用于与结构性粘接的表面处理

申请号 CN201480009826.2 申请日 2014-04-02 公开(公告)号 CN105008474B 公开(公告)日 2017-11-21
申请人 波音公司; 发明人 K·L·弗格森; K·布罗霍瓦克; M·W·伊文思;
摘要 本 发明 提供了不利用 粘合剂 粘接用底漆而使粘合剂与 铝 部件结构性粘接的方法。本发明还提供了包括这些结构性粘接的装置。可以对铝部件用转化涂层处理以在铝部件表面上生成转化层,随后用溶胶‑凝胶材料处理以在转化层上生成溶胶‑凝胶层。在不使用任何粘合剂粘接用底漆的情况下将粘合剂层施加在溶胶‑凝胶层上。粘合剂层 固化 后,铝部件和粘合剂层之间形成结构性粘接。溶胶‑凝胶材料可针对特定粘合剂类型而专 门 配制,并且可包含提供与粘合剂层的共价键的官能团。与固化传统粘合剂粘接用底漆所需的250℉下90分钟相比,该溶胶‑凝胶材料可在室温下在约30分钟内固化。
权利要求

1.一种不利用粘合剂粘接用底漆而使粘合剂层与部件结构性粘接的方法,所述方法包括:
从所述铝部件(102)的表面去除污物(202),其中去除所述污物的步骤形成清洁表面;
在所述铝部件(102)的所述清洁表面上沉积转化涂层(204),其中沉积所述转化涂层的步骤在所述铝部件(102)的所述清洁表面上形成转化层(104);
在所述转化层(104)上沉积溶胶-凝胶材料(208),其中沉积所述溶胶-凝胶材料的步骤在所述转化层(104)上形成溶胶-凝胶层(106);
在所述溶胶-凝胶层(106)上沉积粘合剂层(212),其中,在固化后所述粘合剂层(108)与所述铝部件(102)形成结构性粘接;和
使所述粘合剂层(214)接触补片(110)并固化所述粘合剂层(214),其中,通过所述固化的粘合剂层(108)在所述铝补片(110)和所述铝部件(102)之间形成结构性粘接。
2.如权利要求1所述的方法,其中,沉积所述溶胶-凝胶材料(208)的步骤包括沉积包含正丙基锆和3-缩甘油氧基丙基三甲氧基烷的溶胶-凝胶材料。
3.如权利要求1所述的方法,其中,沉积所述溶胶-凝胶材料(208)的步骤包括沉积包含水和乙酸的溶胶-凝胶材料。
4.如权利要求1所述的方法,其中,沉积所述溶胶-凝胶材料(208)的步骤包括沉积包含官能团的溶胶-凝胶材料,所述官能团与在所述溶胶-凝胶层(106)上形成的所述粘合剂层(108)的粘合剂类型匹配。
5.如权利要求1所述的方法,其中,沉积所述溶胶-凝胶材料(208)的步骤在约10℃~35℃的温度进行。
6.一种装置,其包括:
铝部件(102);
转化层(104),所述转化层设置在所述铝部件(102)之上;
溶胶-凝胶层(106),所述溶胶-凝胶层设置在所述转化层(104)之上;
固化的粘合剂层(108),所述固化的粘合剂层设置在所述溶胶-凝胶层(106)之上;和铝补片(110),所述铝补片设置在所述固化的粘合剂层(108)之上,其中,所述转化层(104)、所述溶胶-凝胶层(106)和所述固化的粘合剂层(108)形成设置在所述铝部件(102)和所述铝补片(110)之间的叠层体,所述叠层体提供了所述铝部件(102)和所述铝补片(110)之间的结构性粘接。
7.如权利要求6所述的装置,其中,所述溶胶-凝胶层(106)包含硅和锆。
8.如权利要求6所述的装置,其中,所述固化的粘合剂层(108)包含环氧树脂、聚酰亚胺或聚酯中的一种。
9.如权利要求6所述的装置,其中,所述转化层(104)包含铬酸盐转化涂层或磷酸盐转化涂层中的一种。

说明书全文

用于与结构性粘接的表面处理

技术领域

[0001] 本申请涉及金属表面处理技术,更具体而言涉及利用转化涂层和溶胶-凝胶材料而不使用粘合剂粘接用底漆(adhesive bond primer)来使粘合剂与铝部件结构性粘接的技术。

背景技术

[0002] 粘接之前的金属处理对粘接接缝的初始粘合以及其长期环境耐久性而言都是关键因素。然而,常规的粘接用底漆应用技术对于使用来说并不方便和/或过于复杂。例如,许多类型的粘接用底漆需要长固化时间和/或高温(高温固化设备,如加热板、加热灯、加热枪或烘箱),而这种长固化时间和/或高温在许多环境中可能不容易获得,例如在登机口或飞机库。这些时间和温度要求延缓了整个粘接过程,需要专设备和环境,并且使处理对象(例如飞行器)长时间不能执行任务。另外,过去主要因表面整理不充分而造成的粘接失效已经成为粘接构件在当前使用中的限制因素。发明内容
