(800ml)和活性炭(15g)并且将该浆液搅拌10分钟,并通过底阀取出该混合物,并通过沃特曼玻璃纤维过滤器对其进行过滤。在一个旋转蒸发器上,在减压下移除溶剂直到恒重(浴温45℃),得到138g(215mmol,96%)呈淡褐色油状的产物。
[0257] 1H-NMR(CDCl3);3.95(q,12H),3.77(d,12H),2.37(m,4H),2.12(m,4H),1.32(t,18H),0.88(t,4H)。
[0258] 在一个短路径、薄膜蒸馏设备中,在170℃和0.3毫巴下对该产物进行蒸馏也是可能的。
[0259] 实例2:1,1-双(2-三甲氧基硅烷基乙基)--1,1-双(二甲基膦酸基)甲烷的合成
[0260] 2a:1,1-双(2-叔丁氧基乙基)-1,1-双(二甲基膦酸基)甲烷
[0261]
[0262] 在氮气下,经30分钟向1,1-双(二甲基)膦酸基)甲烷(50g,215mmol)于无水THF(500ml)中的冷却的溶液中分三份添加氢化钠(18.9g,60%于矿物油中,474mmol)。该混合物搅拌3小时,并且然后以5ml分数份添加1-溴-2-叔丁氧基乙烷(90.5g,
500mmol)。三小时之后移除冰浴,并且在室温下持续搅拌过夜。该反应混合物再次用冰浴冷却,并通过添加50ml的饱和氯化铵水溶液淬灭。在真空中移除挥发物并且将有机物溶解于二氯甲烷(300ml)中。将二氧化硅(100g)拌入并过滤浆液,并且用3×200ml的二氯甲烷洗涤滤饼。在移除溶剂之后,获得产物。
[0263] 2b:1,1-双(2-羟乙基)-1,1-双(二甲基膦酸基)甲烷
[0264]
[0265] 将三氟乙酸(TFA,50ml)和二氯甲烷(DCM,50ml)添加到2g的1,1-双(2-叔丁氧基乙基)-1,1-双(二甲基膦酸基)甲烷(实例2a)中。该混合物在室温下搅拌1小时并且在减压下移除挥发物,得到产物。
[0266] 2c:1,1-双(2-甲磺酰基氧基乙基)-1,1-双(二甲基膦酸基)甲烷的合成[0267]
[0268] 将实例2b的产物(1,1-双(2-羟乙基)-1,1-双(二甲基膦酸基)甲烷)(10mmol)溶解于冰冷却的二氯甲烷(10ml)中。添加吡啶(40mmol,3.24ml)和甲烷磺酰氯(3.44g,30mmol),后者同时保持内温<5℃。三小时之后,添加乙醚(30ml)和水(7ml)。相分离之后,用2M HCl、5%的碳酸氢钠水溶液及水洗涤有机层。经硫酸镁干燥之后是蒸发挥发物,得到该产物。
[0269] 2d:1,1-二乙烯基-1,1-双(二甲基膦酸基)甲烷
[0270]
[0271] 在氮气下,向1,1-双(2-甲磺酰基氧基乙基)-1,1-双(二甲基膦酸基)甲烷(50g,104mmol)于无水THF(500ml)中的冰冷却的溶液中添加二乙基异丙基胺(300mmol)。30分钟之后移除冰浴,并且在室温下持续搅拌过夜。在真空中移除挥发物并且有机物用乙醚(300ml)溶解。将二氧化硅(100g)和活性炭(15)拌入并过滤浆液,并且用3×200ml的乙醚洗涤滤饼。在移除溶剂之后,获得产物。
[0272] 2e:1,1-双(2-三甲氧基硅烷基乙基)--1,1-双(二甲基膦酸基)甲烷
[0273]
[0274] 向1,1-二乙烯基-1,1-双(二甲基膦酸基)甲烷(实例2d)(2.0mmol)于无水甲苯(20ml)中的溶液中添加卡斯特催化剂于甲苯(2%Pt)中的80μl溶液和三乙氧基硅烷(6.0mmol,4.1ml)。使该溶液在室温下放置2天。在真空中移除挥发物并且再通过两个甲苯添加-真空循环来移除残留的硅烷。将残留物溶解于甲苯中,用少量的活性炭处理,使其通过5μm的PTFE过滤器,并通过在二氧化硅柱上用二氯甲烷+0-10%甲醇作为洗脱剂进行的快速色谱法来纯化,得到希望的产物。
[0275] 实例3:1,1-双(三甲氧基硅烷基甲基)-1,1-双(二甲基膦酸基)甲烷的合成[0276]
[0277] 在氮气下,经30分钟向1,1-双(二甲基)膦酸基)甲烷(50g,215mmol)于无水THF(500ml)中的冰冷却的溶液中分三份添加氢化钠(18.9g,60%于矿物油中,474mmol)。混合物搅拌3小时,并且然后分数份添加氯甲基三乙氧基硅烷(500mmol),维持内温低于
5℃。三小时之后移除冰浴,并且在室温下持续搅拌过夜。该反应混合物再次用冰浴冷却,并通过添加50ml的饱和氯化铵水溶液淬灭。在真空中移除挥发物并且将有机物溶解于二氯甲烷(300ml)中。将二氧化硅(100g)拌入并过滤浆液,并且用3×200ml的二氯甲烷洗涤滤饼。在移除溶剂之后,获得产物。
[0278] 实例4:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二乙基膦酸基)甲烷的合成。
[0279] 4a:1,1-二烯丙基-1,1-双(二乙基膦酸基)甲烷
[0280]
[0281] 在氮气下,向1,1-双(二乙基)膦酸基)甲烷(4.97ml,20mmol)于无水THF(50ml)中的冰冷却的溶液中添加烯丙基溴(8.7ml,100mmol)。经两小时的时间添加叔丁醇钾(6.8g,60mmol)。该溶液在室温下搅拌过夜,并且然后通过添加50ml的饱和氯化氨水溶液淬灭。在真空中移除挥发物并且有机物用二氯甲烷溶解。在二氧化硅上以二氯甲烷+甲醇(0-10%梯度)进行快速色谱法,得到基本上纯的产物(NMR)。
[0282] 4b:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二乙基膦酸基)甲烷
[0283]
[0284] 向1,1-二烯丙基-1,1-双(二乙基膦酸基)甲烷(实例2a)(4.4g,14.2mmol)于无水甲苯(25ml)中的溶液中添加卡斯特催化剂于甲苯(2%Pt)中的212μl溶液和三乙氧基硅烷(42.7mmol,7.8ml)。使该溶液在室温下放置过夜。在真空中移除挥发物并且再通过两个甲苯添加-真空循环来移除残留的硅烷。将残留物溶解于甲苯中,用少量的活性炭处理,使其通过5μm的PTFE过滤器,并通过在二氧化硅柱上用二氯甲烷+0-10%甲醇作为洗脱剂进行的快速色谱法来纯化。产量:6.9g物质,具有90%的NMR纯度。
[0285] 实例5:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二异丙基膦酸基)甲烷的合成
[0286] 5a:1,1-二烯丙基-1,1-双(二异丙基膦酸基)甲烷
[0287]
[0288] 在氮气下,向1,1-双(二异丙基)膦酸基)甲烷(6.44ml,20mmol)于无水THF(50ml)中的冰冷却的溶液中添加烯丙基溴(8.7ml,100mmol)。经两小时的时间添加叔丁醇钾(6.8g,60mmol)。该溶液在室温下搅拌过夜,并且然后通过添加50ml的饱和氯化氨水溶液淬灭。在真空中移除挥发物并且有机物用二氯甲烷溶解。在二氧化硅上以二氯甲烷+甲醇(0-10%梯度)进行快速色谱法,得到6.5g基本上纯的产物(NMR)。
[0289] 5b:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二异丙基膦酸基)甲烷[0290]
[0291] 向1,1-二烯丙基-1,1-双(二异丙基膦酸基)甲烷(实例2a)(0.736g,2.0mmol)于无水甲苯(20ml)中的溶液中添加卡斯特催化剂于甲苯(2%Pt)中的80μl溶液和三乙氧基硅烷(6.0mmol,4.1ml)。使该溶液在室温下放置2天。在真空中移除挥发物并且再通过两个甲苯添加-真空循环来移除残留的硅烷。将残留物溶解于甲苯中,用少量的活性炭处理,使其通过5μm的PTFE过滤器,并通过在二氧化硅柱上用二氯甲烷+0-10%甲醇作为洗脱剂进行的快速色谱法来纯化。产量:1.0g物质,具有90%的NMR纯度。
