Method for measuring the airspeed of rotary wing aircraft and equipment

申请号 JP24476996 申请日 1996-09-17 公开(公告)号 JP3860264B2 公开(公告)日 2006-12-20
申请人 ウエストランド・ヘリコプターズ・リミテッドWestland Helicopters Limited; 发明人 アラン・ブロックルハースト;
摘要
权利要求
  • 実質的に垂直な軸心( 24 )回りに回転可能な、放射状に延びる複数の羽根(23A〜23D)を有するサステイニング用のロータ(23)を備えた回転翼航空機(10)の 、相対風ベクトル(29)の大きさ (対気速度(V)) および相対風ベクトル(29)の方向(θ)を検出する方法であって、
    前記ロータ(23)の前記複数の羽根(23A〜23D)の少なくとも1つについて、相対風ベクトル(29)によって発生する径方向流と、羽根の回転による、前記羽根のフェザリング・アクシスに垂直な速度(30)との間の相互作用により、羽根の表面において決まる、羽根気流横滑り角(β)を連続的に測定することと、
    該気流横滑り角を表す信号を発生することと、
    前記信号の位相と前記相対風ベクトル(29) の方向(θ)との間 における既知の関係に基づいて、前記信号の位相 から前記相対風ベクトルの方向(θ)を求めることと、
    前記信号の振幅と前記対気速度(V )との間における既知の関係に 基づいて、前記信号の振幅から前記対気速度(V)を求めることと、
    前記対気速度(V )および前記相対風ベクトル(29) の方向(θ)を表す出力信号をディスプレー装置(39)に供給することとを含むことを特徴とする、回転翼航空機の対気速度検出方法。
  • 次式の関係が成り立つことを特徴とする、請求項1に記載の対気速度検出方法。
    β=arctan{Vcos(ψ+θ)/(xVT+Vsin(ψ+θ))}
    ここで、
    β =羽根気流横滑り角
    V =相対風の速度(すなわち対気速度)
    θ =前記相対風ベクトルの方向 VT=ロータ羽根の翼端速度 x = 軸心(24)と翼端との距離に対する、軸心(24)と羽根上の横滑り検出器 との距離の比率
    ψ =ロータ羽根のアジマス角
  • 実質的に垂直な軸心(24)回りに回転可能な、放射状に延びる複数の羽根(23A〜23D)を有するサステイニング用のロータ(23)を備えた回転翼航空機(10)の 、相対風ベクトル(29)の大きさ(対気速度 (V))および相対風ベクトル(29)の方向(θ)を指示する装置であって、
    前記複数の羽根(23)のうちの少なくとも1つに設けられ、相対風ベクトル(29)により生ずる径方向流と、前記羽根(23)の回転による、前記羽根のフェザリング・アクシスに対して垂直 な速度(30)との間の相互作用によって、前記羽根の表面において決まる羽根気流横滑り角(β)を検知すると共に、該羽根気流横滑り角(β)を表す信号を発生するための検知装置(32、33、34、35、36、37、38)と、
    該信号を前記回転翼航空機の胴体上に又は胴体内部にある処理装置(P)に伝送するための伝送装置と、
    該伝送装置の出力信号を表示するためのディスプレー装置とを備え、
    前記処理装置(P)は、前記信号の位相と前記相対風ベクトル(29) の方向(θ)との間 における既知の関係に基づいて、前記信号の位相 から前記相対風ベクトルの方向(θ)を求め、
    前記処理装置(P)は、前記信号の振幅と前記対気速度(V)との間における既知の関係に基づいて、前記信号の振幅から前記対気速度(V)を求め、
    前記処理装置(P)は、前記対気速度(V )および前記相対風ベクトル(29) の方向(θ)を表す出力信号を供給する回転翼航空機の対気速度指示装置。
  • 前記指示手段(39)は、前記対気速度(41)及び相対風向(40)を表示するようになっていることを特徴とする請求項3に記載の対気速度指示装置。
  • 前記対気速度指示装置は、無線等により前記信号を前記検知装置(32、33、34、35、36、37、38)から前記処理装置(P)に伝送することを特徴とする請求項3又は請求項4に記載の対気速度指示装置。
