磁阻效应器件、磁层叠结构体及磁层叠结构体的制造方法

申请号 CN200810086892.6 申请日 2008-03-20 公开(公告)号 CN101271958B 公开(公告)日 2010-12-08
申请人 富士通株式会社; 发明人 指宿隆弘; 佐藤雅重; 梅原慎二郎;
摘要 本 发明 提供一种 磁阻效应 器件、 磁层 叠结构体及磁层叠结构体的制造方法。其中,由NiFeN制成的底层(2)设置于衬底的主表面之上。由包含Ir和Mn的反 铁 磁材料制成的钉扎层(3)设置于底层上。由铁磁材料制成的基准层(4c)设置于钉扎层之上,其中该铁磁材料的磁化方向通过直接或经由另一铁磁材料层与钉扎层交换耦合而固定。由非 磁性 材料制成的非磁性层(7)设置于基准层之上。由铁磁材料制成的自由层(8)设置于非磁性层之上,其中该铁磁材料的磁化方向根据外部 磁场 而改变。本发明能够防止器件性能因钉扎层的表面光滑度恶化而退化。
权利要求

1.一种磁阻效应器件,包括:
底层,由NiFeN制成且设置于衬底的主表面之上;
钉扎层,由包含Ir和Mn的反磁材料制成且设置于所述底层上;
基准层,设置于所述钉扎层之上且由如下铁磁材料制成:该铁磁材料的磁化方向通过直接或经由另一铁磁材料层与所述钉扎层交换耦合而固定:
磁性层,由非磁性材料制成且设置于所述基准层之上;以及
自由层,设置于所述非磁性层之上且由如下铁磁材料制成:该铁磁材料的磁化方向根据外部磁场而改变。
2.根据权利要求1所述的磁阻效应器件,其中所述钉扎层的结晶取向为所述钉扎层的(200)结晶面平行于所述衬底的主表面。
3.根据权利要求1所述的磁阻效应器件,其中所述底层的厚度为2nm或更厚。
4.根据权利要求1所述的磁阻效应器件,其中所述底层的厚度为4nm或更薄。
5.根据权利要求1所述的磁阻效应器件,其中所述非磁性层是由绝缘材料制成的,并具有能够让隧道电流在厚度方向上流动的厚度。
6.根据权利要求5所述的磁阻效应器件,其中所述非磁性层是由MgO制成的。
7.根据权利要求6所述的磁阻效应器件,其中所述底层的结晶取向经由所述钉扎层和所述基准层而传承至所述非磁性层。
8.根据权利要求1所述的磁阻效应器件,还包括:
被钉扎层,设置于所述钉扎层与所述基准层之间,并且由铁磁材料制成;以及
中间层,设置于所述被钉扎层与所述基准层之间,并且由非磁性材料制成,
其中:
所述被钉扎层的磁化方向通过与所述钉扎层的交换耦合而固定;并且
所述被钉扎层和所述基准层经由所述中间层以如下方式彼此交换耦合:所述被钉扎层的磁化方向与所述基准层的磁化方向是彼此反向平行的。
9.一种磁层叠结构体,包括:
底层,由NiFeN制成且设置于衬底的主表面之上;
钉扎层,由包含Ir和Mn的反铁磁材料制成且设置于所述底层上;以及
被钉扎层,设置于所述钉扎层之上且由如下铁磁材料制成:该铁磁材料的磁化方向通过与所述钉扎层交换耦合而固定。
10.根据权利要求9所述的磁层叠结构体,其中所述底层中的NiFeN的结晶取向为所述底层的(200)结晶面平行于所述衬底的主表面。
11.一种磁层叠结构体的制造方法,包括以下步骤:
利用NiFe作为靶材并利用Ar和N2的混合气体作为溅射气体,通过反应溅射在衬底上形成NiFeN构成的底层;以及
在所述底层上形成由包含Ir和Mn的反铁磁材料制成的钉扎层。
12.根据权利要求11所述的磁层叠结构体的制造方法,其中N2气体对所述溅射气体的分压比为30%或更高。
13.一种磁阻效应器件,包括:
底层,由NiFeN制成且设置于衬底的主表面之上;
自由层,设置于所述底层之上且由如下铁磁材料制成:该铁磁材料的磁化方向根据外部磁场而改变;
隧道阻挡层,设置于所述自由层之上且由MgO制成;以及