[0292] 实例6:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二-(3-甲氧基苯基)膦酸基)甲烷的合成
[0293] 6a:1,1-双(二-(3-甲氧基苯基)膦酸基)甲烷
[0294]
[0295] 向双(二氯膦酸基)甲烷于无水二氯甲烷(50ml)中的冰冷却的溶液中添加3-甲氧基苯酚(1.76ml,16mmol)。经1小时的时间添加三乙胺溶液(4.91ml,32mmol)。然后,反应混合物在室温下搅拌四小时,此后,将其倒出到冰上(150ml)。添加二氯甲烷并分离相(慢!)。用二氯甲烷再萃取水相一次并且经硫酸钠干燥合并的有机相。蒸发之后,通过在二氧化硅上进行快速色谱法(柱高度10cm,直径3cm)来纯化粗产物。获得呈淡褐色油状的产物,并且NMR光谱指示高纯度。产量0.93g。
[0296] 6b:1,1-二烯丙基-1,1-双(二-(3-甲氧基苯基)膦酸基)甲烷
[0297]
[0298] 将氢化钠(0.683g,60%于矿物油中,17.1mmol)悬浮于无水THF(150ml)中并冷却到-30℃。经30分钟添加1,1-双(二-(3-甲氧基苯基)膦酸基)甲烷(实例4a,2.92g,4.87mmol)于无水THF中的溶液,同时维持温度在-30℃。添加烯丙基溴(48.8mmol,4.21ml)并且该反应混合物在-15℃下保持一小时,然后加热到40℃,保持5天。将这些内含物添加到75ml的饱和氯化铵水溶液中。在减压下蒸发挥发物,并用二氯甲烷对固体进行湿磨,以萃取有机物。经硫酸钠干燥并蒸发溶剂之后,在二氧化硅上通过用庚烷∶乙酸乙酯6∶4作为洗脱剂进行的快速色谱法来纯化粗产物。产量1.28g。
[0299] 6c:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二-(3-甲氧基苯基)膦酸基)甲烷
[0300]
[0301] 向1,1-二烯丙基-1,1-双(二-(3-甲氧基苯基)膦酸基)甲烷(实例4b)(0.794g,1.16mmol)于无水甲苯(20ml)中的溶液中添加卡斯特催化剂于甲苯(2%Pt)中的50μl溶液和三乙氧基硅烷(1.16mmol,0.459ml)。使溶液在室温下放置4天,并且每天又添加0.7g硅烷和25μl的催化剂。在真空中移除挥发物并且再通过两个甲苯添加-真空循环来移除残留的硅烷。将残留物溶解于甲苯中,用少量的活性炭处理,使其通过5μm的PTFE过滤器,并通过在二氧化硅柱上用乙酸乙酯∶甲苯1∶1作为洗脱剂进行的快速色谱法来纯化。产量150mg。
[0302] 实例7:1,1-双(3-三甲氧基硅烷基丙基)-1,1-双(二-(环丙基甲基)膦酸基)甲烷的合成。
[0303] 7a:1,1-双(二-(环丙基甲基)膦酸基)甲烷
[0304]
[0305] 向双(二氯膦酸基)甲烷(1.00g)于无水二氯甲烷(50ml)中的冰冷却的溶液中添加环丙基甲醇(1.15g,16mmol)。经1小时的时间添加三乙胺溶液(4.91ml,32mmol)。然后,反应混合物在室温下搅拌四小时,此后,将其倒出到冰上(150ml)。添加二氯甲烷并分离相(慢!)。用二氯甲烷再萃取水相一次并且经硫酸钠干燥合并的有机相。蒸发之后,通过在二氧化硅上进行快速色谱法(柱高度10cm,直径3cm)来纯化粗产物。获得呈无色油状的产物,并且NMR光谱指示高纯度。产量1.04g,66%。
[0306] 7b:1,1-二烯丙基-1,1-双(二-(环丙基甲基)膦酸基)甲烷
[0307]
[0308] 在氮气下,向1,1-双(二-(环丙基甲基)膦酸基)甲烷(实例5a)(0.794g,1.16mmol)于无水THF(20ml)中的冰冷却的溶液中添加烯丙基溴(0.864ml,10mmol)。经两小时的时间添加叔丁醇钾(0.66g)。该溶液在室温下搅拌4小时,并且然后通过添加3ml的饱和氯化氨水溶液淬灭。在真空中移除挥发物并且有机物用二氯甲烷溶解。在二氧化硅上以庚烷∶乙酸乙酯3∶7进行快速色谱法,得到0.4纯产物。64%。
[0309] 7c:1,1-双(3-三乙氧基硅烷基丙基)-1,1-双(二-(环丙基甲基基)膦酸基)甲烷
[0310]
[0311] 向1,1-二烯丙基-1,1-双(二-(环丙基甲基)膦酸基)甲烷(实例5b)(0.373g,0.76mmol)于无水甲苯(20ml)中的溶液中添加卡斯特催化剂于甲苯(2%Pt)中的30μl溶液和三乙氧基硅烷(1.59mmol,0.299ml)。使溶液在室温下放置4天,并且每天又添加
0.15ml硅烷和15μl的催化剂。在真空中移除挥发物并且再通过两个甲苯添加-真空循环来移除残留的硅烷。将残留物溶解于甲苯中,用少量的活性炭处理,使其通过5μm的PTFE过滤器,并通过在二氧化硅柱上用二氯甲烷+5%甲醇作为洗脱剂进行的快速色谱法来纯化。产量376mg。
[0312] 实例8:结合到N-(2-氨基乙基)-16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酰胺的纳米结构Y1的合成
[0313] 实例8a:3-(3-溴-2,2-双(溴甲基)丙氧基)丙-1-烯
[0314]
[0315] 氮气下,在0℃下将氢化钠(1.67g,42mmol)小心地添加到溶于无水并且脱气的DMF(40ml)中的3-溴-2,2-双(溴甲基)丙醇(9.75g,30mmol)和烯丙基溴(12.9ml,150mmol)。然后,温度增加到室温(22℃)并且反应混合物再搅拌3小时。然后,将该反应混合物小心地添加到NH4Cl饱和水溶液(50ml)中。然后,用乙醚(2×50ml)萃取H2O相,并用H2O(5×50ml)并且然后盐水(50ml)洗涤合并的有机相。有机相用Na2SO4干燥,随后过滤。在减压下移除挥发性物质,得到淡黄色油状物(9.7g)。在二氧化硅上进行柱色谱法
1
(庚烷∶EtOAc9∶1),得到6.6g(62%)呈澄清油状的产物。H-NMR(CDCl3);5.93(m,1H),
5.28(m,2H),4.05(d,2H),3.58(s,6H),3.52(s,2H)。
[0316] 实例8b:16-(烯丙基氧基甲基)-16-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18,21,24,27,30-十氧杂三十一碳烷
[0317]
[0318] 氮气下,在0℃下使用注射器将溶解于无水并且脱气的DMF(3.5ml,干燥24小时, MS)中的四乙二醇单甲基醚(1.91ml,9mmol)小心地添加到溶于无水并且脱气的DMF(15ml,干燥24小时, MS)中的氢化钠(365mg,9mmol)中。然后,使温度升高到室温,并且反应混合物再搅拌30分钟。然后,添加3-(3-溴-2,2-双(溴甲基)丙氧基)丙-1-烯(730mg,2.0mmol)并且温度升高到100℃。14小时之后,反应完成(HPLC-ELSD-C18,在25分钟内95∶5到5∶95的H2O/ACN,Rt产物=19.5min),使温度降低到室温并且将反应混合物小心地添加到H2O(150ml)中,并且用乙醚(2×50ml)洗涤H2O相。然后,将氯化钠添加到该H2O相中直到饱和。用EtOAc(4×50ml)萃取该H2O相,并且用盐水(2×30ml)洗涤合并的有机相。将硫酸钠和炭添加到有机相中。将澄清的有机相过滤,并且在减压下移除挥发性物质(8mm Hg,40℃,然后0.1mm Hg(油)及40℃以移除残留的DMF)。柱色谱法(EtOAc∶MeOH9∶1)得到1.05g(70%)的产物。1H-NMR(CDCl3);5.90(m,1H),5.20(m,2H),3.94(dt,2H),3.70-3.55(m,48H),3.45(s,6H),3.43(s,2H),3.40(s,9H)。
