用于发光应用的模制纳米粒子磷光

申请号 CN201380005786.X 申请日 2013-01-17 公开(公告)号 CN104066814B 公开(公告)日 2017-06-16
申请人 纳米技术有限公司; 发明人 伊马德·纳萨尼; 庞浩;
摘要 用于发光应用的模制 纳米粒子 磷光 体通过将在基质材料前体中的纳米粒子的悬浮液转化为模制纳米粒子 磷光体 而制备。所述基质材料可以是纳米粒子在其中是可分散的并且其是可成型的任何材料。所述模制纳米粒子磷光体可以使用任何成型技术,如例如聚合成型, 接触 成型,挤出成型,注射成型由基质材料前体/纳米粒子悬浮液制成。在成型后,所述模制纳米粒子磷光体可以用气体阻隔材料,例如, 聚合物 、金属 氧 化物、金属氮化物或玻璃包覆。包覆有阻隔物的模制纳米粒子磷光体可以用于发光装置,如LED。例如,所述磷光体可以结合到标准固态LED的 包装 中并且用于下变频固态LED发射器的发射的一部分。
权利要求

1.一种制备模制纳米粒子磷光体的方法,所述方法包括:
在模具中提供在基质材料前体中的纳米粒子的悬浮液;
将所述基质材料前体转化为基质材料,其中所述纳米粒子悬浮在所述基质材料中;
将所述基质材料从所述模具中移出;和
用气体阻隔材料包覆所述基质材料的每个表面。
2.根据权利要求1所述的方法,其中所述基质材料是聚合物或溶胶凝胶。
3.根据权利要求1所述的方法,其中所述基质材料是环树脂、有机丙烯酸酯。
4.根据权利要求1所述的方法,其中所述气体阻隔材料是聚合物、金属氧化物、金属氮化物或玻璃。
5.根据权利要求1所述的方法,其中所述气体阻隔材料是环氧树脂、有机硅或丙烯酸酯。
6.根据权利要求1所述的方法,其中所述基质材料前体包含单体制剂。
7.根据权利要求6所述的方法,其中所述基质材料前体还包含催化剂、交联剂或引发剂。
8.根据权利要求1所述的方法,其中将所述悬浮液转化为模制纳米粒子磷光体包括聚合成型、接触成型、浇铸、挤出或注射成型。
9.根据权利要求1所述的方法,其中用气体阻隔材料包覆所述模制纳米粒子磷光体包括原子层沉积、刷涂、蒸发覆或喷涂
10.一种根据权利要求1-9中任一项所述的方法制备的模制纳米粒子磷光体。
11.一种基于纳米粒子的发光装置,所述发光装置包括根据权利要求1-9中任一项所述的方法制备的模制纳米粒子磷光体。
12.一种制备基于纳米粒子的发光装置的方法,所述方法包括:
根据权利要求1-9中任一项所述的方法制备模制纳米粒子磷光体;和将所述模制纳米粒子磷光体结合到发光二极管包装中。

说明书全文

用于发光应用的模制纳米粒子磷光

[0001] 相关申请
[0002] 本申请要求于2012年1月19日提交的美国临时申请号61/588,377的权益,将其全部内容通过引用结合于此。

背景技术

[0003] 对于由尺寸为约2-100nm的粒子(通常被称为量子点(QD)和/或纳米粒子)组成的化合物半导体的制备和表征已经有实质的兴趣。这些研究主要聚焦于纳米粒子的尺寸可调
电子、光学和化学性能。半导体纳米粒子由于其可应用于多样化的商业应用如生物学标
记、太阳能电池、催化、生物学成像和发光二极管而受到大量注意。
[0004] 对于半导体纳米粒子的尤其吸引人的潜在应用领域是开发下一代发光二极管(LED)。LED在例如汽车照明、交通信号、日常照明和液晶显示器(LCD)背光和显示屏中正变得日益重要。基于纳米粒子的发光装置已经通过以下方法制备:将半导体纳米粒子包埋在