  • 前記検知装置(32、33、34、35、36、37、38)は、前記羽根(23)の下面において、翼弦の約50%〜約95%の間の領域に配置されていることを特徴とする請求項3〜5のいずれかに記載の対気速度指示装置。
  • 前記検知装置(32、33、34、35、36、37、38)は、 軸心(24)と翼端との距離に対する、軸心(24)と前記検知器(32、33、34、35、36、37、38)との距離の比率が 50%より 大きくなる位置に配置されていることを特徴とする請求項3〜6のいずれかに記載の対気速度指示装置。
  • 前記検知装置(32、33、34、35、36、37、38)は、 軸心(24)と翼端との距離に対する、軸心(24)と前記検知器(32、33、34、35、36、37、38)との距離の比率がほぼ75%のところに配置されていることを特徴とする請求項7に記載の対気速度指示装置。
  • 前記検知装置(32、33、34、35、36、37、38)は、前記気流横滑り角(β)を指示する電気信号を発生することを特徴とする請求項3〜8のいずれかに記載の対気速度指示装置。
  • 前記検知装置は、
    a)横滑りにより前記ロータの羽根(23)にかかる圧力差を測定する圧力差変換器に接続される、1対の別個の圧力ポート(34)を含んでいる圧力検知ヨーメーター(32、33、34)
    b)前記羽根(23)の表面上の気流により生ずる熱伝達差を測定するため設けられた1対のホットフィルムゲージ(35)
    c)ホットフィルムVゲージ(37)であって、熱境界層における差と、前記ホットフィルムVゲージ(37)からの熱伝達とを測定することにより、前記羽根(23)の表面上の流れ方向を検出する、ホットフィルムVゲージ d)前記羽根(23)上に翼弦方向に離間して配置された1対の超音波変換器(38)
    e)径方向流の速度を検出するために配列された、1つ又はそれ以上のレーザーダイオードのうち少なくとも一つを含むことを特徴とする請求項3〜9のいずれかに記載の対気速度指示装置。
  • 径方向流の速度を検出して前記処理装置に供給するため複数の異なる種類の検知装置(32、33、34、35、36、37、38)を含む請求項3〜10のいずれかに記載の対気速度指示装置。
  • 说明书全文

    【0001】
    【発明の属する技術分野】
    本発明は、回転翼航空機の対気速度及び風向を測定するための方法及び装置に関し、特に、低対気速度のそのような情報の供給に関するものである。
    【0002】
    【従来の技術】
    低速飛行でのヘリコプタの対気速度及び該ヘリコプタに対する相対的な風向を正確に測定する手段が非常に望ましいのは、特に、断念した離陸中のようなある操縦の局面や、船舶のデッキや、採油リグプラットフォームからの操縦の時である。
    【0003】
    十分な精度を有するかかる計装は実現が非常に難しいことが分かっていた。 即ち、従来のピトー静圧検知装置のような胴体装着式装置は、主ロータの伴流効果を含む種々の影響の相互作用によるヘリコプタの胴体近くでの甚だ不規則な流れによって、特に低対気速度で悪影響を受ける。
    【0004】
    別の先行技術の解決策は、ロータの制御姿勢もしくは位置をヘリコプタの方向及び対気速度に関係付けることであったが、この解決策も難しいことが分かった。 その理由は、重心の位置が既知でなければならず、スワッシュ・プレートのような制御手段の位置を非常に正確に監視しなければならず、また、安定した対気速度を推論できるように制御入及び加速度について公差がなければならないことにある。
    【0005】
    【発明が解決しようとする課題】
    本発明の主たる目的は、上述した諸問題を軽減もしくは解消する、回転翼航空機の対気速度を測定するための方法及び装置を提供することである。 本発明の別の目的は、対気速度及び相対風向に直接関係付けることができる、主サステイニング用ロータについての気流の測定値を用いて上述の主たる目的を実現することである。
    【0006】
    【課題を解決するための手段】