[0319] 实例8c:16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14-五氧杂十七烷-17-醇(4)
[0320]
[0321] 将叔丁醇钾(74mg,0.66mmol)添加到溶于DMSO(3ml)中的2(500mg,0.66mmol)中。反应混合物在100℃下振荡15分钟。HPLC分析(HPLC-ELSD-C18,在25分钟内95∶5到5∶95的H2O/ACN)指示完全转化成产物。在室温下添加盐水(20ml)并且用乙酸乙酯(3×20ml)萃取水相。合并的有机相用盐水(3×20ml)洗涤,并且用硫酸钠干燥。过滤并在减压下移除挥发性物质,得到呈澄清油状的16-2,5,8,11,14-五氧杂十五烷基-16-((丙-1-烯基氧基)甲基)-2,5,8,11,14,18,21,24,27,30-十氧杂三十一碳烷。然后,将HCl(0.1M)添加到溶解于丙酮(4ml)中的油状物中,并且混合物在55℃下振荡30分
1
钟。然后,在减压下移除挥发性物质,得到420mg(89%)呈澄清油状的4。H-NMR(CDCl3);
3.66-3.52(m,48H),3.47(s,6H),3.37(s,9H)。
[0322] 实例8d:16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酸叔丁酯(5)
[0323]
[0324] 将叔丁醇钾(32mg,0.28mmol)添加到溶于无水THF(3ml)中的4(100mg,0.14mmol)和2-溴乙酸叔丁酯(105mg,0.54mmol)中。反应混合物振荡30分钟。添加乙醚(10ml)和盐水(5ml),并且用乙酸乙酯(3×20ml)萃取水相。用盐水洗涤合并的有机相,并且然后,用硫酸钠干燥。在减压下移除挥发性物质,并且通过柱色谱法(乙酸乙酯/甲醇9∶1)来1
纯化产物,得到60mg(52%)的5。H-NMR(CDCl3);3.91(s,2H),3.66-3.52(m,48H),3.51(s,
2H),3.45(s,6H),3.37(s,9H),1.46(s,9H)。
[0325] 实例8e:16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酸(6)
[0326]
[0327] 将三氟乙酸(TFA,0.5ml)和二氯甲烷(0.5ml)添加到20mg的5中。混合物在室温下振荡1小时,并且然后在减压下移除挥发性物质,得到18mg呈黄色油状的6。
[0328] 实例8f:N-(2-叔丁氧羰基酰胺基乙基)-16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酰胺
[0329]
[0330] 氮气下,在室温下将六氟磷酸2-(1H-苯并三唑-1-基)-1,1,3,3-四甲基脲盐(95mg,0.25mmol)添加到溶于DMF(1ml, MS干燥并脱气)中的16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酸(实例8e)(153mg,0.2mmol)、N-BOC-乙二胺(40mg,0.25mmol)及二异丙基乙胺(87μl,0.5mmol)中。反应混合物振荡
20小时。将乙醚添加到该反应混合物中并用H2O萃取该混合物3次。用NaCl(固体)使合并的水相饱和,并且然后用EtOAc萃取4次。用Na2SO4对合并的有机相进行干燥,过滤并且在减压下移除溶剂,得到190mg(定量)呈淡黄色油状的产物。HPLC分析(HPLC-ELSD-C18,在20分钟内90∶10到5∶95的含TFA0.1%的H2O/ACN)在14.5分钟时显示出单个峰。
[0331] 实例8g:N-(2-氨基乙基)-16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酰胺
[0332]
[0333] 将TFA(2ml)添加到溶于二氯甲烷(2ml)中的N-(2-叔丁氧羰基酰胺基乙基)-16,16-二-2,5,8,11,14-五氧杂十五烷基-2,5,8,11,14,18-六氧杂二十碳-20-酰胺(实例
8f,160mg,0.18mmol)。在室温下搅拌混合物1小时。在减压下移除挥发性组分并且将残留物与无水甲苯(Al2O3)共蒸发两次,并且然后使用油泵进行干燥。此得到130mg的产物。
HPLC分析(HPLC-ELSD-C18,在20分钟内90∶10到5∶95的含TFA0.1%的H2O/MeCN)在
10.7分钟时显示出单个峰。MS(ESP+)[M]:807.5。
[0334] 实例8h:结合
[0335] 通过超声处理将纳米结构X1(实例10c,100mg,0.4mmol P等效物)溶解于H2O(2ml)中。使用6和1M NaOH(水溶液)将pH从1.9调整到10.4。然后添加溶解于H2O(2ml)中的氯化锰(12.5mg,0.065mmol)。混合物在30℃下振荡30分钟。使用0.1HCl(水溶液)将pH从8.5调整到7.1,并且添加溶解于H2O(2ml)中的来自实例8g的物质(37mg,0.04mmol)和N-羟基磺基琥珀酰亚胺钠盐(9mg,0.04mmol)。然后添加N-(3-二甲基氨基丙基)-N′-乙基碳化二亚胺盐酸盐(24mg,0.12mmol)。反应混合物在室温下振荡21小时并且然后过滤(5μm管式过滤器)。对滤液进行自旋过滤(10k截止点,3000G持续30分钟)并且使用H2O将浓缩物(4ml)稀释到15ml。重复这一程序4次。使用0.1M NaOH(水溶液)将该浓缩物(4ml)的pH从4.7调整到7.1。对滤液进行自旋过滤(10k截止点,3000G持续15分钟)并且使用H2O将浓缩物(0.5ml)稀释到4ml。重复这一程序4次。对最终的浓缩物进行过滤(注射器式过滤器0.2μm)并使用H2O稀释到2ml。体积粒度分布=4-5nm。
GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=10.3min[0336] 实例9:聚乙烯亚胺-双膦酸酯纳米结构Z的合成。
[0337] 实例9a:3,3-双(二甲氧基磷酰基)丙酸叔丁酯
[0338]
[0339] 在氮气下,向双(二甲氧基磷酰基)甲烷(4.64g,20mmol)和溴乙酸叔丁酯(7.35ml,50mmol)于无水THF(40ml)中的冰冷却的溶液中添加叔丁醇钾(5.8g,43mmol)。反应混合物在室温下搅拌过夜,并且然后用4ml的饱和氯化铵淬灭。在真空中并且通过甲苯添加和蒸发的两个循环来移除挥发物。以二氯甲烷∶甲醇95∶5进行快速色谱法,得到呈油状的产物。产量4.0g。
[0340] 实例9b:3,3-双(二甲氧基磷酰基)丙酸
[0341]
[0342] 向3,3-双(二甲氧基磷酰基)丙酸叔丁酯(2.5g)于二氯甲烷(10ml)中的溶液中添加三氟乙酸。在室温下搅拌之后是在真空中蒸发挥发物。三个循环的5ml份甲苯的真空蒸发,得到2.2g产物。
[0343] 实例9c:聚乙烯亚胺-双磷酸酯纳米结构Z的合成
[0344] 通过超声处理(10分钟)将平均分子量为25kDa的分支聚乙烯亚胺(100mg,2.5mmol伯氨基)、3,3-双(二甲氧基磷酰基)丙酸(1.1g,3.87mmol)及N-羟基磺基琥珀酰亚胺钠盐(100mg,0.46mmol)溶解于H2O(10ml)中。使用1M NaOH将pH从1.8调整到6.5,此后,添加N-(3-二甲基氨基丙基)-N′-乙基碳化二亚胺盐酸盐(1.0g,5.2mmol)。反应混合物在室温下振荡23小时并且然后过滤(5μm管式过滤器)。对滤液进行自旋过滤(10k截止点,3000G持续30分钟)并且使用H2O将滞留物(2ml)稀释到10ml。重复这一程序4次。使用H2O将最终的滞留物(2ml)稀释到6ml。根据DLS,体积平均粒度分布:4-5nm。GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=9.1min。