光学上清澈的(或足够透明的)LED包封介质(典型地是有机(silicone)或丙烯酸酯)中,
其然后被放置在固态LED上部。纳米粒子,通过固态LED的一次光激发,发射二次光,其颜色是纳米粒子的具体类型和尺寸的特征。例如,如果固态LED的一次发射是蓝色并且具体的纳米粒子的特征发射是红色,则纳米粒子将吸收一部分的蓝光并发射红光。由此,一部分的固态LED发射被″下变频(down-converted)″,并且该装置提供作为蓝色和红色的混合物的光。
[0005] 相对于使用更常规的磷光体,使用半导体纳米粒子潜在地具有显著的优势。例如,半导体纳米粒子提供调整LED的发射波长的能。然而,即使在纳米粒子已经被结合到LED密封剂中之后,仍然能够通过密封剂迁移到纳米粒子的表面,这可以导致光氧化,并且作为结果,导致量子产率(QY)下降。
[0006] 考虑到量子点在如此多的应用(包括但不限于,基于量子点的发光装置)中的显著应用潜力,强烈需要开发提高量子点稳定性以使其更亮、寿命更长和/或对多种类型的加工条件更不敏感的方法。对于在经济可行的规模上开发基于量子点的材料和用于制备基于量
子点的装置(如发光装置)的方法仍然有重大挑战,并且这将提供显著高平的性能以满足
消费者的需要。
发明内容
[0007] 用于发光应用的模制纳米粒子磷光体(molded nanoparticle phosphor)通过以下方法制备:将在基质材料前体中的纳米粒子的悬浮液转化为包含基质材料和所述纳米粒
子的模制纳米粒子磷光体。基质材料可以是任何这样的材料,在所述材料中纳米粒子是可
分散的,并且所述材料是可成型的。例如,基质材料可以是聚合材料。如果基质材料是聚合材料,则基质材料前体可以是合适单体的制剂(配方,formulation)。基质材料前体也可以含有催化剂、交联剂、引发剂等。
[0008] 模制纳米粒子磷光体可以使用任何成型技术,如例如聚合成型、接触成型、挤出成型、注射成型,由基质材料前体/纳米粒子悬浮液制成。在成型后,模制纳米粒子磷光体可以用气体阻隔材料(gas barrier material),例如,聚合物、金属氧化物、金属氮化物或玻璃包覆。可以通过任何涂覆技术(如原子层沉积、蒸发覆(evaporation coating)、喷涂或刷涂)将涂层施加到模制纳米粒子磷光体上。
[0009] 包覆有阻隔物的模制纳米粒子磷光体可以用于发光装置,如LED。例如,磷光体可以被结合到标准固态LED的包装中并且用于下变频该固态LED发射器的发射的一部分。
[0010] 上述概述不意在概括本公开内容的每个潜在的实施方案或每个方面。附图说明
[0011] 图1-3图示了现有技术的基于纳米粒子的发光装置。
[0012] 图4图示了一种利用预制的纳米粒子盘(disc)来制备基于纳米粒子的发光装置的方法。
[0013] 图5是示例性公开的基于纳米粒子的发光装置和现有技术的基于纳米粒子的发光装置的发射强度的比较。
[0014] 图6显示了示例性公开的基于纳米粒子的发光装置的性能。

具体实施方式

[0015] 图1图示了如在背景技术中描述的现有技术的基于纳米粒子的发光装置100。发光装置100具有在光学上清澈的(或足够透明的)LED包封介质102(典型地是有机硅或丙烯酸