基准层,设置于所述隧道阻挡层之上且由如下铁磁材料制成:该铁磁材料的磁化方向是固定的。
14.根据权利要求13所述的磁阻效应器件,其中所述自由层是由CoFe制成的并且不包含B。
15.根据权利要求13所述的磁阻效应器件,其中所述底层的结晶性经由所述自由层而传承至所述隧道阻挡层。

说明书全文

技术领域

发明涉及一种具有由包含Ir和Mn的反磁材料制成的钉扎层的磁阻效应器件、磁层叠结构体及磁层叠结构体的制造方法。 

背景技术

交换耦合膜具有由反铁磁膜和铁磁膜构成的层叠结构,交换耦合膜被用来固定硬盘驱动器(HDD)的读取器件或磁阻效应型随机存取存储器(MRAM)中所使用的铁磁膜的磁化方向。 
图12是HDD读取器件和磁记录介质的部分透视图。定义一个xyz正交坐标系,xy平面定义在磁记录介质103的表面上,而z轴垂直于磁记录介质103的上述表面。假定x轴方向对应于拖动方向而y轴方向对应于磁道宽度方向。一对磁性防护层100及101设置在x轴方向上彼此相距一定距离。磁阻效应器件102设置在上述磁性防护层之间。磁阻效应器件102在z轴方向上面向磁记录介质103,并与磁记录介质103间有微小间隙。例如,利用隧道磁阻效应器件(TMR器件)或自旋膜(spin valve film)作为磁阻效应器件102。 
TMR器件例如具有层叠结构,该层叠结构由在x轴方向上叠置的底层、反铁磁性钉扎层、铁磁性基准层、隧道阻挡层、自由层、及顶层构成。磁记录介质103所产生的磁场由磁阻效应器件102的自由层来感应,且磁场的变化作为电子信号来读取。 
上述这对磁性防护层100和101具有从与将要读取的目标位相邻的位吸引磁场的功能。位长(bit length)Lb因此取决于磁阻效应器件102的总厚度 (读取间隙长度)Lrg。位长Lb随着读取间隙长度Lrg变长而变长。希望的是缩短读取间隙长度Lrg以便缩短位长Lb。 
直到2003年为止,已将Ta/NiFe叠置层、Ta/Ru叠置层、NiCr层或NiFeCr层用作HDD读取器件的底层,而且已将PtMn层或PdPtMn层用作反铁磁性钉扎层。然而,反铁磁性钉扎层需要具有15nm或更厚的厚度,以便反铁磁性钉扎层与铁磁性基准层交换耦合。随着钉扎层变厚,读取间隙长度Lrg就变长。因此难以通过缩短位长Lb来提高记录密度, 
如果将IrMn用于钉扎层,则即使将钉扎层减薄至大约4nm,钉扎层也与被钉扎层交换耦合。因此将IrMn用于钉扎层的磁阻效应器件适于提高记录密度(例如参考JP-A-2005-244254的日本专利申请)。 
为了最大程度上体现出将MgO用于隧道阻挡层的TMR器件的性能,优选使得MgO具有(200)取向。可通过将非晶态CoFeB用于作为隧道阻挡层底层的基准层,来使得MgO具有(200)取向(参考David D.Djaystprawira等人的论文“230%room-temperature magnetoresistance in CoFeB/MgO/CoFeBmagnetic tunnel junctions”。Appl.Phys.Lett.,86,092502(2005))。 
如果将IrMn用于TMR器件的钉扎层,钉扎层的表面光滑度就会恶化(表面粗糙度增加)。如果使得隧道阻挡层变薄以降低TMR器件的面电阻RA,则基准层与磁化自由层之间的静磁相互作用(magnetostatic interaction)就会因基准层的表面不规则而变大。因此,磁化自由层的磁化方向受到基准层磁化的影响。如果MgO隧道阻挡层薄,则在隧道阻挡层中就会因基准层的表面不规则而产生针孔,并且器件性能可能恶化。 