[0345] 实例10:1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷聚合得到纳米结构X
[0346] 在一个压力容器中,将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(xg,ymmol,参看下表1)溶解于200ml的80%1-丙醇水溶液中。反应混合物在95℃下搅拌48小时,并且然后在110℃下搅拌24小时。在使澄清溶液冷却到室温之后,用MilliQ H2O(800ml)对其进行稀释,并且然后使用300k的标称分子量截止(NMWC)孔径柱(GE医疗集团的Midgee超滤滤筒型号(GE Heathcare′s Midgee ultrafiltration cartridge Model):UFP-300-C-3MA)进行透滤过滤。然后,将收集的渗透物(约980ml)收集于一个100k的NMWC孔径透滤柱(GE医疗集团的Midgee超滤滤筒型号:UFP-100-C-3MA)上以对纳米结构溶液进行浓缩。作为替代方案,还使用了来自颇尔生命科技公司(Pall Life Sciences)的过滤器,具体地说是Centramate T系列卡盒OS0100T02(100k NMWC孔径卡盒)。重复进行MilliQ水的添加和收集的滞留物的过滤。所收集的滞留物(X1)的最终体积为约50ml。
[0347] 此外,对穿过该100k透滤柱的渗透物进行收集,并且然后使用一个30k的NMWC孔径过滤器滤筒(GE医疗集团的Midgee超滤滤筒型号:UFP-30-C-3MA)进行过滤。重复进行MilliQ水的添加(2x)和收集的滞留物的过滤。所收集的滞留物(X2)的最终体积为约50ml。
[0348] 实例10a:100mM的1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷的聚合
[0349] X1a.量:x=12.8g,y=20mmol。透滤之后的回收率=26%(以P回收率计);最终pH~2;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
9.2min;组成(ICP,摩尔比):P/Si=0.9。
[0350] X2a.量:x=12.8g,y=20mmol。透滤之后的回收率=17%(以P回收率计);最终pH~2;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
10.3min;组成(ICP,摩尔比):P/Si=0.9。
[0351] 实例10b:80mM的1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷的聚合
[0352] X1b.量:x=10.4g,y=16mmol。透滤之后的回收率=31%(以P回收率计);最终pH~2;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
9.2min;组成(ICP,摩尔比):P/Si=1.1。
[0353] X2b.量:x=10.4g,y=16mmol。透滤之后的回收率=19%(以P回收率计);最终pH~2;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
10.4min;组成(ICP,摩尔比):P/Si=1.1。
[0354] 实例10c:50mM的1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷的聚合
[0355] X1c.量:x=6.4g,y=10mmol。透滤之后的回收率=21%(以P回收率计);最终pH~2;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
9.7min;组成(ICP,摩尔比):P/Si=0.9。
[0356] X2c.量:x=6.4g,y=10mmol。透滤之后的回收率=25%(以P回收率计);最终pH~2;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
10.5min;组成(ICP,摩尔比):P/Si=0.9;
[0357] 实例10d:1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷在不同溶剂中聚合得到纳米结构X
[0358] 将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(3.2g,5mmol)溶解于80%乙二醇水溶液(100ml)中。反应混合物在116℃下搅拌21小时。聚合也可以如以上进行,但在80%的1,2-丙二醇水溶液中在111℃下搅拌24小时并且然后在114℃下搅拌4小时,或在80%的二乙二醇水溶液中在108℃下搅拌20小时并且然后在114℃下搅拌2小时,或在80%的三乙二醇水溶液中在115℃下搅拌22小时,或在80%的二(乙二醇)甲基醚水溶液中在106℃下搅拌18小时并且然后在111℃下搅拌18小时,或在80%的二乙二醇单乙基醚水溶液中在107℃下搅拌35小时,或在80%的甘油水溶液中在114℃下搅拌19小时。
[0359] 实例10e:1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷的Pt清除
[0360] 将由树脂技术公司(Resintech)提供的SIR-200(100g,螯合树脂,硫醇,H形式)与5%的碳酸氢钠水溶液(500ml)一起振荡两次,并且然后与MilliQ水一起振荡两次。滤出水并且将无水甲苯(100ml)添加到SIR-200中。在真空中移除挥发物并且再通过两个甲苯添加-真空循环来移除残留的水。在一个容器中,将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(30g,铂含量:39ppm)溶解于无水甲苯(300ml)中。添加SIR-200(10g,如以上进行处理)并且然后振荡过夜。滤出SIR-200并且在真空中移除挥发物,得到铂含量为0.38ppm的物质。
[0361] 实例11.纳米结构X的锰装载及通过切向流过滤进行纯化以得到纳米结构Y。
[0362] 使用6M和1M的NaOH(水溶液)将纳米结构X的溶液(实例13)的pH从pH2调整到pH10.4,并且使其静置2小时。然后添加四水合氯化锰(II)(xxmg,yymmol)并溶解。混合物在30℃下振荡1小时。在反应之后,该混合物的pH为约pH7.6,并使用1M HCl(水溶液)进一步调整到pH7.4。用MilliQ H2O将反应的混合物稀释到50ml,并且然后使用
10k的NMWC孔径柱(GE医疗集团的Midgee超滤滤筒型号:UFP-10-C-3MA)进行透滤以移除游离的Mn离子。作为替代方案,还使用了来自颇尔生命科技公司的过滤器,具体地说是Centramate T系列卡盒OS010T02(10k NMWC孔径卡盒)。收集滞留物并重复进行稀释与透滤程序三次。
