一种富勒烯/硫化镉纳米复合光催化剂及其制备方法

申请号 CN201710121766.9 申请日 2017-03-02 公开(公告)号 CN106925298A 公开(公告)日 2017-07-07
申请人 天津大学; 发明人 沈铸睿; 蔡强; 张茜;
摘要 本 发明 提供了一种 富勒烯 /硫化镉纳米复合光催化剂及其制备方法。该光催化剂为富勒烯C60均匀 覆盖 在CdS 纳米晶 表面形成,富勒烯C60与CdS的 质量 比为0.4~8:100。先将二 水 合 醋酸 镉和L‑半胱 氨 酸加入去离子水中,制成混合溶液,其质量比为1.33:1.22~3.66:20~30;再将富勒烯C60加入混合溶液中,进行水热反应;再将水热产物洗涤后 真空 干燥,制得富勒烯/硫化镉纳米复合光催化剂。本发明催化剂中富勒烯均匀包覆在硫化镉纳米晶表面并且结合紧密,极大地提高了硫化镉中光生载流子的分离速度,有效增强了硫化镉光催化剂的光催化活性及 稳定性 ,且制备工艺简单,光催化活性和循环稳定性均优于现有硫化镉材料,在光催化分解水产氢和污染物处理方面具有广泛的应用前景。
权利要求

1.一种富勒烯/硫化镉纳米复合光催化剂,为富勒烯C60均匀覆盖在CdS纳米晶表面形成,表示为C60/CdS;所述富勒烯C60与CdS的质量比为0.4~8:100。
2.根据权利要求1所述的一种富勒烯/硫化镉纳米复合光催化剂,其特征在于,所述富勒烯C60与CdS的质量比为0.4:100。
3.根据权利要求1所述的一种富勒烯/硫化镉纳米复合光催化剂,其特征在于,所述复合材料中的CdS纳米晶尺寸为30~80nm;富勒烯C60均匀包覆在硫化镉纳米晶表面,其厚度1~3nm。
4.权利要求1的一种富勒烯/硫化镉纳米复合光催化剂的制备方法,通过一步热法直接制备,具体步骤如下:
(1)将二水合醋酸镉和L-半胱酸加入去离子水中,搅拌后得到均匀分散的混合溶液;
混合溶液中二水合醋酸镉和L-半胱氨酸与去离子水的质量比为1.33:1.22~3.66:20~30;
(2)将富勒烯C60加入到步骤(1)制得的混合溶液中,搅拌后得到富勒烯C60均匀分散的混合溶液,然后进行水热反应;其中富勒烯C60与步骤(1)混合溶液中生成的硫化镉的质量比为
0.4~8:100。
(3)将步骤(2)的水热产物使用去离子水和乙醇交替洗涤以去除杂质,然后将产物真空干燥得到富勒烯/硫化镉纳米复合光催化剂。
5.根据权利要求4所述的一种富勒烯/硫化镉纳米复合光催化剂的制备方法,其特征在于,所述步骤(1)混合溶液的搅拌速度为300~400r/min,搅拌时间为1~2h。
6.根据权利要求4所述的一种富勒烯/硫化镉纳米复合光催化剂的制备方法,其特征在于,所述步骤(2)含富勒烯C60的混合溶液的搅拌速度为300~400r/min,搅拌时间为0.5~
1h。
7.根据权利要求4所述的一种富勒烯/硫化镉纳米复合光催化剂的制备方法,其特征在于,所述步骤(3)水热反应的温度为160~220℃,水热保温时间为5~12h,然后自然冷却到室温。
8.根据权利要求4所述的一种富勒烯/硫化镉纳米复合光催化剂的制备方法,其特征在于,所述步骤(3)采用去离子水和乙醇交替洗涤,重复6~10次;真空干燥温度为50~100℃,真空干燥时间为8~12h。