[0003] 本发明提供了一种不利用粘合剂粘接用底漆而使粘合剂与铝部件结构性粘接的方法。所述方法包括从铝部件的表面去除污物。在此操作中在铝部件上形成清洁表面。所述方法随后可通过在铝部件的清洁表面上沉积转化涂层来进行,该步骤在清洁表面上形成转化层。所述方法通过在转化涂层上沉积溶胶-凝胶材料来进行,从而在转化层上形成溶胶-凝胶层。在形成溶胶-凝胶层后,所述方法可通过在溶胶-凝胶层上沉积粘合剂层来进行。固化后,粘合剂层与铝部件形成结构性粘接。
[0004] 本发明还提供了一种用于处理铝部件的方法,该方法用于在不利用粘合剂粘接用底漆的情况下进行结构性粘合剂粘接。在一些实施方式中,所述方法包括从铝部件的表面去除污物,从而形成清洁表面。所述方法随后通过在铝部件的清洁表面上沉积转化涂层来进行,从而在清洁表面上形成转化层。在形成转化层后,所述方法通过在转化涂层上沉积溶胶-凝胶材料来进行,从而在转化层上形成溶胶-凝胶层。
[0005] 本发明还提供了一种包含铝部件、转化层、溶胶-凝胶层、固化的粘合剂层和铝补片的装置。铝补片设置在固化的粘合剂层上。转化层设置在铝部件之上。溶胶-凝胶层设置在转化层之上,而固化的粘合剂层设置在溶胶-凝胶层之上。转化层、溶胶-凝胶层和固化的粘合剂层形成了设置在铝部件和铝补片之间的叠层体。叠层体提供了铝部件和铝补片之间的结构性粘接。
[0006] 下面将参考附图进一步描述这些实施方式和其他实施方式。

附图说明

[0007] 图1A是一些实施方式的铝补片与铝部件在结构性粘接过程中系统的示意性截面图。
[0008] 图1B图示了一些实施方式的装置的示意性顶视图,所述装置包括转化层、溶胶-凝胶层和固化的粘合剂层以及通过转化层、溶胶-凝胶层和固化的粘合剂层而结构性粘接的铝补片和铝部件。
[0009] 图2图示了一些实施方式的不利用粘合剂粘接用底漆而使粘合剂(或更具体而言为铝补片)与铝部件结构性粘接的方法所对应的工艺流程图
[0010] 图3是一些实施方式的结构性粘接的子组件的示意图,该结构性粘接的子组件包括粘合剂层、铝部件和在粘合剂层和铝部件之间设置的溶胶-凝胶层。
[0011] 图4A是反映一些实施方式的一些飞行器制造和保养操作的过程流程图。
[0012] 图4B是图示一些实施方式的飞行器的各种部件的框图

具体实施方式

[0013] 在以下描述中,阐述多种具体细节以提供对所提出的构思的充分理解。所提出的构思可以在省略一些或所有这些具体细节的情况下实施。在其他情况下,对公知的工艺操作没有进行描述,从而不会不必要地使所述构思难以理解。虽然对一些构思结合具体实施方式进行了描述,但应理解的是这些实施方式不意图构成限制。
[0014] 引言
[0015] 与铝部件(例如飞行器的外表面)形成结构性粘接的常规方法通常利用粘接用底漆和/或难以在机场使用的其他材料。例如,粘合剂粘接用底漆可需要在250℉的温度保持90分钟以充分固化粘合剂粘接用底漆。该温度需要强大的热源,例如加热板、烘箱或加热枪,而这些通常在机场不能获得和/或由于安全原因(例如燃料蒸汽和环境中存在的其他可燃性材料)而通常不能使用。另外,施加并固化粘合剂粘接用底漆的操作一般是非常费力的长时间程序,整个过程常常耗费超过4小时。同时,结构性粘接常常需要短时间内、如飞行器在航空港地面停留时在机场形成。
[0016] 本发明提供了用于建立与铝部件的结构性粘接的表面处理方法。在一些实施方式中,经处理的表面用于粘接各种补片,所述补片还可由铝或各种其他材料形成,例如复合材料纤维和玻璃纤维等。这些表面处理方法消除了对使用粘合剂粘接用底漆的需要。结果,这些方法不使用高温并节省了大量时间,而不牺牲结构性粘接的质量和强度。在不使用粘合剂粘接用底漆的情况下,对铝部件的表面首先以转化涂层如 (获自Henkel Corporation,Dusseldorf,德国)处理,然后以溶胶凝-胶材料如BOEGEL-EPII(获自波音公司,Chicago,IL)处理。随后将粘合剂直接施加在铝部件的经处理表面上,而不使用任何粘合剂粘接用底漆。这两种处理的组合(即,转化涂层处理和溶胶-凝胶材料处理)使得即使在所得结构中不存在粘合剂粘接用底漆的情况下也能够形成结构性粘接。