[0363] Y1a.使用的纳米结构X:实例X1a,15ml,3.2mmol P。使用的MnCl24H2O:xx=106.7mg,yy=0.54mmol。最终pH7.4;体积粒度(在150mM NaCl中进行的DLS)最大值=5.6nm;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
9.5min;组成(ICP,摩尔比):P/Mn=5.7,P/Si=0.9,Si/Mn=6.2;离子交换稳定性在pH5.5下=45%并且在pH7下=62%。
[0364] Y1b.使用的纳米结构X:实例X1a,15ml,3.2mmol P。使用的MnCl2·4H2O:xx=107mg,yy=0.54mmol。最终pH7.4;体积粒度(在150mM NaCl中进行的DLS)最大值=6.5nm;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=
10.1min,并且在9min时出现肩峰;组成(ICP,摩尔比):P/Mn=5.4,P/Si=0.9,Si/Mn=
6;离子交换稳定性在pH5.5下=47%并且在pH7下=66%。
[0365] Y2a.使用的纳米结构X:实例X2a,15ml,2mmol P。使用的MnCl24H2O:xx=71mg,yy=0.36mmol。最终pH7.4;体积粒度(在150mMNaCl中进行的DLS)最大值=4.1nm;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=10.5min;组成(ICP,摩尔比):P/Mn=6.6,P/Si=0.9,Si/Mn=7.3;离子交换稳定性在pH5.5下=-1 -1
43%并且在pH7下=60%;在81.33MHz、25℃下r1=41mM Mn s 。
[0366] Y2b.使用的纳米结构X:实例X2a,15ml,2mmol P。使用的MnCl24H2O:xx=71mg,yy=0.36mmol。最终pH7.4;体积粒度(在150mMNaCl中进行的DLS)最大值=5.6nm;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=10.1min;组成(ICP,摩尔比):P/Mn=5.6,P/Si=0.9,Si/Mn=6.2;离子交换稳定性在pH5.5下=
44%并且在pH7下=63%。
[0367] 实例11a:1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷聚合得到纳米结构X
[0368] 11a′:
[0369] 将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(0.64g,1mmol)溶解于80%乙二醇水溶液(12ml)中。将在从28mg(0.42mmol)或140mg(2.1mmol)范围内的甲酸钠和四水合氯化锰(II)(33mg,0.17mmol)各自溶解于80%的乙二醇水溶液(4ml)中,并且随后添加到反应混合物中,将其在114℃下搅拌22小时。
[0370] 11a″:
[0371] 将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(0.64g,1mmol)溶解于80%乙二醇水溶液(12ml)中。将甲酸钾(52mg,0.62mmol)和四水合氯化锰(II)(33mg,0.17mmol)各自溶解于80%的乙二醇水溶液(4ml)中,并且随后添加到反应混合物中,将其在116℃下搅拌21小时。
[0372] 11a″′:
[0373] 将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(0.64g,1mmol)溶解于80%乙二醇水溶液(16ml)中。随后,将溶解于80%的乙二醇水溶液(4ml)中的四甲基甲酸铵(于水中的30wt.%溶液,0.245ml,0.62mmol)和四水合氯化锰(II)(33mg,0.17mmol)添加到反应混合物中,将其在116℃下搅拌21小时。
[0374] 实例11b.纳米结构X的锰装载、通过添加硅烷进行‘硬化’并通过透滤来纯化以得到纳米结构Z
[0375] 向纳米结构X(实例10f)的2ml溶液中添加xml脱气的四水合氯化锰(II)(溶解于80%的乙二醇水溶液中;100mM)中,满足磷-锰摩尔比为12。将y ml溶解于80%的乙二醇水溶液中的脱气的甲酸钠(100mM)添加到装载了Mn的纳米结构溶液中,实现甲酸钠-锰摩尔比为5或3。检查最终pH并且必要时,通过添加NaOH(水溶液)或HCl(水溶液)调整到约pH5或3。混合物在100℃下振荡12或18小时。将z ml溶解于乙醇中的原硅酸四乙酯(TEOS)(120mM)添加到该混合物中并在100℃下再振荡18或24小时。(作为在第一个加热步骤之后进行TEOS的添加后的替代方案是直接地将TEOS溶液并入包含了甲酸钠的装载Mn的纳米结构溶液中并在100℃下振荡12或18小时。)
[0376] 加热并振荡之后,通过添加NaOH(水溶液)将pH调整到pH7.0±0.5,随后使用4ml100kDa的离心过滤器(来自密理博(Millipore)的 )进行超滤(UF)。首先
用Milli-Q将该溶液稀释到约4ml并且自旋10-15分钟(3000xg)。收集滤液并转移到一个
4ml的10kDa离心过滤器(来自密理博的 )中,用Milli-Q水稀释到4ml,充分
混合并自旋过滤(3000xg,10min),之后收集到约500μl的滞留物。重复该稀释和透滤程序三次。用MilliQ水将最终收集到的500μl滞留物稀释到1ml。此后是Mn浓度测定、通过弛豫技术评估的络合稳定性测试(实例14b)、GPC分析及组成(ICP测量)分析。
[0377] Z1a.相对于bisbis的3%TEOS]使用的纳米结构X:2ml,0.2mmol P;x=167μL;甲酸钠-Mn比率:5;y=835μL;z=25μL;加热之前的最终pH:pH5;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=12.6min;组成(ICP,摩尔比):P/Mn=11.61,P/Si=1.01,Si/Mn=10.51;在pH7下之络合稳定性=24%[0378] Z1b.相对于Bisbis的5%TEOS]使用的纳米结构X:2ml,0.2mmol P;x=
167μL;甲酸钠-Mn比率:5;y=835μL;z=41.7μL;加热之前的最终pH:pH5;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=12.6min;组成(ICP,摩尔比):P/Mn=12.05,P/Si=1.02,Si/Mn=11.77;在pH7下之络合稳定性=23%[0379] Z1c.相对于bisbis的3%TEOS。使用的纳米结构X:2ml,0.2mmol P;x=
167μL;甲酸钠-Mn比率:5;y=835μL;z=25μL;加热之前的最终pH:pH3.5;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=12.6min;组成(ICP,摩尔比):P/Mn=13.03,P/Si=0.93,Si/Mn=13.96;在pH7下之络合稳定性=27%[0380] Z1d.相对于bisbis的5%TEOS。使用的纳米结构X:PL04064,2ml,0.2mmol P;
x=167μL;甲酸钠-Mn比率:5;y=835μL;z=41.7μL;加热之前的最终pH:pH3.5;
GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=12.6min;组成(ICP,摩尔比):P/Mn=13.31,P/Si=0.92,Si/Mn=14.53;在pH7下之络合稳定性=