说明书全文

一种富勒烯/硫化镉纳米复合光催化剂及其制备方法

技术领域

[0001] 本发明是关于纳米材料的,特别涉及一种用于光催化分解产氢和光催化降解染料的纳米复合光催化剂。

背景技术

[0002] 进入21世纪以来,能源短缺与环境污染问题已经成为人类生存和发展所面临的两大关键问题。多年来,人们致于寻找合适的可再生能源以及污染物处理方法。在众多的解决方法中,半导体光催化剂由于可以有效利用太阳能,被认为是一种可以同时解决能源和环境问题的有效方法,并且得到了研究人员的广泛关注。在过去的四十多年里,陆陆续续有许多半导体材料被发现可用于作光催化剂,并且取得了一定的进展,但开发出切实可用的光催化剂仍然存在很多问题。
[0003] 在众多的半导体光催化剂中,硫化镉(CdS)由于具有低的禁带宽度(2.4eV),可以较好得吸收太阳光中的可见光部分,在太阳光或可见光下都表现出非常优异的光催化性能。此外,CdS还具有资源分布广,价格低,制备简单等优势。因此CdS作为一种重要的半导体材料,已经被运用于各种不同的领域,如光电学、太阳能电池、化学传感器和光催化剂。然而,CdS基光催化材料也存在着如光催化活性差、量子转换效率低和光腐蚀问题等内在缺陷。在太阳光照射下,CdS中的硫离子很容易被光生空穴所化形成单质硫,导致其光催化活性变低以及稳定性变差,严重限制了它的实际应用。因此,如何解决这些问题是提高CdS光催化活性的关键。目前,除了传统的掺杂、复合等方法,选择以材料作修饰以提高CdS的光催化性能已经成为近来的研究热点。人们通过将无定型碳、氧化石墨烯或碳纳米管等碳材料与CdS复合制备纳米复合材料,利用碳材料导电性好、比表面积大等优点以提高CdS的光催化活性。富勒烯C60作为碳的一种新型同素异形体,由于独特的非定域化大π键结构使得其具有优异的电子亲和力,具有丰富的化学反应活性。因此,富勒烯C60已经在太阳能电池和人造光合作用等领域受到广泛的重视。另外,基于其优异的电子传导特性,富勒烯C60还可以有效提高TiO2、g-C3N4和ZnO等光催化剂中光生载流子的分离速度,从而提高它们的催化活性。然而,据了解,目前很少有报道将富勒烯C60和CdS复合以提高CdS光催化剂的催化活性。因此,开发具有高催化活性及高稳定性的新型富勒烯/硫化镉纳米复合材料对CdS光催化材料的发展具有重要意义。