[0017] 出于本文的目的,结构性粘接定义为两个结构部件(例如铝部件和铝补片)之间的粘接,其利用了位于这两个结构部件之间的粘合剂。这样,结构性粘接还存在于两个结构部件中的每一个与粘合剂层之间。结构性粘接应当与其中一个是非结构部件(例如保护涂层或漆)的两个部件之间的粘接区分开。然而,应注意该方法也可用于非结构性应用。例如,非结构性粘接的搭接剪切强度可小于约1000psi,而室温下结构性粘接的搭接剪切强度可为至少约1000psi,或者更通常为至少约2000psi,或甚至至少约3000psi。
[0018] 本文所述表面处理方法避免了对强力加热设备如电加热器的需要,并且可以在不能获得或不允许这种加热器的场所(例如有较高易燃性危险因素的场所)进行粘接。表面处理方法的这些特征可改善机队可用性(fleet availability),这是因为粘接可在机场进行,而通常无需使飞行器退出任务。例如,该方法可以在登机口或航空港飞机库中进行,而不是将飞行器返回到制造厂或特定的修理地点。整个结构性粘接过程包括:整理需处理的表面、处理该表面和施加并固化粘合剂,该过程可仅需要2~4小时;而包括粘接用底漆的通常方法可能花费长达8~24小时。
[0019] 结构性粘接实例
[0020] 图1A是一些实施方式的铝补片110与铝部件102的结构性粘接过程中系统100的示意性截面图。系统100的其他部件有转化层104、溶胶-凝胶层106和固化的粘合剂层108。转化层104可称为第一层,溶胶-凝胶层106可称为第二层,固化的粘合剂层108可称为第三层。应注意,转化层104可包括多个子层。同样,溶胶-凝胶层106也可包括多个子层。
[0021] 转化层104、溶胶-凝胶层106和固化的粘合剂层108设置在铝补片110和铝部件102之间,从而使转化层104设置在铝部件102之上,溶胶-凝胶层106设置在转化层104之上,并且固化的粘合剂层108设置在溶胶-凝胶层106之上。转化层104接触铝部件102。在一些实施方式中,通过对铝部件102的表面进行有效改性来使转化层104部分或完全并入铝部件102。固化的粘合剂层108接触铝补片110,铝补片110可具有特殊处理的表面以提供与固化的粘合剂层108的增强粘接。例如,表面可通过施加粘合剂粘接用底漆来处理(例如,在其制造过程中预处理铝补片110)。作为另一选择,铝补片110可通过转化涂层和溶胶-凝胶涂层的组合来处理,该处理可在机场进行。
[0022] 转化层104、溶胶-凝胶层106和固化的粘合剂层108以及铝补片110和铝部件102成为装置(例如,飞行器)的一部分。换言之,转化层104、溶胶-凝胶层106和固化的粘合剂层108以及铝补片110在结构性粘接工序完成后保持附接在铝部件102上。系统100的非永久性附接在装置上的其他部件为剥离层112、真空袋114、一个或多个热包116和绝热体118。这些部件可以临时使用,例如,在固化的粘合剂层108中的粘合剂固化过程中使用。例如,剥离层
112可用于控制未固化的粘合剂的分布,并防止未固化的粘合剂与系统100的其他部件(例如绝热体118或真空袋114)接触。真空袋114可用于将固化区域与周围环境隔离并对铝补片
110施加一些压力。可通过外部机械作动器(未示出)提供额外压力。在一些实施方式中,可使用外部机械作动器替代真空袋114。热包116可以是能够在需要的时长内保持需要的温度的热包、矩形扁瓶或容器中包含的化学相变材料(PCM)。在一些实施方式中,使用能够在室温固化的粘合剂,例如获自Henkel Corporation(Dusseldorf,德国)的 EA 
9394TM。 EA 9394TM在77℉约5~7天后完全固化,或如果需要更短的固化时间则可以在较高温度下固化。较高固化温度粘合剂的实例包括 EA 9696TM,也获自Henkel Corporation(Dusseldorf,德国)。 EA 9696TM可在225℉~265℉的温度固化,以完全固化。在一些实施方式中,可使用其他类型的热源(例如,电加热器、加热毯、加热灯、加热枪或烤箱)来替代热包116或作为热包116的补充。绝热体118可用于防止热从固化区域流失。
[0023] 图1B图示了一些实施方式的装置130的示意性顶视图,其包括转化层104、溶胶-凝胶层106和固化的粘合剂层108以及铝补片110和铝部件102。在一些实施方式中,铝补片110包括两个部分,即较大的底部和较小的顶部。例如,底部的直径可比顶部直径大约1.2~2倍。在特定实例中,底部直径为约6英寸,而顶部直径为约4.5英寸。各部分的厚度可以为约0.025英寸~0.075英寸,例如约0.040英寸。如上所述,各部分可以用粘合剂粘接用底漆或转化涂层和溶胶-凝胶材料的组合进行预处理。两部分可以用环粘合剂附接在一起(或预先粘接)。相同的粘合剂可用于铝补片110与铝部件之间,即形成固化的粘合剂层108。