酯)中的半导体纳米粒子101,其然后被置于固态LED103顶部。包封介质被容纳在包装104
内。如上所述,即使在纳米粒子已经被结合到LED密封剂中之后,氧仍然可以通过密封剂迁移到纳米粒子的表面,这可以导致光氧化,并且作为结果,导致量子产率(QY)下降。
[0016] 图2A图示了现有技术的基于纳米粒子的发光装置200,其解决了由于迁移到密封剂202中的氧所致的光氧化问题。纳米粒子201被结合到悬浮在LED密封剂202中的微珠205
中。微珠205更详细地显示在图2B中。纳米粒子201被结合到初级基质材料206中。该初级基质材料优选是光学透明介质,即,光可以通过的介质,并且所述介质可以是,但不必须是基本上光学清澈的。初级基质可以是树脂,聚合物,独石(monolith),玻璃,溶胶凝胶,环氧树脂,有机硅,(甲基)丙烯酸酯等,或可以包括二氧化硅。初级基质材料的实例包括丙烯酸酯聚合物(例如,聚(甲基)丙烯酸甲酯,聚甲基丙烯酸丁酯,聚甲基丙烯酸辛酯,氰基丙烯酸烷基酯(alkylcyanoacryaltes),聚二甲基丙烯酸乙二醇酯,聚乙酸乙烯酯等),环氧化物(例如,EPOTEK301A+B热固化环氧树脂,EPOTEK OG112-4单点UV固化环氧树脂,或EX0135A和B热固化环氧树脂),聚酰胺,聚酰亚胺,聚酯,聚酸酯,聚硫醚,聚丙烯腈,聚二烯,聚苯乙烯聚丁二烯共聚物(Kratons),pyrelenes,聚对二甲苯,二氧化硅,二氧化硅-丙烯酸酯混合物,聚醚醚(PEEK),聚偏二氟乙烯(PVDF),聚二乙烯基苯,聚乙烯,聚丙烯,聚对苯二甲酸乙二醇酯(PET),聚异丁烯(丁基橡胶),聚异戊二烯,和纤维素衍生物(甲基纤维素,乙基纤维素,羟丙基甲基纤维素,羟丙基甲基纤维素邻苯二甲酸酯,硝化纤维素),以及它们的组合。
[0017] 微珠205也可以包括涂层207以防止氧、水分或自由基通过初级基质材料的通过或扩散。该涂层可以是无机材料,如电介质,金属氧化物,金属氮化物,或二氧化硅。备选地,该涂层可以是另一种材料,如聚合物材料。
[0018] 再次参照图2A,与微珠205相关的缺点在于它们分散、反射、并且折射光。这些光学作用导致发光装置的总体性能(亮度)损失。
[0019] 图3图示了一种气密性密封的基于纳米粒子的发光装置300,其包括密封至LED包装304的气体阻隔膜308以防止有害物质如氧、水分和自由基迁移到密封剂302中。然而,气密性密封的装置300难以制备,尤其难以以工业规模制备,因为适合用作气体阻隔物308的
材料(例如,陶瓷)是昂贵的并且难以处理。可能困难的是在气体阻隔物308和LED包装304之间实现不可透密封,并且作为结果,有害物质仍然可以在界面309处扩散到装置中。此外,近来已观察到,密封的包装可能引起使LED布线和发射芯片的性能劣化的微气候效应的形成。
因此尽管期望防止氧等迁移到LED密封剂材料中,但是意外地同样期望允许LED包装自身进
行″呼吸″。本发明的目的是提供这样的基于纳米粒子的发光装置,其满足这两个看似矛盾的目标。
[0020] 图4图示了一种制备克服了上述问题的基于纳米粒子的发光装置的方法。将在基质材料前体中的纳米粒子的悬浮液401转移到模具402中。一旦在模具中,基质材料前体被
转化为基质材料从而产生模制纳米粒子磷光体403。注意,模制纳米粒子磷光体在图4中被
示意性地表现为是正方形的,但是将理解,模制纳米粒子磷光体403的实际形状将由模具