发明内容

[0004] 本发明的目的,是针对目前的硫化镉基光催化材料存在光催化活性低和光腐蚀导致的循环稳定性差等内在缺陷,提供了一种通过水热法一步制备的富勒烯/硫化镉纳米复合光催化剂及其制备方法。
[0005] 本发明的技术方案如下:
[0006] (1)将二水合醋酸镉和L-半胱酸加入去离子水中,搅拌后得到均匀分散的混合溶液;混合溶液中二水合醋酸镉和L-半胱氨酸与去离子水的质量比为1.33:1.22~3.66:20~30;
[0007] (2)将富勒烯C60加入到步骤(1)制得的混合溶液中,搅拌后得到富勒烯C60均匀分散的混合溶液,然后进行水热反应;其中富勒烯C60与步骤(1)混合溶液中生成的硫化镉的质量比为0.4~8:100;
[0008] (3)将步骤(2)的水热产物使用去离子水和乙醇交替洗涤以去除杂质,然后将产物真空干燥得到富勒烯/硫化镉纳米复合光催化剂。
[0009] 所述步骤(1)混合溶液的搅拌速度为300~400r/min,搅拌时间为1~2h。
[0010] 所述步骤(2)含富勒烯C60的混合溶液的搅拌速度为300-400r/min,搅拌时间为0.5-1h。
[0011] 所述步骤(3)水热反应的温度为160-220℃,水热保温时间为5-12h,然后自然冷却到室温。
[0012] 所述步骤(3)采用去离子水和乙醇交替洗涤,重复6~10次;真空干燥温度为50-100℃,真空干燥时间为8-12h。
[0013] 本发明所述的富勒烯/硫化镉纳米复合光催化剂中,硫化镉纳米晶具有尺寸小(30-80nm)的特点,因此在光照时的光电子迁移路程变短,有利于反应的发生。在富勒烯/硫化镉纳米复合光催化剂中富勒烯C60均匀覆盖在硫化镉纳米晶表面,可以有效导出光生电子促进光催化反应的进行,提高硫化镉的光催化活性;同时,由于富勒烯C60优异的电子亲和力可以有效提高硫化镉中光生载流子的分离速度,从而进一步增强其循环稳定性。
[0014] 与现有技术相比较,本发明具有以下明显的优点:
[0015] 1)本发明中的富勒烯/硫化镉纳米复合光催化剂在实际应用中性能优异,较纯硫化镉而言在光催化活性和循环稳定性方面都有大幅提高。
[0016] 2)本发明中的富勒烯/硫化镉纳米复合光催化剂具有富勒烯包覆硫化镉纳米晶的特殊结构,在光催化反应中十分有利于光生电子和空穴的分离,可以有效提高光催化剂的光催化活性。
[0017] 3)本发明采用水热法,一步制得富勒烯/硫化镉纳米复合光催化剂,具有制备工艺简单的优点。附图说明
[0018] 图1是本发明实施例1~4中C60/CdS纳米复合光催化剂以及纯富勒烯C60和纯CdS的X射线衍射图;
[0019] 图2是本发明实施例1中C60/CdS纳米复合光催化剂的透射电镜照片;
[0020] 图3是本发明实施例1中C60/CdS纳米复合光催化剂的高倍透射电镜照片;
[0021] 图4是本发明实施例1~4中C60/CdS纳米复合光催化剂和纯CdS的光催化产氢速率对比图;图中的0.4C60/CdS、0.8C60/CdS、4C60/CdS、8C60/CdS分别表示本发明中实施例1、2、3、4中制备的制品;
[0022] 图5是本发明实施例1中C60/CdS纳米复合光催化剂的光催化产氢循环稳定性图。
[0023] 图6是本发明实施例1~4中C60/CdS纳米复合光催化剂和纯CdS对罗丹明B的光催化降解效率对比图;
[0024] 图6中的0.4C60/CdS、0.8C60/CdS、4C60/CdS、8C60/CdS分别表示本发明中实施例1、2、3、4中制备的制品;
[0025] 图7是本发明实施例1中C60/CdS纳米复合光催化剂对罗丹明B的光催化降解循环稳定性图。