26%
[0381]
[0382]
[0383] 实例12.冷冻干燥的所配制的装载Mn的纳米结构
[0384] 在一个压力容器中,将1,1-双(三乙氧基硅烷基丙基)-1,1-双(二甲基膦酸基)甲烷(6.4g,0,01mmol)溶解于200ml的80%1-丙醇水溶液中。反应混合物在95℃下搅拌48小时,并且然后在110℃下搅拌24小时。使温度降到室温并收集澄清无色溶液。收集的溶液用MilliQH2O(800ml)稀释,并且然后使用300k的NMWC孔径柱(GE医疗集团Midgee的超滤滤筒型号:UFP-300-C-3MA)进行过滤。然后,使用一个100k的NMWC孔径透滤柱(GE医疗集团的Midgee超滤滤筒型号:UFP-100-C-3MA)过滤所收集的渗透物(约980ml)以对聚合物溶液进行浓缩。重复进行MilliQ水的添加和收集的滞留物的过滤。所收集的滞留物的最终体积为约50ml。组成(ICP,摩尔比):P/Si=0.84。
[0385] 此外,对穿过该100k透滤柱的渗透物进行收集,并且然后使用一个30k的NMWC孔径透滤柱(GE医疗集团的Midgee超滤滤筒型号:UFP-30-C-3MA)进行过滤。重复进行MilliQ水的添加(2x)和收集的滞留物的过滤。所收集的滞留物的最终体积为约50ml。组成(ICP,摩尔比):P/Si=0.88。
[0386] 使用6M和1M的NaOH(水溶液)将穿过100k透滤的纳米结构(25ml,2.1mmol)的pH从pH2.2调整到pH10.5并使其静置2小时。然后添加四水合氯化锰(II)(45.4mg,0.23mmol)。混合物在30℃下振荡16小时。在反应之后,该混合物的pH为9.3,并且然后使用1M HCl(水溶液)调整到pH7.4。用MilliQ H2O将混合物稀释到50ml,并且然后使用
10k的NMWC孔径柱(GE医疗集团的Midgee超滤滤筒型号:UFP-10-C-3MA)进行透滤。收集滞留物并重复进行稀释与透滤程序三次。最终收集的溶液体积为10ml。
[0387] 向8.1ml所收集的溶液中添加甘露糖醇(0.36g,2.0mmol)以达到250mM浓度。此后是冷冻干燥16小时,收集到0.5g白色的蓬松粉末。制备冷冻干燥的物质的20mg/ml水溶液并进行分析。体积加权的粒度(在150mM NaCl中进行的DLS)最大值=4.8m nm;GPC分析(Superose1210/300GL,100mM NH4CO3,pH=7.4,流量1ml/min)Rt=10.3min;组成(ICP,摩尔比):P/Mn=9.8,P/Si=0.9,Si/Mn=10.7;离子交换稳定性在pH5.5下=72%并-1 -1且在pH7下=89%;在60MHz、37℃下r1=39mM Mns 。
[0388] 实例13.使用离子交换树脂对纳米结构Y进行进一步纯化
[0389] 为了进一步移除过量或松散结合的Mn离子,用阳离子交换剂(磺酸化聚苯乙烯)对样品Y1进行处理:将约10ml的装载Mn的纳米结构(约10mM Mn)与1g的Dowex50WX4(Na形式,用水预先冲洗)并用0.1M NaOH将pH调整到7.0。将该混合物轻轻地旋转16小时,并且然后以3000rpm进行离心。
[0390] 实例14.含锰纳米结构的稳定性测量(又称为“离子交换稳定性”)。
[0391] 首先,测定纳米结构溶液的锰浓度,并且然后用水稀释到1.5mM的锰浓度并且达到2.2ml的最终体积。向2×1.000ml的稀样品溶液中添加2×100mg的Dowex50WX4(Na形式,用水预先冲洗)。用0.1M NaOH或0.1M HCl(通常只需要几微升)将这两种溶液的pH对应地调整到7.0和5.5。通过缓慢地旋转小瓶,对该混合物进行充分混合,持续16小时。使IEX微粒沉降并且对来自上清液的100μl等分试样进行分析([Mn]IEX)。为了测定该样品中锰的初始浓度,使用了来自以上的剩余溶液来测定[Mn]起始。稳定性计算为:[Mn]IEX/[Mn]起始*100(%)
[0392] 实例14b.通过弛豫技术评估的有关含锰纳米结构的络合稳定性测试
[0393] 对浓度为1mM Mn的纳米结构溶液的纵向弛豫率(r1(ns))进行测量。制备出包含1mMMn的另一种纳米结构溶液,并且添加等摩尔量的EDTA。必要时,这一溶液的pH必须调整到pH7±0.5。对添加了EDTA的这一纳米结构溶液的纵向弛豫率进行测量(r1(ns+EDTA))。作为一种参考材料,使用AAS(Fluka77036)的锰标准品制备1mM溶液,添加等摩尔量的EDTA,-1 -1
并将pH调整到pH7±0.5。测量纵向弛豫率(r1(Mn+EDTA))并且得到值1.6mM s 。为了计算在添加等量EDTA之后从该纳米结构释放的Mn%:
[0394]
[0395] 注意:弛豫(T1,以秒为单位)是使用Minispec mq60NMR分析仪(60MHz)在37℃下测量的,并且弛豫率r1是使用下式计算:
[0396]
[0397] 其中T1H2O=0.32s;e1=1mM。
[0398] 实例15.用钙和锰进行转金属反应。
[0399] 由NaCl(7.14g)、NaHCO3(1.4g)、KHCO3(0.43g)、NaH2PO4(0.165g)、Mg(OAc)2(0.17g)混合得到一种缓冲液,该缓冲液大致模拟了血液的无机组分但不含钙,将其稀释到1.001体积。此后称为“血液缓冲液”。测试两个纳米结构样品A(Y1,在300kDa与100kDa过滤器之间截止)及B(Y2,在100kDa与30kDa过滤器之间截止)。根据以下各项制备测试管:
[0400] 样品1:900μl水100μl的样品A
[0401] 样品2:900μl水100μl的样品B
[0402] 样品3:900μl的血液缓冲液100μl的样品A
[0403] 样品4:900μl的血液缓冲液100μl的样品B
[0404] 样品5:900μl的血液缓冲液+1.3mM CaCl2100μl的样品A
[0405] 样品6:900μl的血液缓冲液+1.3mM CaCl2100μl的样品B
[0406] 分析出混有A的样品的总Mn浓度为1.3mM并且混有B的那些为1.5mM。这些溶液在室温下保温一小时,并且随后使其穿过10kDa截止的自旋过滤器。对于滤液中的锰进行分析。结果显示于表2中。
[0407] 表2:
[0408]
[0409] 实例16.装载Mn的2-(三乙氧基硅烷基)乙基膦酸二甲酯聚合物。
[0410] 在一个压力容器中,将2-(三乙氧基硅烷基)乙基膦酸二甲酯(DTEP,0.9g,3.0mmol)溶解于30ml的80%1-丙醇水溶液中。反应混合物在95℃下搅拌48小时,并且然后在120℃下搅拌24小时。使温度降到室温并收集澄清无色溶液。收集的溶液用MilliQ H2O(470ml)稀释,并且然后使用100k的NMWC孔径柱(GE医疗集团Midgee的超滤滤筒型号:
UFP-100-C-3MA)进行过滤。然后,使用一个30k的NMWC孔径透滤柱(GE医疗集团的Midgee超滤滤筒型号:UFP-30-C-3MA)过滤所收集的渗透物(480ml)以对聚合物溶液进行浓缩。重复进行MilliQ水的添加和收集的滞留物的过滤。所收集的滞留物的最终体积为约7.5ml。
组成(ICP,摩尔比):P/Si=0.5。
[0411] 使用6M和1M的NaOH(水溶液)将7.5ml的DTEP聚合物溶液(0.4mmol P)的pH从pH2.6调整到pH10.4,并且使其静置2小时。然后添加四水合氯化锰(II)(5.9mg,0.3mmol)。混合物在30℃下振荡1小时。在反应之后,该混合物的pH为约pH9.4,并使用1MHCl(水溶液)调整到pH7.4。用MilliQ H2O将反应的混合物稀释到50ml,并且然后使用10k的NMWC孔径柱(GE医疗集团的Midgee超滤滤筒型号:UFP-10-C-3MA)进行透滤以移除游离的Mn离子。收集滞留物并重复进行稀释与透滤程序三次。体积加权的粒度(在150mM NaCl中进行的DLS)最大值=5.6nm;GPC分析(Superose1210/300GL,100mMNH4CO3,pH=7.4,流量