[0024] 加工实例
[0025] 图2图示了一些实施方式的利用粘合剂但不利用粘合剂粘接用底漆而使铝补片与铝部件结构性粘接的方法200所对应的工艺流程图。方法200可开始于在操作202的过程中将污物从铝部件表面上去除。污物的一些实例包括油漆、底漆和氧化铝等。操作202可包括利用砂轮将铝部件表面磨光,利用压缩空气、丙和/或皱纹布清洁表面,用以丙酮润湿的无绒擦布擦拭表面,之后在丙酮于部分表面上干燥之前立即用干燥无绒擦布擦拭表面。磨光、压缩空气清洁和/或丙酮擦拭与干燥可重复一次或多次。例如,顺序可包括磨光、压缩空气清洁、丙酮擦拭与干燥、磨光和压缩空气清洁(作为最终步骤)。使用180砂砾Merit纸(获自Saint-Gobain Abrasives,Inc.,Stephenville,TX)以+/-90和+/-45度图样进行的最终砂光可用于确保清洁度、去除氧化物和粘接溶胶-凝胶所需的表面形貌。
[0026] 在以清洁压缩空气吹扫的新磨光表面上可施加转化涂层。总之,在操作202过程中形成清洁表面。清洁表面的特征可以是不存在有机污物并且不存在表面氧化的表面。清洁表面在表面上具有最小化的金属污染,并且相比于未经处理的表面可具有提高的表面粗糙度来帮助粘接。不受任何特定理论的限制,据信结构性粘接的粘合力和耐久性受表面化学和氧化的有效消除的影响最大。尽管额外的表面粗糙度可通过提高可用表面积和提供一定程度的机械互或对抗粗糙面边缘的剪切力而起到帮助作用,不过表面粗糙度的效果与清洁并然后以下述方式处理表面的化学效果相比并不明显。
[0027] 方法200可如下进行:在操作204的过程中在铝部件的清洁表面上沉积转化涂层。在一些实施方式中,在操作202后很快进行操作204以防止对清洁表面的污染。例如,操作
202和204的间隔可小于60分钟,并且在一些实施方式中,小于15分钟。转化涂层可喷涂在清洁表面上。在一些实施方式中,可使用其他沉积技术,例如浸泡、浸渍、旋涂和刷涂。以下给出了转化涂层的各种实例。
[0028] 在操作204中,在清洁表面上形成转化层。例如,使转化涂层停留足够的时长,直至形成闪光的金色至棕褐色层。对于铝合金,转化涂层停留时间可以为约30秒~3分钟。可冲洗转化涂层并使其干燥。干燥时间在约10℃~35℃的温度可以为约60分钟~120分钟。溶胶-凝胶材料可施加在干燥的转化层上。在一些实施方式中,在转化涂层干燥后8小时以内施加溶胶-凝胶材料,更特别是4小时以内,甚至更特别是2小时以内。较长的时间可以引起转化层中的不必要的变化,例如转化层变得疏并导致较差的结构性粘接性能。
[0029] 在一些实施方式中,操作204还包括用水冲洗转化层,并使转化层干燥除水约30分钟~约240分钟的时间,更特别约60分钟~约120分钟的时间。这些水干时间是对约10℃~35℃的温度规定的,可根据环境条件而改变。冲洗控制了转化涂层的厚度,并消除了界面处残余的酸。干燥的上限用于控制转化涂层的水分含量,并防止其变得过于干燥或脱水,脱水可使其变得疏水并不利地影响其与溶胶-凝胶层粘接的能力。
[0030] 方法200可如下进行:在操作208的过程中在转化层上沉积溶胶-凝胶材料。溶胶-凝胶材料可喷涂在转化层上。也可使用其他沉积技术,例如浸泡、浸渍、旋涂和刷涂。在一些实施方式中,可使用喷淋技术。该技术包括使用溶胶-凝胶材料充分喷涂转化层,并使过量的溶胶-凝胶材料流出转化层的表面。在一些实施方式中,在所沉积的溶胶-凝胶干燥之前,可以将额外的溶胶-凝胶材料喷涂在上面。该操作可重复多次以在表面上沉积足够量的溶胶-凝胶材料。应理解的是,所沉积的溶胶-凝胶材料可能不干燥。在其上喷涂额外的溶胶-凝胶材料之前,溶胶-凝胶必须保持湿润约0.5分钟~5分钟,例如,约2分钟(取决于所用的具体溶胶-凝胶制剂)。
[0031] 操作208还可以包括根据溶胶-凝胶材料在转化层表面上的流动来验证转化层是否无水膜残迹(water break free)。例如,如果溶胶-凝胶材料没有流动成沿转化层表面上连续的片,则表面并非无水膜残迹,并且必须通过去除转化层并重复操作202~204来再次整理表面。操作204结束和操作208开始之间的时间间隔可小于2小时,或更特别小于1小时。