当作为MgO隧道阻挡层的底层的基准层是由非晶态CoFeB制成的时候,如果MgO膜生长到某个厚度,即可得到具有良好(200)取向的MgO。然而,如果MgO膜薄,就难以形成具有足够(200)取向的膜。MR比随着MgO膜的取向恶化而降低。 

发明内容

根据一个本发明实施例的方案,提供一种磁阻效应器件,包括:底层,由NiFeN制成且设置于衬底的主表面上;钉扎层,由包含Ir和Mn的反铁磁材料制成且设置于底层上;基准层,设置于钉扎层上且由如下铁磁材料制成:该铁磁材料的磁化方向通过直接或经由另一铁磁材料层与钉扎层交换耦合而固定;非磁性层,由非磁性材料制成且设置于基准层上;以及自由层,设置于非磁性层上且由如下铁磁材料制成:该铁磁材料的磁化方向在外部磁场的影响下改变。
如上所述的磁阻效应器件,其中所述钉扎层的结晶取向(crystallineorientation)为所述钉扎层的(200)结晶面(crystalline plane)平行于所述衬底的主表面。 
根据另一个本发明实施例的方案,提供一种磁层叠结构体,包括:底层,由NiFeN制成且设置于衬底的主表面上;钉扎层,由包含Ir和Mn的反铁磁材料制成且设置于底层上:以及被钉扎层,设置于钉扎层上且由如下铁磁材料制成:该铁磁材料的磁化方向通过与钉扎层的交换耦合而固定。 
根据再一个本发明实施例的方案,提供一种磁层叠结构体的制造方法,包括:利用NiFe靶材及作为溅射气体的Ar和N2的混合气体,通过反应溅射在衬底上形成NiFeN底层;以及在底层上形成由包含Ir和Mn的反铁磁材料制成的钉扎层。 
根据另一个本发明实施例的方案,提供一种磁阻效应器件,包括:底层,由NiFeN制成且设置于衬底的主表面上;自由层,设置于底层上且由如下铁磁材料制成:该铁磁材料的磁化方向在外部磁场影响下改变;隧道阻挡层,设置于自由层上且由MgO制成;以及基准层,设置于隧道阻挡层上且由如下铁磁材料制成:该铁磁材料的磁化方向是固定的。 
本发明能够防止器件性能因钉扎层的表面光滑度恶化而退化。 
附图说明
图1是根据第一实施例的磁阻效应器件的横截面视图。 
图2A是曲线图,示出形成底层时在IrMn层表面上的高度差与氮气的分压之间的关系;而图2B是曲线图,示出形成底层时IrMn层的表面高度的标准偏差与氮气的分压力之间的关系。 
图3A是曲线图,示出MR比与TMR器件的面电阻RA之间的关系,在此TMR器件中NiFeN、NiFe和Ru用作IrMn钉扎层的底层;图3B示出在底层形成期间,MR比与氮气对溅射气体的分压比之间的关系。 
图4A是曲线图,示出MR比与具有不同NiFeN膜厚度的多个样品的面电阻RA之间的关系,其中NiFeN膜用作IrMn钉扎层的底层;而图4B是曲线图,示出具有10Ω·μm2面电阻的样品的MR比与底层的厚度之间的关系。 
图5是曲线图,示出通过改变施加到样品的外部磁场而得到的归一化MR比的磁滞回线,上述样品将NiFeN层和Ru层用作IrMn钉扎层的底层。 
图6A是根据第二实施例将CoFe用于被钉扎结构的TMR器件的横截面视图;而图6B是曲线图,示出第二实施例的TMR器件以及将CoFe用于被钉扎结构的TMR器件的MR比与面电阻RA之间的关系。 
图7是顶部型TMR器件的横截面视图。 
图8A是面对根据第三实施例的磁头的磁性介质的一面的正视图,而图8B是磁头的横截面视图。 
图9A和图9B是横截面视图,示出在制造期间的第三实施例的磁头的读取元件部分。 
图9C是第三实施例的磁头的读取元件部分的横截面视图。 
图10是示意图,示出使用第三实施例的磁头的硬盘驱动器。 
图11A是根据第四实施例的MRAM的横截面视图,而图11B是MRAM的等效电路图。 
图12是磁头和磁记录介质的透视图。 

具体实施方式