402的形状决定。本发明不限于任何特定形状。同样注意,图1-4不是按比例的。示例性基质材料包括树脂,聚合物,溶胶凝胶,环氧树脂,有机硅,(甲基)丙烯酸酯等,或可以包括二氧化硅。基质材料的实例包括丙烯酸酯聚合物(例如,聚(甲基)丙烯酸甲酯,聚甲基丙烯酸丁酯,聚甲基丙烯酸辛酯,氰基丙烯酸烷基酯,聚二甲基丙烯酸乙二醇酯,聚乙酸乙烯酯等),环氧化物(例如,EPOTEK301A+B热固化环氧树脂,EPOTEK OG112-4单点UV固化环氧树脂,或EX0135A和B热固化环氧树脂),聚酰胺,聚酰亚胺,聚酯,聚碳酸酯,聚硫醚,聚丙烯腈,聚二烯,聚苯乙烯聚丁二烯共聚物(Kratons),pyrelenes,聚对二甲苯(聚对二甲苯基,
parylenes),二氧化硅,二氧化硅-丙烯酸酯混合物,聚醚醚酮(PEEK),聚偏二氟乙烯
(PVDF),聚二乙烯基苯,聚乙烯,聚丙烯,聚对苯二甲酸乙二醇酯(PET),聚异丁烯(丁基橡胶),聚异戊二烯,和纤维素衍生物(甲基纤维素,乙基纤维素,羟丙基甲基纤维素,羟丙基甲基纤维素邻苯二甲酸酯,硝化纤维素),以及它们的组合。
[0021] 基质材料前体可以是纳米粒子可以悬浮或溶解在其中并且可以被转化为基质材料的任何前体制剂。例如,如果基质材料是聚合物,则基质材料前体可以是相应的单体和用于将基质材料前体转化为基质材料的任何另外的物质(如光引发剂、催化剂和/或交联剂)
的制剂。根据一个实施方案,当基质材料是丙烯酸酯聚合物时,基质材料前体可以是适当的甲基丙烯酸酯单体、光引发剂和交联剂的制剂。基质材料前体可以通过本领域中任何已知
的方法(包括但不限于光引发的聚合反应)转化为基质材料。
[0022] 模具402可以是具有用来产生模制纳米粒子磷光体403所需形状的形状的任何模具。根据一个实施方案,模具402本身是与要用于最终的纳米粒子发光装置的LED包装基本
上相同的LED包装。本发明不限于任何特定的形成模制纳米粒子磷光体403的方法。可以使
用任何已知的成型或浇铸技术,例如,接触成型,浇铸,挤出或注射成型。
[0023] 模制纳米粒子磷光体403可以用气体阻隔材料包覆以产生包覆的模制纳米粒子磷光体404。该涂层优选是氧或任何类型的氧化剂经由初级基质材料通过的阻隔物。该涂层可以是自由基物质经由初级基质材料通过的阻隔物,和/或优选是水分阻隔物。将理解,气体阻隔材料可以不完全阻止气体和/或水分的通过。
[0024] 所述涂层可以提供任何所需厚度的涂层材料的层。例如,表面层涂层可以为约1至10nm厚,多至约400至500nm厚或更厚。所述涂层可以包含无机材料,如电介质(绝缘体)、金属氧化物、金属氮化物或基于二氧化硅的材料(例如,玻璃)。
[0025] 优选的金属氧化物选自由以下各项组成的组:Al2O3,B2O3,CO2O3,Cr2O3,CuO,Fe2O3,Ga2O3,HfO2,In2O3,MgO,Nb2O5,NiO,SiO2,SnO2,Ta2O5,TiO2,ZrO2,Sc2O3,Y2O3,GeO2,La2O3,CeO2,PrOx(x=适当的整数),Nd2O3,Sm2O3,EuOy(y=适当的整数),Gd2O3,Dy2O3,Ho2O3,Er2O3,Tm2O3,Yb2O3,Lu2O3,SrTiO3,BaTiO3,PbTiO3,PbZrO3,BimTinO(m=适当的整数;n=适当的整数),BiaSibO(a=适当的整数;b=适当的整数),SrTa2O6,SrBi2Ta2O9,YScO3,LaAIO3,NdAIO3,GdScO3,LaScO3,LaLuO3,Er3Ga5O13。