[0032] 在一些实施方式中,在溶胶-凝胶材料施加到转化层上之前,制备溶胶-凝胶材料并使其静置一段时间。例如,溶胶-凝胶材料可以由两种组分混合而成,即,2部分的试剂盒。溶胶-凝胶材料可具有活化期,其取决于溶胶-凝胶混合物中发生的水解和缩合反应的速度。等待过长(例如,多于10小时或对一些溶胶-凝胶材料多于24小时)可引起溶胶-凝胶混合物中的过度聚合,并形成胶体颗粒。这减少了溶胶-凝胶混合物中提供表面粘合力的有效组分。相反,在颗粒形成时有效成分在溶液中用尽。例如,溶胶-凝胶材料在施用溶胶-凝胶材料之前可静置约15分钟~60分钟,例如约30分钟。
[0033] 在操作208的过程中,在转化层上形成溶胶-凝胶层。溶胶-凝胶必须停留对于特定制剂而言充足的时间,并在其干燥之前保持最短时间的湿润,通常为2分钟。可采用约10℃~35℃的温度。在一些实施方式中,使溶胶-凝胶材料干燥至少约30分钟。
[0034] 方法200可如下进行:在操作212的过程中在溶胶-凝胶层上沉积粘合剂。在一些实施方式中,在完成操作208之后一段时间内(例如,24小时内,或更特别在2小时内)进行操作212。可使用各种类型粘合剂,例如环氧粘合剂、室温固化膏粘合剂、膜粘合剂、压敏粘合剂、紫外线(UV)固化性粘合剂、聚酯粘合剂、聚酰亚胺粘合剂或粘合剂。压敏粘合剂的一些具体实例包括速度胶带(speed tape),其是具有粘合剂的金属箔,被设计为在高速气流下固定该胶带并用于飞机的外壳和装饰(appliqué)。在一些实施方式中,溶胶-凝胶材料包括与施加在溶胶-凝胶层上以提供更强粘接的粘合剂类型相匹配的官能团。
[0035] 方法200可如下进行:在操作214的过程中使粘合剂层与铝补片接触,随后固化粘合剂。固化后,粘合剂层形成铝部件和铝补片之间的结构性粘接。
[0036] 转化涂层实例
[0037] 转化涂层是对金属结构体(例如铝结构体)特定的涂层,其中这些金属结构体的表面经历了与转化涂层的化学反应并在这些表面上形成了保护性涂层。换言之,金属结构体和转化涂层均有助于形成保护性涂层,并且保护性涂层包括金属组分以及一种或多种转化涂层组分。保护涂层的厚度可以为约10纳米~800纳米,或更特别为100纳米~200纳米。
[0038] 铝结构体的清洁表面上所用的转化涂层可以是铬酸盐转化涂层或磷酸盐转化涂层。铬酸盐转化涂层的一些具体实例包括 (获自MacDermid,Inc.,Waterbury,CT)和 (获自Henkel Corporation,Dusseldorf,德国)。铬酸盐转化涂层可根据MIL-DTL-5541(铝和铝合金上的化学转化涂层)而施加在铝结构体上。
[0039] 在一些实施方式中,转化涂层含有六价铬。例如,转化涂层可含有30重量%~60重量%的铬酸。其他组分可包括约10重量%~30重量%的氟、约10重量%~30重量%的氰酸钾、约1重量%~10重量%的氟化钠和约10重量%~30重量%的氟锆酸钾。
[0040] 在一些实施方式中,转化涂层可基本上不含六价铬。例如,可使用磷酸盐转化涂层。磷酸盐转化涂层可包括磷酸和/或磷酸盐(例如,磷酸锰、磷酸铁或磷酸锌)的稀溶液,并形成不溶性结晶磷酸盐的层(例如,在处理铝结构时为磷酸铝)。
[0041] 溶胶-凝胶实例
[0042] 用于结构性粘接的溶胶-凝胶材料可以是金属氧化物和硅烷偶联剂的混合物。其可以是反应性金属醇盐前体的水溶液,该反应性金属醇盐前体通过溶胶-凝胶过程演变为涂层。溶胶-凝胶过程是一系列反应,其中,首先可溶性金属物种(通常为金属醇盐或金属盐)水解形成金属氢氧化物物种,然后,该金属氢氧化物物种通过缩合反应形成固体颗粒和/或凝胶网络。可溶性金属物种通常包含被设定为与粘接结构体中的树脂对应的有机配体。在溶液中金属氢氧化物缩合(即,胶溶)形成杂化有机/无机聚合物。根据反应条件,金属聚合物可缩合为胶体粒子或它们可以生长形成网状凝胶。可将聚合物基质中的有机与无机组分的比率控制为使特定应用的性能最大化。
[0043] 可使用各种溶胶-凝胶材料。在一些实施方式中,溶胶-凝胶材料是水溶性的,例如获自波音公司(Chicago,IL)的 通常,使用溶胶-凝胶材料替代转化涂层用于保护性涂层应用。然而,已经发现可以将溶胶-凝胶和转化涂层材料一同施加并提供比单独使用溶胶-凝胶或转化涂层材料时更强的结构性粘接和保护。另外,如上所述,溶胶-凝胶和转化涂层材料的组合可免除粘合剂粘接用底漆。