图1是根据第一实施例的磁阻效应器件的横截面视图。在支撑衬底1上,依次叠置底层(underlying layer)2、钉扎层3、被钉扎层4a、非磁性中间层4b、基准层4c、隧道阻挡层(非磁性层)7、自由层8以及顶层9。例如,支撑衬底1具有层叠结构,其中依NiFe层和Ta层这种次序在Al2O3-TiC衬底上叠置NiFe层和Ta层。 
底层2例如由NiFeN制成并具有3nm的厚度。此NiFeN膜可利用NiFe作为靶材(target)并利用Ar和N2作为溅射气体,通过反应溅射来形成。可利用加入第三元素的Ni和Fe靶材。可用的第三元素可以是Co、Cr、Cu或类似元素。此膜可通过共溅射来形成。钉扎层3例如由IrMn制成并具有7nm的厚度。 
被钉扎层4a例如由诸如CoFe这样的铁磁材料制成并具有1.7nm的厚度。 非磁性中间层4b例如由诸如Ru这样的非磁性材料制成并具有0.68nm的厚度。基准层4c例如由CoFeB制成并具有2.5nm的厚度。被钉扎层4a与钉扎层3交换耦合,因此被钉扎层4a的磁化方向被固定。被钉扎层4a与基准层4c经由非磁性中间层4b、以被钉扎层4a的磁化方向与基准层4c的磁化方向彼此反向平行这种方式而彼此交换耦合。也就是说,基准层4c经由被钉扎层4a而间接与钉扎层3交换耦合。从被钉扎层4a到基准层4c的三层结构构成合成铁磁被钉扎层(synthetic ferri-pinned layer)4。 
可用由单一一层构成的铁磁性基准层来代替合成铁磁被钉扎层。在此情况下,基准层直接与钉扎层3交换耦合。 
隧道阻挡层7例如由MgO之类绝缘材料制成,并具有1.0nm至1.5nm的厚度,能够让隧道电流在厚度方向流动。自由层8例如由CoFeB之类铁磁材料制成,并具有3nm的厚度。顶层9例如由非磁性材料制成,并具有由厚度为5nm的Ti层和厚度为10nm的Ta层构成的两层结构。钉扎层3与顶层9之间的每一层举例来说都是通过溅射形成的。 
以下参考图2A和图2B来描述提高钉扎层3表面的光滑度的效果。通过蚀刻衬底的表面以将此表面平面化,并通过溅射以在硅衬底上依次形成具有3nm厚度的Ta层、具有4nm厚度的NiFeN底层、具有7nm厚度的IrMn层以及具有1nm厚度的Ru层,来形成样品。底层是利用Ar和N2的混合气体作为溅射气体,通过溅射来形成的。在N2的各种分压比的条件下形成多个样品。出于比较目的,形成了使用Ru底层和NiFe底层的样品(sample)。NiFe底层是在氮气对溅射气体的分压比设定为0的条件下形成的。 
图2A和图2B示出各样品最上面的Ru层表面的高度差和各样品表面的高度的标准偏差。高度差是借助原子显微镜来测量的。图2A和图2B中的横坐标表示在底层形成期间以“%”为单位的氮气分压比,图2A中的纵坐标表示以“nm”为单位的高度差,而图2B中的纵坐标表示以“nm”为单位的高度的标准偏差。以虚线表示使用Ru底层的样品的高度差以及高度的标准偏差。 
可理解,与使用Ru或NiFe相比,将NiFeN用于底层能够提高表面光滑度。虽然已表明,在底层形成期间,在30%至75%的氮气分压比条件下光滑度得到了提高,但即使在高于0%和低于30%的氮气分压比条件下,获得的 光滑度也能高于利用NiFe底层的样品的光滑度。 
接下来,参考图3A和图3B,对于MR比的改善效果进行描述。如图1所示的支撑衬底1,制备衬底,该衬底是通过蚀刻硅衬底的表面以将该表面平面化而形成的,并在衬底上沉积具有5nm厚度的Ta层、具有20nm厚度的CuN层、具有3nm厚度的Ta层、具有20nm厚度的CuN层以及具有3nm厚度的Ta层来形成的。在上述衬底上形成具有3nm厚度的NiFeN底层2、具有7nm厚度的IrMn钉扎层3、具有1.7nm厚度的CoFe被钉扎层4a、具有0.68nm的厚度的Ru非磁性中间层4b、具有2.5nm厚度的CoFeB基准层4c、具有1.0至1.5nm厚度的MgO隧道阻挡层7、以及具有3nm厚度的CoFeB自由层8。顶层9具有由Ta层、Cu层及Ru层构成的三层结构,其中Ta层具有5nm的厚度,Cu层具有10nm的厚度,Ru层具有10nm的厚度。通过改变隧道阻挡层4b的膜厚,来形成具有不同面电阻RA的多个样品。出于比较目的,形成具有Ru底层2和NiFe底层2的样品。 