[0026] 优选的金属氮化物可以选自由以下各项组成的组:BN,AlN,GaN,InN,Zr3N4,Cu2N,Hf3N4,SiNc(c=适当的整数),TiN,Ta3N5,Ti--Si--N,Ti--Al--N,TaN,NbN,MoN,WNd(d=适当的整数),以及WNeCf(e=适当的整数;f=适当的整数)。
[0027] 无机涂层可以包括以任意适当晶形的二氧化硅。
[0028] 涂层可以结合与有机或聚合物材料组合的无机材料。例如,在优选的实施方案中,涂层是无机/聚合物混合物,如二氧化硅-丙烯酸酯混合物材料。
[0029] 在另一个优选的实施方案中,涂层包含聚合材料,所述聚合材料可以是饱和的或不饱和的聚合物,或可以结合一个或多个杂原子(例如,O、S、N、卤素)或含有杂原子的官能团(例如,羰基、氰基、醚、环氧化物、酰胺等)。
[0030] 优选的聚合物涂层材料的实例包括丙烯酸酯聚合物(例如,聚(甲基)丙烯酸甲酯,聚甲基丙烯酸丁酯,聚甲基丙烯酸辛酯,氰基丙烯酸烷基酯,聚二甲基丙烯酸乙二醇酯,聚乙酸乙烯酯等),环氧化物(例如,EPOTEK 301A+B热固化环氧树脂,EPOTEK OG112-4单点UV固化环氧树脂,或EX0135A和B热固化环氧树脂),聚酰胺,聚酰亚胺,聚酯,聚碳酸酯,聚硫醚,聚丙烯腈,聚二烯,聚苯乙烯聚丁二烯共聚物(Kratons),pyrelenes,聚对二甲苯,聚醚醚酮(PEEK),聚偏二氟乙烯(PVDF),聚二乙烯基苯,聚乙烯,聚丙烯,聚对苯二甲酸乙二醇酯(PET),聚异丁烯(丁基橡胶),聚异戊二烯,和纤维素衍生物(甲基纤维素,乙基纤维素,羟丙基甲基纤维素,羟丙基甲基纤维素邻苯二甲酸酯,硝化纤维素),以及它们的组合。
[0031] 涂层405可以通过本领域以及相关领域(如药物领域,其中涂层通常被施加于片剂等)中已知的任何涂覆方法施加到模制纳米粒子磷光体403。涂覆方法的实例包括原子层沉
积(ALD)。其他方法包括喷涂、蒸发镀覆和刷涂。
[0032] 包覆的模制纳米粒子磷光体404被插入到可以用LED密封剂(如有机硅或环氧树脂)填充的LED包装406中,并且基于纳米粒子的发光装置407的制备可以根据LED工业中典
型的实践完成。
[0033] 本发明不限于任何特定类型的发光纳米粒子。在优选的实施方案中,纳米粒子是半导体材料。半导体材料可以结合来自周期表第2到16族中的任意一个或多个的离子,并且可以包括二元、三元和四元材料,即,分别结合两种、三种或四种不同离子的材料。例如,纳米粒子可以结合半导体材料,如,但不限于,CdS,CdSe,CdTe,ZnS,ZnSe,ZnTe,InP,InAs,InSb,AlP,AIS,AIAs,AISb,GaN,GaP,GaAs,GaSb,PbS,PbSe,Si,Ge以及它们的组合。根据多个实施方案,纳米粒子的直径可以小于约100nm,小于约50nm,小于约20nm,小于约15nm和/或直径可以在约2至10nm的范围。
[0034] 包含单一半导体材料(例如,CdS,CdSe,ZnS,ZnSe,InP,GaN等)的纳米粒子,由于在该纳米粒子的表面处的缺陷和空键处发生的非辐射电子空穴复合,而可能具有相对低的量子效率。为了至少部分地解决这些问题,纳米粒子核可以被至少部分地用与该核的材料不