    従って、本発明の1つの側面では、本発明は、実質的に垂直な軸心回りに回転可能な、放射状に延びる複数の羽根を有するサステイニング用のロータを備えた回転翼航空機の対気速度を検出するために、前記ロータの前記複数の羽根の少なくとも1つについて、前記ロータの回転により決まる気流横滑りを測定し、該気流横滑り角を表す信号を発生し、前記気流横滑り角及び対気速度間の既知の関係についての情報を含む処理装置において前記信号を比較し、前記対気速度及び風向を表す出力信号をディスプレー装置に供給することからなる、回転翼航空機の対気速度検出方法を提供する。
    【0007】
    本発明の別の側面によると、本発明は、実質的に垂直な軸心回りに回転可能な、放射状に延びる複数の羽根を有するサステイニング用のロータを備えた回転翼航空機の対気速度を指示する装置であって、前記複数の羽根のうちの少なくとも1つに設けられ、相対風ベクトルにより生ずる径方向流と前記羽根のフェザリング・アクシスに対して垂直な回転速度との間の相互作用によって決まる気流横滑り角を検知すると共に、該気流横滑り角を表す信号を発生するための検知装置と、該信号を前記回転翼航空機の胴体上に又は胴体内部にある処理装置に伝送するための伝送装置と、該伝送装置の出力信号を表示するためのディスプレー装置とを備え、前記処理装置は、前記出力信号を供給するため、検知された前記気流横滑り角及び対気速度間の既知の関係についての情報を含んでいる、回転翼航空機の対気速度指示装置を提供する。
    【0008】
    気流横滑り角βは前記気流横滑り角(β)は次式によって表される。
    β=arctan{Vcos(ψ+θ)/(xVT+Vsin(ψ+θ))}
    ここで、
    V =相対風の速度θ =風の相対方向(風アジマス)
    VT=ロータ羽根の翼端速度x =羽根上の横滑り検出器の径方向位置ψ =ロータ羽根のアジマス角【0009】
    【発明の実施の形態】
    本発明は、その単なる一例として、添付図面の実施形態について以下に説明される。
    図1を参照すると、平面図で略示されたヘリコプタ(回転翼航空機)10は、後方に延びる尾部部材22を有する胴体21を含んでおり、該尾部部材22は、長手方向の中心線26を中心として対称的に配置されている。 ヘリコプタは、4枚の羽根23A,23B,23C,23Dからなるサステイニング用の主ロータ23を有する。 羽根23A,23B,23C,23Dは、矢印24Aの方向にほぼ平な平面内で垂直な軸心24の回りに回転自在に、ロータヘッド(図示せず)から放射状に延びている。 尾部部材22の端部には、トルク平衡ロータ25が配置されている。
    【0010】
    回転平面におけるロータ羽根の方位角もしくはアジマス位置は、尾部部材22の後部のところの0°から始まって長手方向の中心線に関して回転の方向に進むものと通常されており、0°,90°,180°,270°方位角位置が図1に表示されている。 この明細書においては、最初から最後まで、そのような配列で説明している。
    【0011】
    通常、ヘリコプタが長手方向の中心線26に平行に前方に飛行すれば、0°及び180°の方位角位置の間で運動するロータ羽根は、前進羽根と称され、180°及び360°の間で運動する時には、後退羽根と称される。 しかし、この明細書では、相対風ベクトル(後述する)に対して垂直な位置で始まる羽根の回転に関して、この呼称が適用される。 反対に、風アジマス角は、ヘリコプタの機首に接近し上記位置から時計方向に動く時に0°とされる。
    【0012】
    本発明の方法及び装置は、ヘリコプタが風に関して任意の方向に並進する時に、主ロータの羽根の径方向寸法、即ちスパンに沿って周期的な気流速度成分が発生するという発明者の知見に基づいている。
    【0013】
    図1に本発明に関連した速度ベクトル図が示されている。 図の上部にあるベクトル図は、長手方向の中心線26に沿う前進速度として示されたヘリコプタ速度ベクトル27と、ヘリコプタが実際に感じる相対風ベクトル29になる自然風向28とを表している。 相対風ベクトル29は、0°風アジマス位置から角度αであり、図1には、説明のため75°で示されている。
    【0014】