图3A示出MR比与面电阻RA之间的关系。横坐标表示以“Ω·μm2”为单位的面电阻RA,而纵坐标表示以“%”为单位的MR比。图3A中方形、斜方形和圆形符号分别对应于将NiFeN、NiFe以及Ru用于底层2的样品。与使用NiFe和Ru相比,将NiFeN用于底层2能够得到较大的MR比。 
图3B示出在底层2形成期间,MR比与氮气对溅射气体的分压比之间的关系。横坐标表示以“%”为单位的氮气分压比,而纵坐标表示以“%”为单位的MR比。通过调整隧道阻挡层7的厚度,使得面电阻RA为10Ω·μm2,来形成多个样品。出于比较目的,以虚线来表示使用Ru底层2的样品的MR比。氮气分压比为0%的样品使用NiFe底层2。 
与将NiFe和Ru用于底层2的样品相比,将NiFeN用于底层2的样品具有较高的MR比。已表明在氮气分压比介于25%与60%之间的范围内能够得到高MR比。 
将NiFeN用于底层2而在MR比方面得到的提高可认为起因于底层之上各层的光滑度的提高。 
接下来,参考图4A和图4B,对于底层2的厚度的适当范围进行描述。样品形成为具有2nm、3nm、4nm及5nm厚度的NiFeN底层2。层叠结构与图3A中用于评估的样品的层叠结构相同。具有1nm厚度的底层2的样品不 具有与IrMn钉扎层3及CoFe被钉扎层4a之间的交换耦合,并且被钉扎层4a的磁化方向不能固定。通过在1.0nm与1.5nm之间的范围内改变隧道阻挡层7的厚度来形成具有不同面电阻RA的样品。出于比较目的,形成将Ru用于底层2的样品。 
图4A示出MR比与面电阻RA之间的关系。横坐标表示以“Ω·μm2”为单位的面电阻RA,而纵坐标表示以“%”的为单位的MR比。附加到图4A中每根折线的数值表示底层2的厚度。出于比较目的,以虚线来表示使用Ru底层2的样品的MR比。在底层2的厚度为2nm和3nm处,面电阻RA介于5Ω·μm2与15Ω·μm2之间范围内的每个样品的MR比高于使用Ru底层的样品的MR比。在4nm和5nm的厚度处,面电阻RA介于7.5Ω·μm2与15Ω·μm2 之间范围内的每个样品的MR比高于使用Ru底层的样品的MR比。 
图4B示出MR比与底层2的厚度之间的关系,其中面电阻RA设定为10Ω·μm2。横坐标表示以“nm”为单位的底层2的厚度,而纵坐标表示以“%”为单位的MR比。出于比较目的,以虚线表示将厚度为2nm的Ru层用作底层2的样品的MR比。可理解,具有厚度特别为2nm和3nm的底层2的样品的MR比相对地高。 
图5示出在改变施加到具有图1所示层叠结构的样品上的外部磁场的条件下,归一化MR比(MR比=(R-Rmin)/Rmin,其中R是电阻而Rmin是最低电阻)与外部磁场之间的关系。样品的面电阻是2Ω·μm2。出于比较目的,以虚线表示使用Ru底层2的样品的磁滞回线。横坐标表示以“Oe”为单位的外部磁场,而纵坐标表示最高MR比设定为1的归一化MR比。从磁场为0的位置到磁滞回线与归一化MR比为0.5的线相交叉的两点之间的中心的磁场偏移量对应于通过基准层4c施加到自由层8的层间耦合磁场Hin。 
可以看出,使用NiFeN底层2的样品的层间耦合磁场Hin1弱于使用Ru底层2的样品的层间耦合磁场Hin2。可以认为,如果将NiFeN用于底层2,则层间耦合磁场变弱,这就是为什么基准层4c的表面光滑度能够提高的原因。 