1ml/min);组成(ICP,摩尔比):P/Mn=2.7,P/Si=0.5,Si/Mn=5.7;离子交换稳定性在-1 -1
pH5.5下=21%并且在pH7下=24%;在81.3MHz、25℃下r1=3mM Mns
[0412] 实例17.装载Mn的唑来膦酸。
[0413] 将唑来膦酸(27mg,0.01mmol)溶解于10ml的MilliQ H2O中。制备100mM的四水合氯化锰(II)水溶液。将10μl的Mn溶液与408μl的唑来膦酸溶液和582μl的MilliQ H2O混合。使用6M NaOH(水溶液)将pH调整到7.4。组成(ICP,摩尔比):P/Mn=5.26。-1 -1
在81.3MHz、25℃下r1=2.3mM Mn s
[0414] 实例18.装载Mn的亚甲基二膦酸。
[0415] 将亚甲基二膦酸(9.2mg,0.05mmol)溶解于5ml的MilliQ H2O中。制备28mM的四水合氯化锰(II)水溶液。将35μl的Mn溶液与286μl的亚甲基二膦酸溶液和679μl的MilliQH2O混合。使用6M NaOH(水溶液)将pH调整到7.1。组成(ICP,摩尔比):P/Mn-1 -1=4.6。在81.3MHz、25℃下r1=1mM Mn s 。
[0416] 实例19.将其他金属离子装载到纳米结构X中。
[0417] 使用6M和1M的NaOH(水溶液)将纳米结构X2a的pH从2调整到10.4,并使其静置2小时。然后添加金属盐(xxmg,yy mmol,参看下表3),如水合氯化铁(II)、水合氯化铁(III)、水合氯化铒(III)或水合氯化镝(III)。混合物在30℃下振荡1小时。对于不同样品,在反应之后,该混合物的pH在从4.7到7.2间变化,并且然后使用1M HCl(水溶液)调整到pH7.4。对该混合物进行自旋过滤(10k MWCO,3000xg持续15分钟)并且使用MilliQH2O将浓缩物(0.5ml)稀释到4ml。重复这一程序4次。使用MilliQ H2O将最终浓缩物稀释到4ml。
[0418] a:前驱物X2a,4ml,0,11mmol P。使用的FeCl2·4H2O:xx=7.2mg,yy=0.04mmol。最终pH7.4;体积粒度(在150mM NaCl中进行的DLS)最大值=8.7nm;组成(ICP,摩尔比):
-1 -1
P/Fe=4.2,P/Si=0.9,Si/Fe=4.5;在81.33MHz、25℃下r1=3.1mM Fe s 。
[0419] b:前驱物X2a,4ml,0,11mmol P。使用的FeCl3·6H2O:xx=9mg,yy=0.03mmol。最终pH7.4;体积加权的粒度(在150mM NaCl中进行的DLS)最大值=8.7nm;组成(ICP,-1 -1
摩尔比):P/Fe=6.5,P/Si=0.9,Si/Fe=7.2;在81.33MHz、25℃下r1=8.5mM Fe s 。
[0420] c:前驱物X2a,4ml,0,11mmol P。使用的ErCl3·6H2O:xx=12.7mg,yy=0.03mmol。最终pH7.4;体积加权的粒度(在150mM NaCl中进行的DLS)最大值=50nm;组成(ICP,摩-1 -1
尔比):P/Er=5.3,P/Si=0.9,Si/Er=5.7;在81.33MHz、25℃下r1=0.4mM Er s 。
[0421] d:前驱物X2a,4ml,0,11mmol P。使用的DyCl3·6H2O:xx=13.6mg,yy=0.04mmol。最终pH7.4;体积加权的粒度(在150mM NaCl中进行的DLS)最大值=10.1nm;组成(ICP,-1 -1
摩尔比):P/Dy=4.4,P/Si=0.9,Si/Dy=4.7;在81.33MHz、25℃下r1=0.6mM Dy s 。
[0422] 实例20.装载Mn的材料的弛豫率
[0423] 一些装载Mn的材料的弛豫率显示于表3中。
[0424] 表3:
[0425]
[0426]
[0427]
[0428] 实例21:体内成像
[0429] 对带有侵袭性生长的EL-4小鼠淋巴瘤的小鼠中的MR图像质量和对比度进行体内研究。已经由在C57BL/6小鼠中诱发的淋巴瘤来建立鼠类淋巴瘤细胞系EL-4。成淋巴细胞在体外易于在悬浮液中生长并且在C57BL/6小鼠中作为同种异体移植物生长。
[0430] 使用EL-4细胞(ECACC85023105)在C57BL/6小鼠中产生同种异体移植的肿瘤。皮下注射细胞悬浮液并且经数天产生肿瘤。注射之后6-10之间,使用肿瘤进行成像。
[0431] 对MR方案进行优化并在两只动物中测试。在带有EL-4肿瘤的7只动物中获取MR图像;4只小鼠接收了3mM/175μl的Y2,3只小鼠接收了17mM/175μl的根维显(Magnevist),两者都是在6秒的时间期间注射。
[0432] 获取T1加权的GE图像。将小鼠从磁体移开并且连接含造影剂的导管。关键点则是快速地注射造影剂,以避免经由该导管扩散到动物中。获取对比前的T1加权图像,并且此后立即注射造影剂,同时连续地获取动态闪现的图像(注射前2个,注射后14个,每个图像8秒)。
[0433] 在标记A、B、E的实验(参看下文)中,在注射Y2或马根维显之后,获取50×50mm视野的10个片段。获取的图像具有8个片段,视野为50×50mm,矩阵大小为256×256,并且总比特扫描时间为每个数据集超过10分钟。每15分钟获取对比后图像。从注射造影剂之后获取的所有数据集,10个片段中选出1个作为增强的代表,参看图2。
[0434] 实例22:用装载锰的1,3-双膦酸酯合成基于聚乙烯亚胺的纳米结构。
[0435] 22a:亚丙基-1,3-膦酸
[0436] 将溴化三甲基硅烷(16.84ml,25.3mmol)和四乙基亚丙基-1,3-二膦酸酯(10.08g,31.6mmol)溶解于5ml冰冷却的二氯甲烷中。10分钟之后,移除冷却浴并且在室温下将混合物搅拌16小时。在旋转蒸发器上移除挥发物。在搅拌并且冰冷却下,向残留物中添加50ml的水。20分钟之后,在旋转蒸发器上移除水,并且通过首先两个循环的甲苯添1
加-蒸发循环并且然后油泵真空过夜来移除残留的水分。H-NMR显示,乙基消失并且亚甲基仍存在。
[0437] 22b:四甲基亚丙基-1,3-膦酸酯
[0438] 将亚丙基-1,3-二膦酸(600mg)悬浮于原甲酸三甲酯(20ml)中并回流6小时,此后,蒸馏出10ml的液体并剩余物放置过夜。在真空中移除挥发物,得到呈油状的产物。
[0439] 22c:1-叔丁氧基羰基甲基,-O,O,O,O-四甲基亚丙基-1,3-二膦酸酯[0440] 在氮气氛围下,将四甲基亚丙基-1,3-二膦酸酯(206mg,0.79mmol)溶解于无水THF(5ml)中,并且在干冰-丙酮浴中冷却该溶液。注射入t-BuLi(2.17M的庚烷溶液,1.66mmol)并且在10分钟之后,添加溴乙酸叔丁酯(0.23ml,1.66mmol)。30分钟之后,使温度在30分钟期间升到-15℃。通过添加到饱和氯化铵水溶液来淬灭反应混合物。用乙醚(2×25ml)萃取,经MgSO4干燥并且蒸发,得到油状残留物。在二氧化硅上以二氯甲烷+3%甲醇进行快速色谱法,得到134mg所希望的产物。
[0441] 22d:1-羧甲基,-O,O,O,O-四甲基亚丙基-1,3-二膦酸酯