同的材料,例如与″核″不同的半导体材料的一个或多个层(本文中也被称为″壳层″)包覆。
包含在所述或每一壳层中的材料可以结合来自周期表第2到16族中的任意一个或多个的离
子。当纳米粒子具有两个以上的壳层时,每个壳层可以由不同的材料形成。在示例性核/壳材料中,核由以上说明的材料中的一种形成,而壳层包含与核材料相比更大带隙能(band-
gap energy)和类似晶格尺寸的半导体材料。示例性壳层材料包括,但不限于,ZnS,ZnO,MgS,MgSe,MgTe和GaN。示例性多壳层纳米粒子是InP/ZnS/ZnO。将载流子约束在核内而远离表面态提供更大稳定性和更高量子产率的纳米粒子。
[0035] 虽然公开的方法不限于任何特定的纳米粒子材料,但是由于增加的对于与镉相关的潜在的毒性和环境效果的关注,包含不含有镉的材料的纳米粒子是尤其优选的。无镉纳
米粒子的实例包括包含半导体材料,例如,ZnS,ZnSe,ZnTe,InP,InAs,InSb,AlP,AIS,AIAs,AISb,GaN,GaP,GaAs,GaSb,PbS,PbSe,Si,Ge的纳米粒子,以及特别地,包含这些材料中的一种的核和这些材料中的另一种的一个或多个壳层的纳米粒子。
[0036] 实施例1
[0037] 通过使用实际的LED包装作为模具来制备标准20mw LED包装的尺寸的模制纳米粒子磷光体。将CFQD在甲苯中的溶液(例如20mg无机物)在真空下干燥以留下QD残余物。向该
残余物中加入甲基丙烯酸十二烷基酯(1.85ml,6.6mmol),加入溶解在交联剂三甲基丙烯酸三羟甲基丙烷酯(1.06ml,3.3mmol)中的光引发剂(Irgacure819,9mg)的溶液。将单体混合物的等分试样(1.5-3ul)用于填充LED的杯。然后照射填充的LED(Hamamatsu uv-LED灯LC-
L2,365nm,7500mW/cm2,3分钟)。然后通过简单的轻敲将固化的模制纳米粒子磷光体从LED除去,然后处理以利用气体阻隔膜进行包覆(使用例如涂覆方法如原子层沉积-ALD和或高
阻隔材料如PVOH)。然后将包覆盘插入到填充有合适的封装树脂的新的LED包装中。
[0038] 图5显示与使用悬浮在相同基质材料的微珠中的纳米粒子的装置(曲线b)相比,由使用模制纳米粒子磷光体的基于无镉量子点纳米粒子(CFQD)(InP/ZnS)的发光装置(曲线
a)产生的发射光谱。在模制纳米粒子磷光体装置的情况下,在约630nm处的发光峰显著更
高。在基于微珠的装置中,发光强度衰减,可能是由于多个微珠的散射,如以上所讨论的。
[0039] 图6显示如本文所公开的使用模制纳米粒子磷光体的纳米粒子发光装置的效力(曲线a,基于人眼感光度的LED的总亮度),单独的QD峰的百分比光致发光强度(曲线b),QD/LED强度(曲线c,单独的QD峰和蓝筹峰(blue chip peak)之间的比),和LED强度(曲线d,单独的蓝筹峰)。
[0040] 以上对优选的和其他实施方案的描述不意在限制或局限申请人设想的发明构思的范围或适用性。将理解的是,受益于本公开内容,以上根据公开的主题的任何实施方案或方面描述的特征可以单独使用,或者可以与公开的主题的任何其他实施方案或方面中的任
何其他所述特征组合使用。
QQ群二维码
意见反馈