接下来,将参考图6A和图6B描述第二实施例。在第一实施例中,作为隧道阻挡层7的底层的基准层4c是由CoFeB制成的。基准层4c内包含(B),以使得基准层4c成为非晶相并改善形成于基准层4c上的MgO隧道阻挡层7 的结晶性(crystallinity)。在第二实施例中,虽然使用单一一层基准层4c来替代合成铁磁被钉扎层4,但此基准层4c是由CoFe制成的。 
图6A是根据第二实施例的磁阻效应器件的横截面视图。在支撑衬底1上形成依次叠置的底层2、钉扎层3、基准层4c、隧道阻挡层7、自由层8和顶层9。支撑衬底1具有这样的结构:具有3nm厚度的Ta层形成于硅衬底上,该硅衬底的表面受到蚀刻而被平面化。基准层4c由CoFe制成并具有2.0nm厚度。顶层9具有三层结构,其中依次叠置:具有5nm厚度的Ta层、具有10nm厚度的Cu层及具有10nm厚度的Ru层。底层2、钉扎层3、隧道阻挡层7及自由层8各自具有与图1所示的磁阻效应器件的对应层相同的结构。 
出于比较目的,形成具有两层结构的基准层4c的样品,其中依次叠置具有1.7nm厚度的CoFe层及具有2.0nm厚度的CoFeB层。CoFe是晶态而CoFeB是非晶态。 
图6B示出面电阻RA与MR比之间的关系。横坐标表示以“Ω·μm2”为单位的面电阻RA,而纵坐标表示以“%”为单位的MR比。如果面电阻RA约为10Ω·μm2或更高,亦即如果隧道阻挡层7相对地厚,则使用非晶态的CoFeB层作为隧道阻挡层7的底层的样品就具有较高的MR比。另一方面,如果面电阻RA约为10Ω·μm2或更低,亦即如果隧道阻挡层7相对地薄,则使用晶态的CoFe层作为隧道阻挡层7的底层的样品具有较高的MR比。这些实验结果将在下面研究。 
(200)取向的底层2的良好结晶性传承(inherit)给钉扎层3以及钉扎层3上的CoFe层。当插入作为MgO隧道阻挡层7的底层的CoFeB层时,由于CoFeB层是非晶态的,因此底层2的结晶性将不会传承至MgO隧道阻挡层7。因此,在最初生长阶段形成的隧道阻挡层7的较低层部分结晶性不好。但可认为,随着膜厚变厚,结晶性得到改善且取得良好的(200)取向。 
另一方面,当基准层4c由CoFe制成时,(200)取向的底层2的良好结晶性得到传承,使得钉扎层3也具有良好的(200)取向。这种取向经由基准层4c传承给隧道阻挡层7。因此,在最初生长阶段可得到高结晶性的(200)取向的MgO膜。但可认为,随着膜厚变厚,会产生由CoFe与MgO之间晶格不相配导致的应变,且使得结晶性恶化。 
由以上评估结果可以理解,当使得隧道阻挡层薄以将面电阻RA设定到10Ω·μm2时,优选的是底层2的结晶性传承给隧道阻挡层7,而在底层2与隧道阻挡层7之间没有非晶层。 
虽然如图6A所示,由单一一层构成的基准层4c设置在钉扎层3与隧道阻挡层7之间,但如图1所示,可采用合成铁磁被钉扎层来代替由单一一层构成的基准层4c。在此情况下,如果被钉扎层4a和基准层4c是由CoFe制成的,则底层2的结晶性就能够传承给隧道阻挡层7。 
虽然图6A中示出的是所谓底部型TMR器件,其中钉扎层3和基准层4c设置成比自由层8更接近衬底。但预计具有相反位置关系的顶部型TMR器件也具有如上所述的优点。 
图7是顶部型TMR器件的横截面视图。底层2形成于支撑衬底1上。在底层2上,依次叠置自由层8、隧道阻挡层7、基准层4c、钉扎层3及顶层9。自由层8由晶态CoFe制成。因此,NiFeN底层2的结晶性经由自由层8传承给MgO隧道阻挡层7,因此即使隧道阻挡层7形成得薄也能够获得高结晶性的(200)取向的MgO膜。 