[0442] 将1-叔丁氧羰基甲基,-O,O,O,O-四甲基亚丙基-1,3-二膦酸酯(150mg)溶解于二氯甲烷(10ml)中并添加三氟乙酸(0.5ml)。反应混合物放置过夜并移除挥发物。通过三个甲苯添加-蒸发循环来移除残留的三氟乙酸。产量132mg。
[0443] 22e:1-羧甲基,-O,O,O,O-四甲基亚丙基-1,3-二膦酸酯结合到聚乙烯亚胺并装载锰
[0444] 将1-羧甲基,-O,O,O,O-四甲基亚丙基-1,3-二膦酸酯(100mg)、聚乙烯亚胺(15mg,平均Mw为30000)及磺基N-羟基琥珀酰亚胺添加到水(5ml)中并进行超声处理10分钟。通过添加0.1M NaOH将pH调整到6.6。添加EDC并且将溶液放入振荡器中,保持19小时。在20kDa截止点的自旋过滤器上移除小分子物质。残留物在同一过滤器上洗涤4次。纳米结构当溶解于150mM NaCl中时测量直径为7.5nm。向1ml的以上溶液中添加21mg的MnCl2·4H2O。通过添加NaOH水溶液将pH调整到7.3。在10kDa标称截止自旋过滤器上,用水洗涤样品3次。对样品中的Mn进行分析并发现它为2.4mM。发现在60MHz下弛豫率为
18.5/mM/s。根据实例14测量稳定性:0.2%。
[0445] 实例23.纳米结构的电导滴定
[0446] 电导滴定可以用来测定可以被吸附到纳米结构上的Ca2+和Mg2+的量。在添加了递增量的包含CaCl2与MgCl2的混合物的溶液之后,对纳米结构水溶液的电导率进行监测。该2+ 2+
溶液的电导率(mS/cm)将以某一速率(滴定曲线的斜率)增加,只要Ca 和Mg 吸附于这
2+ 2+
些微粒上。当用Ca 和Mg 使这些纳米结构饱和时,电导率将以另一种速率增加。为了更清楚地观测终点(其中纳米结构用Ca和Mg饱和),从通过向水中添加相同增量的Ca/Mg溶液所获得的电导率中减去在纳米结构存在下的电导率。
[0447] 将来自实例10c的材料的200μl样品([Mn=0;[P]=138mM)与2300μl水混合。在添加50μl增量的包含6.55mM MgCl2和9.67mM CaCl2的水溶液之后,测量电导率。(这一比率[Ca]/[Mg]与血液中发现的比率近似相同。参看图3a中的“样品”。从“样品”中减去电导率的起始值(不添加Mg/Ca溶液),得到图3a中的“修正的样品”。还在向水中添加了相同增量的Mg/Ca之后测量电导率以得到图3a中的“空白”。最后,从“空白”中减去来自“修正的样品”的电导率,得到图3a中的“差(空白-修正的样品)”。
[0448] “差(空白-修正的样品)”曲线在图3b中放大并且将两条直线与该曲线的不同部分拟合。这两条线在474μl的滴定剂处相交,由此得到[P]/[Mg]=8.89,[P]/[Ca]=6.02并且[P]/[Me]tot=3.59。
[0449] 在10kD过滤器上对与以上相同批次的纳米结构进行进一步浓缩(体积减少到约五分之一)。
[0450] 在与以上相同的校正情况下,用混有2460水的40μl溶液进行滴定。测定终点为422μl。假定吸附[P]/[Me]的比率与先前的滴定相同,这将得到[P]=422/474×138×0.200/0.040=613mM。参看图3c。
[0451] 滴定的主要目的是估算对于使纳米结构90%饱和应当添加的Ca/Mg溶液的量。
[0452] 因此,将506μl的400mM MgCl2和600mM CaCl2溶液添加到14.5ml样品溶液中([P]=138mM)。
[0453] 然后,用一个如以上一样的10kD过滤器对这一溶液进一步浓缩,并且对大致相同的量进行滴定,但此时大部分位点都应被金属占据。结果示于图3d中。
[0454] 实例24.配制:用Ca和Mg微粒饱和随后添加甘露糖醇(批料SI055C-PE120208)[0455] 首先,将来自实例10c的材料的溶液的一份2.5ml样品([Mn]=38mM,[P]=508mM并且Os为约200mOs/kg;批料PE120130)调整到生理pH7.4。用Ca和Mg饱和(90%)之后进行以下步骤。根据实例23中描述的方法,用Ca和Mg溶液([Ca]/[Mg]=1.48)对100μl该溶液进行电导滴定(“纳米结构的电导滴定”),并且测定终点为[Ca]/[Mn]=1.59或[Mg]/[Mn]=1.08时。
[0456] 存在的担忧是一些Mn2+可以被Ca2+和Mg2+置换,尤其是当滴定结束时的pH为5.5时。因此,用一个10kD的过滤器对滴定之后的溶液进行过滤,并测定该滤液中Mn的量为占样品中总Mn的约15%。该纳米结构中Mn的损失可以至少部分地通过在滴定结束时的低pH来解释。
[0457] 为了制备相应的载有Ca和Mg的微粒,首先将500μl的甘露糖醇溶液(Os=280mOs/kg)与21.5μl的浓Ca/Mg溶液([Ca]=600mM,[Mg]=400mM)混合。然后,将这一溶液与580μl的批料PE120130混合,用约8μl的1M NaOH将pH调整到6.01到7.40,并测定摩尔渗透压浓度为270mOs/kg。
[0458] 实例25.免疫原性的测试
[0459] 方法
[0460] 向兔注射纳米结构浓度对应于10mg Mn/ml的2×0.5ml根据实例24的纳米结构(用镁和钙配制)5次。这些注射是经皮下给与,每个后腿一次。将这些纳米结构以下列方式与佐剂混合:
[0461] 1)以1∶1v/v与弗氏完全佐剂(Freund′s Complete Adiuvant)(西格玛-阿尔德里奇公司(Sigma-Aldrich))(总计注射1ml)(对于初次免疫),并且与弗氏不完全佐剂(对于加强注射)混合;
[0462] 2)以1∶1(v/v)与40mg/ml的氢氧化(皮尔斯公司(Pierce))(总计注射1ml)混合(对于初次免疫与加强注射两者)。
[0463] 用于注射和血清收集的方案:
[0464] ●第0天:收集免疫前血清(20ml)
[0465] ●第0天:初次免疫
[0466] ●第14天:第一次加强
[0467] ●第28天:第二次加强
[0468] ●第49天:第三次加强
[0469] ●第70天:第四次加强
[0470] ●第84天:收集免疫血清(60ml)
[0471] 分析:
[0472] 1.通过蛋白质G色谱法(GE医疗集团(GE Healthcare))从免疫前和免疫血清中纯化出免疫球蛋白部分。
[0473] 2.通过树脂上的基于IgG分子上存在的伯胺基之间的还原胺化,使2mg的IgG级分与2ml琼脂糖柱(皮尔斯公司)结合。结合IgG的柱用0.9%的NaCl洗涤并平衡。
[0474] 3.将对应于1.35mM锰的100μl根据实例24的纳米结构的溶液(包含约21μg的Si和7μg的Mn)施加到每个柱上。
[0475] 4.流过物:用0.9%NaCl,以4×1ml随后2×2ml的级分(级分1-6)洗涤这些柱。
[0476] 5.洗出液:用4×1ml的1M NaCl洗脱结合的SI055(级分7-10)。
[0477] 6.通过ICP-AES分析流过物和洗出液部分的Mn和Si含量。
[0478] 结果
[0479] 用免疫前和免疫柱两者,在流过物中检测到实际上所有的SI055。在该洗出液中,各柱之间的所检测的纳米结构的量不存在差异。
[0480] 在免疫方案的过程期间,该兔没有出现刺激或其他问题的迹象。
[0481] 来自免疫前和免疫柱的流过物和洗出液中纳米结构的回收率示于表4中。
[0482] 来自免疫前和免疫柱的部分1-10中SI055的回收率对应地示于图4a和4b中。
[0483] 表4:
[0484]
[0485] 结论
[0486] 这一实例显示,尽管用了极为稳固的免疫方案,但兔体内对这些纳米结构不存在免疫反应。这一结果证实了这些纳米结构具有生物惰性的事实。
QQ群二维码
意见反馈