[0044] 在一些实施方式中,溶胶-凝胶材料包括金属(例如锆)和硅,或更特别包括有机硅烷和金属醇盐。例如,溶胶-凝胶材料可包括约2体积%~50体积%的有机硅烷和约0.3体积%~25体积%的金属醇盐。金属(例如锆)与硅的摩尔比可以为约1:1~1:10,或更特别为约1:3.5。在一些实施方式中,溶胶-凝胶材料还包含络合剂。
[0045] 合适的醇盐化合物包括具有有机部分(例如,脂肪族或脂环族部分,例如具有2~8个碳原子的低级正烷氧基部分)的金属醇盐化合物。例如,可使用通式为Zr(R-O)4的醇盐化合物,其中R为具有2~8个碳原子的低级脂肪族基团(特别是脂肪族烷基),正四价锆(tetra n-zirconium),以及支链脂肪族基团、脂环族基团和芳基。例如,正丙氧基锆的70%丙醇溶液(TPOZ)适合于溶胶-凝胶涂层制剂。此外,可以使用其他金属醇盐如钛酸盐和钇的醇盐等作为所述醇盐。
[0046] 合适的有机硅烷化合物包括但不限于3-缩水甘油氧基丙基三甲氧基硅烷(GTMS)。用于制备溶胶-凝胶涂层的其他合适的有机硅烷包括但不限于,原硅酸四乙酯、3-氨基丙基三乙氧基硅烷、3-缩水甘油氧基-丙基三乙氧基硅烷,对氨基苯基硅烷、对氨基苯基硅烷或间氨基苯基硅烷、烯丙基三甲氧基硅烷、n-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、3-氨基丙基三甲氧基硅烷、3-缩水甘油氧基丙基二异丙基乙氧基硅烷、(3-缩水甘油氧基丙基)甲基二乙氧基硅烷、3-缩水甘油氧基丙基三甲氧基硅烷、2-(3,
4-环氧环己基)乙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷、3-巯基丙基三乙氧基硅烷、
3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、n-苯基氨基丙基三甲氧基硅烷、乙烯基甲基二乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷和其组合。
[0047] 络合剂可以是有机酸,例如乙酸。与溶胶-凝胶混合物一起使用的其他合适的络合剂包括但不限于有机酸,例如草酸柠檬酸、乙酰丙酮化物、二醇、乙氧基乙醇、H2NCH2CH2OH(乙醇胺),或其他有机酸络合剂。
[0048] 在特定实施方式中,溶胶-凝胶材料包括正丙氧基锆和3-缩水甘油氧基丙基三甲氧基硅烷,或更特别为约0.5重量%~2重量%(例如,约1重量%)的正丙氧基锆和约1重量%~5重量%(例如,约2重量%)的3-缩水甘油氧基丙基三甲氧基硅烷。
[0049] 溶胶-凝胶材料中锆和硅的组合可特别适合于铝表面和环氧粘合剂。该材料的有机官能性来自硅烷组分上的缩水甘油氧基丙基。据推测,硅和锆组分之间的缩合速率的差异产生了杂化无机/有机层,其具有例如如图3所示的从金属表面到后续涂层的组成梯度。特别是,图3是一些实施方式的结构性粘接的子组件300的示意图,该结构性粘接的子组件包括粘合剂层302、铝部件304和设置在粘合剂层302和铝部件304之间的溶胶-凝胶层306。
铝补片和转化涂层出于简化和清楚图示的原因而没有示出。显示溶胶-凝胶层306与粘合剂层302和铝部件304均形成共价键,由此在至少粘合剂层302和铝部件304之间建立结构性粘接。
[0050] 溶胶-凝胶层306具有连贯(例如,梯度)分布的含硅基团和含锆基团。特别是,在粘合剂层302的界面上可以存在更多的含硅基团,其进而与环氧基团形成共价键(在本例中)。相似地,在铝部件304的界面上可以存在更多的含锆基团,其进而与铝部件304的铝或其他金属形成共价键。如上所述,铝部件304的表面可以利用转化涂层改性,并且例如可包含铝以及其他金属。不受任何具体理论的限制,据信该转化涂层处理还改善了铝部件304和溶胶-凝胶层306之间的粘接强度。溶胶-凝胶层306中无机和有机聚合物部分(fraction)的组合产生了独特的性质,即单独组分可预见的性质的结合。例如,薄溶胶-凝胶层可比相似厚度的无机金属氧化物膜更柔软。
[0051] 在一些实施方式中,溶胶-凝胶材料包含水和乙酸作为催化剂。可使用能够给组合物提供所需的性质或加工特性的其他溶剂替换一部分水。另外,溶胶-凝胶材料可包括表面活性剂,例如获自Rhodia-Solvay Group(Brussels,Belgium)的Antarox BL-240。通过改变组合物可控制溶胶-凝胶层的厚度。在一些实施方式中,厚度为约10纳米~800纳米,例如约100纳米~500纳米。
[0052] 飞行器的实例