通过以Cu之类非磁性金属层替换第一和第二实施例中TMR器件的隧道阻挡层,即可形成电流在平面内(current-in-plane,CIP)型自旋阀膜以及电流垂直于平面(current-perpendicular-to-the-plane,CPP)型自旋阀膜。在此情况下,同样具有能够提高钉扎层3表面的光滑度的优点。 
在第一和第二实施例中,虽然将IrMn用于钉扎层3,但是以大比例含有Ir和Mn的其它反铁磁材料可望提供相同的有益效果。 
图8A是面对根据第三实施例的磁头的记录介质的正视图。以这种方式定义xyz正交坐标系:xy平面定义在与记录介质相对的表面上,x轴平行于拖动方向,y轴平行于a磁道宽度方向,z轴垂直于与记录介质相对的表面。图8B是平行于磁头的zx平面的横截面视图。 
在衬底30上,依序叠置读取元件部分20及记录元件部分40。读取元件部分20包括下部磁性防护层22、磁阻效应膜21以及上部磁性防护层23。记录元件部分40包括主磁极41、主磁极辅助层42、辅助磁极43及耦合部分45。主磁极41、主磁极辅助层42、辅助磁极43以及耦合部分45构成在进行磁记录期间产生的磁通量的磁路的一部分。记录线圈44设置成与磁路有磁链 (linkage)。记录元件部分40可通过公知方法制造。 
接下来,将参考图9A至图9C描述制造读取元件部分20的方法。 
如图9A所示,在由Al2Q3-Tic或类似材料制成的非磁性衬底上,形成Al2O3膜以制备支撑衬底30。在支撑衬底30上,通过溅射形成下部磁性防护层22。下部磁性防护层22例如由NiFe之类高磁导率材料制成,并具有2μm至3μm的厚度。在下部磁性防护层22上,通过溅射形成由Ta制成的辅助底层24。 
在辅助底层24上形成从底层2到自由层8的各层。这种层叠结构与第一或第二实施例中的磁阻效应器件的层叠结构相同。辅助底层24及底层22的总厚度例如为5nm。合成铁磁被钉扎层4可由三层构成,这三层包括具有1.5nm厚度的CoFe被钉扎层4a、具有0.5nm厚度和Ru80Rh20原子百分比(atomic%)的非磁性中间层4b以及具有2.5nm厚度的CoFeB基准层4c。在此情况下,非磁性中间层4b的Rh含量优选设定在5原子百分比与40原子百分比之间的范围内,且更优选设定在20原子百分比与30原子百分比之间的范围内。非磁性中间层4b的厚度优选设定在0.3nm与0.7nm之间的范围内,且更优选设定在0.4nm与0.7nm之间的范围内。非磁性中间层4b可由Ru制成。 
在自由层8上形成顶层9。例如采用具有至少3nm厚度的Ta层作为顶层9。也可用Ru层或Ti层来代替Ta层。还可采用Ta层与Ru层构成的层叠结构。 
如图9B所示,通过通常的光刻,以抗蚀剂图案49来覆盖顶层9的部分区域。利用抗蚀剂图案49作为蚀刻掩模,通过离子铣(ion milling)将从顶层9到辅助底层24的各层图案化。下部磁性防护层22在未被抗蚀剂图案49覆盖的区域内是暴露的。 
以下将描述直到图9C所示结构的工艺。在保留图9B所示抗蚀剂图案49的状态下,例如通过溅射,在整个表面上沉积具有3nm至10nm厚度的Al2O3的绝缘膜25。通过溅射在绝缘膜25上沉积由CoCrPt或类似材料制成的磁畴控制膜26。在沉积磁畴控制膜26之后,将抗蚀剂图案上沉积的抗蚀剂图案49(图9B)连同绝缘膜25和磁畴控制膜26一起去除。磁畴控制膜26因此保留在层叠结构的两侧(y轴方向的正向侧和负向侧)上,上述层叠 结构包括辅助底层24与顶层9之间的各层。 
通过化学机械抛光(CMP)将磁畴控制膜26的表面平面化。此后通过溅射,在顶层9和磁畴控制膜26上沉积由NiFe或类似材料制成、具有2μm至3μm厚度的上部磁性防护层23。借助这些工艺,来完成图8A和图8B所示的读取元件部分20。 