具体实施方式

[0026] 本发明所用原料均为化学纯试剂,具体实施例如下;
[0027] 实施例1
[0028] (1)将1.33g二水合醋酸镉和1.22g L-半胱氨酸加入到20ml去离子水中,以400r/min搅拌1h后加入3mg的富勒烯C60,继续以400r/min搅拌0.5h,得到富勒烯C60均匀分散的混合溶液。
[0029] (2)将步骤(1)制得的混合溶液转移到30ml聚四氟乙烯反应釜中,密封后放入烘箱中于200℃水热反应10h。
[0030] (3)将水热产物使用去离子水和乙醇交替洗涤,重复6次以去除杂质,70℃真空干燥10h后得到C60/CdS纳米复合光催化剂。
[0031] 图1为实施例1中所制备的C60/CdS纳米复合光催化剂以及纯CdS纳米晶和富勒烯C60的XRD图谱,由该图可知,所制备的产品是由六方相CdS和立方相富勒烯C60组成,其中CdS纳米晶具有优异的结晶性,富勒烯C60的引入不影响CdS的结晶性。
[0032] 图2和图3为实施例1中制备的C60/CdS纳米复合光催化剂的透射电镜照片及其高倍透射照片。从图2中可以看到所制备的产物具有多边形结构,其尺寸范围为30~80nm。从图3中可以看到在单个的CdS纳米晶表面有一层均匀的非晶层(虚线处),厚度约为1nm,是吸附在其表面的富勒烯C60分子,说明二者之间存在较好的界面结合力。
[0033] 由上述表征图谱进一步证实了,采用本发明所提供的制备方法可以获得C60/CdS纳米复合光催化剂。
[0034] 将本实施例1中制备的C60/CdS纳米复合光催化剂应用于光催化产氢反应中。具体实验方法如下:
[0035] 将25mg实施例1中制备的C60/CdS纳米复合光催化剂超声分散于50ml乳酸水溶液(包含45ml去离子水和5ml乳酸)中,然后将悬浊液转移至派热克斯玻璃三颈烧瓶内,加入0.08mL 0.1M的氯铂酸溶液,通过光还原法在催化剂表面原位沉积1wt%的Pt助催化剂。然后通氩气30分钟将瓶内空气排净。随后,在封闭和搅拌的条件下,开启光源(300W氙灯,搭载
420nm滤光片),每隔30分钟用气相色谱仪检测反应体系内氢气含量,然后计算平均产氢速率,以毫摩尔每克每小时为计量单位。将本实施例1中制备的C60/CdS纳米复合光催化剂应用于光催化产氢反应中,其产氢速率和循化稳定性分别见图4和图5。从这两个图中可以看到,当富勒烯C60含量为硫化镉质量的0.4%时C60/CdS纳米复合光催化剂表现出优异的光催化活性,其光催化产氢速率是纯CdS的2.3倍,经过三次循环之后的产氢速率依然能够保持。
[0036] 将本实施例1中制备的C60/CdS纳米复合光催化剂应用于光催化降解反应中。具体实验方法如下:
[0037] 将20mg实施例1中制备的C60/CdS纳米复合光催化剂超声分散于20ml浓度为10mg/L的罗丹明B溶液中,然后将悬浊液转移至石英反应器中,搅拌并暗吸附30分钟以达到吸附平衡。开启光源(300W氙灯,搭载420nm滤光片),每隔10分钟用紫外可见分光光度计检测溶液中罗丹明B的吸光度,从而计算得到每个时间点的光降解效率。将本实施例1中制备的C60/CdS纳米复合光催化剂应用于光催化降解反应中,其降解效率和循化稳定性分别见图6和图7。从这两个图中可以看到,实施实例1中制备的C60/CdS纳米复合光催化剂经过40分钟的光照后的降解效率能达到96.7%,经过三次循环之后的降解效率依然能达到94.6%,具有非常好的循环稳定性。
[0038] 实施例2:
[0039] 具体制备方法与实施例1大致相同,差别之处在于富勒烯C60的添加量变为6mg,然后制得C60/CdS纳米复合光催化剂。实施例2中所制备的C60/CdS纳米复合光催化剂按照与实施例1中相同的方法测试其光催化性能,其光催化产氢速率和光催化降解效率分别见图4和图6。
[0040] 实施例3:
[0041] 具体制备方法与实施例1大致相同,差别之处在于富勒烯C60的添加量变为30mg,然后制得C60/CdS纳米复合光催化剂。实施例3中所制备的C60/CdS纳米复合光催化剂按照与实施例1中相同的方法测试其光催化性能,其光催化产氢速率和光催化降解效率分别见图4和图6。
[0042] 实施例4:
[0043] 具体制备方法与实施例1大致相同,差别之处在于富勒烯C60的添加量变为60mg,然后制得C60/CdS纳米复合光催化剂。实施例4中所制备的C60/CdS纳米复合光催化剂按照与实施例1中相同的方法测试其光催化性能,其光催化产氢速率和光催化降解效率分别见图4和图6。
[0044] 在图4和图6中,0.4C60/CdS、0.8C60/CdS、4C60/CdS、8C60/CdS分别表示本发明中实施例1、2、3、4中制备的制品。从图4和图6中可以看到,富勒烯C60的修饰提高了CdS的光催化活性。当富勒烯C60含量为CdS质量的0.4%时C60/CdS纳米复合光催化剂表现出最高的光催化活性,其光催化产氢速率和光催化降解速率分别是纯CdS的2.3倍和1.5倍。
[0045] 本发明实施例的方法,通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。
QQ群二维码
意见反馈