[0053] 现描述图4A所示的飞行器制造和保养方法400以及图4B所示的飞行器430,以更好阐释本文提出的结构性粘接的各种特征。在制造前,飞行器制造和保养方法400可包括飞行器430的规格和设计步骤402和材料取得步骤404。制造阶段涉及部件和子组件制造步骤406和飞行器430的系统整合步骤408。随后,飞行器430可通过认证和交付步骤410,从而处于服役步骤412中。在交由客户服役的同时,飞行器430规定了日常维修和保养步骤414(其还可包含改进、重构和整修等)。虽然本文所述实施方式通常涉及商业飞行器的保养,但这些实施方式可以在飞行器制造和保养方法400的其他阶段实施。
[0054] 飞行器制造和保养方法400的各个过程可通过系统整合商、第三方和/或操作者(例如,客户)来进行。出于描述的目的,系统整合商可包括但不限于任何数量的飞行器制造商和主要系统分包商;第三方例如可包括但不限于任何数量的外包商、分包商和供应商;并且操作者可以是航空公司、租赁公司、军事单位和服务组织等。
[0055] 如图4B所示,通过飞行器制造和保养方法400制造的飞行器430可包括机架432、内部436和多个系统434以及内部436。系统434的实例包括推进系统438、电力系统440、水力系统442和环境系统444中的一个或多个。本例中可包括任何数量的其他系统。虽然示出了飞行器实例,但本公开的原理可适用于其他行业,例如汽车行业。
[0056] 在飞行器制造和保养方法400的任意一个或多个阶段中可采用本文实施的装置和方法。例如而没有限制,可以按照与当飞行器430服役时制造的部件和子组件相似的方式,制造或生产与部件和子组件制造步骤406对应的部件和子组件。
[0057] 另外,例如而没有限制,通过基本加速飞行器430组装或降低飞行器430成本,在部件和子组件制造步骤406和系统整合步骤408中可采用一个或多个装置实施方式、方法实施方式或其组合。相似的是,在飞行器430服役时可以利用一个或多个装置实施方式、方法实施方式或其组合,从而例如但不限于在系统整合步骤408和/或维修和保养步骤414中使用维修和保养步骤414来确定部件是否相互连接和/或相互匹配。
[0058] 实验结果
[0059] 进行一系列铝搭接剪切和经热/湿调节的楔形试测试,以比较测试试块的粘接强度和环境鲁棒性。测试试块施加有溶胶-凝胶材料。测试试块上未使用粘接用底漆。对照试块首先用磷酸进行阳极化处理。然后将粘接用底漆施加在经处理的表面上。
[0060] 首先,通过以下方式对所有的裸铝试块进行清洁去除污物和氧化物:以丙酮擦拭试块,然后使用Merit 180砂砾的砂纸以+/-90和+/-45度对经擦拭的试块进行磨光,随后进行压缩空气吹扫以去除所有灰尘。对照试块用磷酸进行阳极化处理,然后用粘合剂粘接用底漆施涂底漆。然后利用高温使粘接用底漆完全固化。测试试块涂布有溶胶-凝胶材料,其直接施加在裸露的磨光铝表面上。使溶胶-凝胶材料固化15分钟。随后对测试试块和对照试块均利用 EA 9394TM环氧粘合剂进行粘接,并在150℉固化130分钟。在粘合剂固化后,对两组试块进行室温搭接剪切测试,并根据ASTM D3762在140℉和85%相对湿度下进行楔形裂纹生长测试,ASTM D3762是对于铝的粘合剂粘接表面耐久性的标准测试方法(楔形测试)。对照试块的平均搭接剪切值为约3200psi。测试试块的平均搭接剪切强度为约2700psi。对照试块和测试试块的楔形裂纹生长结果大约相同,在168小时后测定为约0.4英寸。对照试块的失效模式为100%内聚性破裂,而测试试块的失效模式为约98%内聚性破裂和2%粘着破裂。
[0061] 两组试块对各种飞行器应用均具有足够的结构性粘接。不受任何特定理论的限制,据信较长的溶胶-凝胶固化时间将进一步提高测试样品的搭接剪切强度。另外,在溶胶-凝胶处理之前添加转化涂层处理应可提高粘接强度并进一步提高测试样品的搭接剪切强度。
[0062] 以下A10~C20项中描述了本公开的发明主题的示例性非限制性实例:
[0063] A1.一种不利用粘合剂粘接用底漆而使粘合剂层与铝部件结构性粘接的方法,所述方法包括:
[0064] 从所述铝部件102的表面去除污物202,其中去除所述污物的步骤形成清洁表面;
[0065] 在所述铝部件102的清洁表面上沉积转化涂层204,其中沉积所述转化涂层的步骤在所述铝部件102的清洁表面上形成转化层104;
[0066] 在所述转化层104上沉积溶胶-凝胶材料208,其中沉积所述溶胶-凝胶材料的步骤在所述转化层104上形成溶胶-凝胶层106;和