使磁畴控制膜26在磁场中受到热处理,以在y轴方向上使自由层8的磁化方向偏移。被钉扎层4a和基准层4c的磁化方向通过与钉扎层3交换耦合而被固定到z轴方向。 
自由层8的磁化方向取决于与记录在磁记录介质中的数据相对应的磁场而变化。因此,具有层叠结构的TMR器件改变其电阻,上述层叠结构包括辅助底层24与顶层9之间的各层。通过电检测电阻的变化,即可读取记录于磁记录介质中的数据。 
图10是使用第三实施例的磁头的磁盘驱动器的示意图。滑座(slider)52通过称为平衡环(gimbals)的支撑部件被安装在由转动致动器54支撑的悬臂53的远端。磁头51安装在滑座52的末端。第三实施例的磁头用作磁头51。 
磁头51悬置于距离磁盘50的表面有微小高度的地方。多个同心的磁道55定义在磁盘50的表面上。通过驱动转动致动器54以及使悬臂53旋转,即可将磁头51沿磁盘50径向移动到不同位置。 
利用磁头的第一或第二实施例中的TMR器件或自旋阀膜,就能够防止器件性能因钉扎层表面的不良光滑度而退化。 
以下将参考图11A和图11B描述第四实施例。虽然TMR器件适用于第三实施例中的磁头,但TMR器件也适用于第四实施例中的MRAM。 
图11A是第四实施例的MRAM的横截面视图。在硅衬底80上设置读取字线82、MOS晶体管83、写入字线88、位线89以及TMR器件90。读取字线82和写入字线88是一一对应的,并在第一方向(垂直于图11A的图纸的方向)上延伸。位线89在与第一方向交叉的第二方向(图11A中的平方向)上延伸。 
MOS晶体管83设置在读取字线82与位线89之间的交叉点处。读取字线82也起到MOS晶体管83的栅极的作用。也就是说,MOS晶体管83的 导通状态是由施加到读取字线82的电压控制的。 
TMR器件90设置在写入字线88与位线89之间的每个交叉点处。TMR器件90具有与图1所示第一实施例或图6A所示第二实施例中的TMR器件相同的层叠结构。TMR器件90中的自由层的磁化方向受流过写入字线88和位线89的电流所产生的磁场的影响而改变。TMR器件90的底层(图1所示的底层2)经由布线87以及穿过多层布线层形成的多个插塞84和隔离布线85,而连接到MOS晶体管83的一个杂质扩散区81。TMR器件90的顶层(示于图1中的顶层9)连接到位线89。也就是说,布线87和位线89在厚度方向上作为用于将传感电流(sense current)施加到TMR器件90上的电极。 
MOS晶体管83的另一个杂质扩散区81经由插塞84连接到地布线86。 
图11B是第四实施例的MRAM的等效电路图。多个读取字线82在第一方向(图11B中垂直方向)上延伸。在第一方向上延伸的写入字线88是与读取字线82对应设置的。多个位线89在与第一方向交叉的第二方向(图11B中水平方向)上延伸。 
TMR器件90设置在位线89与写入字线88之间的交叉点处。MOS晶体管83设置在读取字线82与位线89之间的交叉点处。TMR器件的一个端子连接到对应的位线89,而其另一端子则连接到对应的MOS晶体管83的一个端子。MOS晶体管83的另一端子接地。MOS晶体管83的栅极连接到对应的读取字线82。 
TMR器件90被制成为具有与第一或第二实施例中的TMR器件相同的层叠结构,因此它能够防止器件性能因钉扎层的表面光滑度恶化而退化。 
以上结合优选实施例描述了本发明。本发明不仅仅限于以上实施例。显然对于本领域技术人员来说,能够进行其它各种修改、改进、组合等等。 
相关申请的交叉引用 
本申请基于申请日为2007年3月20日的日本专利申请第2007-072280号并要求该日本专利申请的优先权,其全部内容通过参考援引于此。 
QQ群二维码
意见反馈