[0067] 在所述溶胶-凝胶层106上沉积粘合剂层212,其中,在固化后所述粘合剂层108与所述铝部件102形成结构性粘接。
[0068] A2.如A1项所述的方法,其中,沉积所述溶胶-凝胶材料208的步骤包括沉积包含正丙氧基锆和3-缩水甘油氧基丙基三甲氧基硅烷的溶胶-凝胶材料。
[0069] A3.如A1或A2项所述的方法,其中,沉积所述溶胶-凝胶材料208的步骤包括沉积包含0.5重量%~2重量%的正丙氧基锆和1重量%~3重量%的3-缩水甘油氧基丙基三甲氧基硅烷的溶胶-凝胶材料。
[0070] A4.如A1项所述的方法,其中,沉积所述溶胶-凝胶材料208的步骤包括沉积包含水和冰乙酸的溶胶-凝胶材料。
[0071] A5.如A1项所述的方法,其中,沉积所述溶胶-凝胶材料208的步骤包括沉积包含官能团的溶胶-凝胶材料,所述官能团与在所述溶胶-凝胶层106上形成的粘合剂层108的粘合剂类型匹配。
[0072] A6.如A1~A5项中任一项所述的方法,其中,沉积所述溶胶-凝胶材料208的步骤在约10℃~35℃的温度进行。
[0073] A7.如A1~A6项中任一项所述的方法,其中,沉积所述溶胶-凝胶材料208的步骤包括喷涂。
[0074] A8.如A1~A7项中任一项所述的方法,所述方法还包括使所述粘合剂层214接触铝补片110并固化所述粘合剂层214,其中,通过固化的粘合剂层108在铝补片110和铝部件102之间形成结构性粘接。
[0075] A9.如A1~A8项中任一项所述的方法,其中,固化粘合剂层214的步骤在至少约60℃的温度进行。
[0076] A10.如A1~A9项中任一项所述的方法,其中,固化粘合剂层214的步骤包括利用一个或多个化学热包116将至少约60℃的温度保持至少约60分钟。
[0077] B11.一种处理铝部件的方法,该方法用于在不利用粘合剂粘接用底漆的情况下进行结构性粘合剂粘接,所述方法包括:
[0078] 从所述铝部件102的表面去除污物202,其中去除所述污物的步骤形成清洁表面;
[0079] 在所述铝部件102的清洁表面上沉积转化涂层204,其中沉积所述转化涂层的步骤在所述清洁表面上形成转化层104;
[0080] 在所述转化层104上沉积溶胶-凝胶材料208,其中沉积所述溶胶-凝胶材料212的步骤在所述转化层104上形成溶胶-凝胶层106。
[0081] B12.如B11项所述的方法,其中,沉积所述转化涂层204的步骤在约10℃~35℃的温度进行。
[0082] B13.如B11或B12项所述的方法,其中,沉积所述转化涂层204的步骤包括喷涂。
[0083] B14.如B11~B13项中任一项所述的方法,其中,沉积所述转化涂层204的步骤包括沉积包含30重量%~60重量%的铬酸的转化涂层。
[0084] C15.一种装置,其包括:
[0085] 铝部件102;
[0086] 转化层104,所述转化层设置在所述铝部件102之上;
[0087] 溶胶-凝胶层106,所述溶胶-凝胶层设置在所述转化层104之上;
[0088] 固化的粘合剂层108,所述固化的粘合剂层设置在所述溶胶-凝胶层106之上;和[0089] 铝补片110,其设置在所述固化的粘合剂层108之上,其中,转化层104、溶胶-凝胶层106和固化的粘合剂层108形成设置在铝部件102和铝补片110之间的叠层体,所述叠层体提供了铝部件102和铝补片110之间的结构性粘接。
[0090] C16.如C15项所述的装置,其中,所述溶胶-凝胶层106包含硅和锆。
[0091] C17.如C15或C16项所述的装置,其中,所述固化的粘合剂层108包含环氧树脂、聚酰亚胺或聚氨酯中的一种。
[0092] C18.如C15~C17项中任一项所述的装置,其中,转化层104包含铬酸盐转化涂层或磷酸盐转化涂层中的一种。
[0093] C19.如C15~C17项中任一项所述的装置,其中,所述转化层包含六价铬。
[0094] C20.如C15~C17项中任一项所述的装置,其中,所述转化层基本不含六价铬。
[0095] 结论
[0096] 虽然出于清楚理解的目的较为详细地对上述构思进行了描述,但清楚的是可以在所附权利要求的范围内做出某些该改变和变化。应注意的是,存在多种替代性方式来实施所述方法、系统和装置。因此,应将所述实施方式看作为示例性的非限制性实施方式。
QQ群二维码
意见反馈