    ロータ羽根23A及び23Cに関係して示されたベクトル図は、所定の径方向位置(後述する)のところに描かれており、羽根フェザリング・アジマスに対して垂直に位置する回転速度ベクトル30と、上述の相対風ベクトル29とからなっている。 これらのベクトルは、ベクトル30と共に横滑り角βを規定するベクトル31になる。
    径方向に向かい合う羽根23A及び23C (105°及び285°のアジマス位置のところにある)に関しては、横滑り角βは最大であり、 相対風ベクトル29はこれらの羽根に対して平行である。
    径方向に向かい合う羽根23B及び23D (15°及び195°のアジマス位置のところにある)については、横滑り角βは 0(即ち、横滑り角はない)であり、 相対風ベクトル29は回転速度ベクトル30に対して平行である。
    【0015】
    従って、 横滑り角βが最大となる実際のアジマス位置、および、横滑り角βが0となる実際のアジマス位置は、相対風ベクトル29の方向に依存しており、これらのアジマス位置は、ロータ回転平面において常にほぼ90°離れていることは明らかであり、式(1)により求められる。
    【0016】
    従って、ロータ羽根23A,23B,23C,23Dの各々は、該羽根がロータアジマスの回りを回転する時に、横滑り角βの変化を経験し、本発明者は、対気速度及び相対風ベクトルは気流横滑り角βの測定値から得られることを知見した。
    【0017】
    横滑り角βと相対風速度の関係は次の式(1)で表される。
    β=arctan{Vcos(ψ+θ)/(xVT+Vsin(ψ+θ))}・・・(1)
    ここで、
    V =相対風の速度θ =風の相対方向(風アジマス)
    VT=ロータ羽根の翼端速度x =羽根上の横滑り検出器の径方向位置ψ =ロータ羽根のアジマス角【0018】
    図2は、速度範囲の低速値での対気速度(ノット)に対して種々の最大横滑り角(βMAX)をプロットしたグラフであり、関係は殆ど線形であることを明らかに示している。 図示しないが、このほぼ線形の関係は、約200ノットの対気速度を表す約34°の最大の横滑り角まで、ヘリコプタにおける問題の横滑り角全体にわたって存在することが分かった。
    【0019】
    図3は、風アジマスθ=0,ロータ羽根翼端速度VT=670 ft/sec,横滑り検出器x=0.75でのロータアジマス(ψ)に対する横滑り角(β)をプロットしたもので、対気速度50,100,150ノットについての結果を示す曲線である。 この図は、曲線が横滑り角が0のところで軸と交叉する2点のほぼ中間で最大及び最小横滑り角(即ち、異符号の横滑り角)が存在することを示している。
    【0020】
    式(1)は定数循環項による割算を含んでいるので、横滑り角βには高次振動が存在することが分かった。 また、このことは、図3に示すように対気速度が50ノット以上に上昇した時に特に明らかである。 しかし、図4に示すように、設計パラメータが同じ場合、50ノット以下の対気速度については、高次振動は殆ど消滅し、横滑り角βは単純な余弦変化の傾向を示す。
    【0021】
    図4は、対気速度10,20,30,40及び50ノットの場合の曲線を表しており、予測されるように、θ(風アジマス)=0では、最大横滑り角(β)は0°及び180°で得られ、0の横滑り角は90°及び270°での交叉点で見られる。
    【0022】
    図5は、10ノットの相対風速度V(又は対気速度)についての、相対風アジマスθの変化による横滑り角βの位相の変化を示している。 実線は、図4の10ノット対気速度曲線を拡大して表しており、破線は、風速度は同じであるが、相対風速度アジマスθ=30°での曲線を表している。
    【0023】
    図示のように、最大横滑り角は今度は150°及び330°のロータアジマスψのところで見られ、横滑り角0°は60°及び240°のロータアジマスψのところで起こる。 従って、横滑り角に関しては振幅の変化はなく、位相の変化のみ存在する。
    【0024】
    図5における横滑り角βの最大振幅はほぼ2°であり、これは、適当な検知器により容易に測定可能でなければならず、また、ロータ羽根自体の周期的なリードラグ運動よりもずっと大きいことが分かる。 横滑り角は0.5°になるのに越したことはなく、その場合、対気速度は約2ノット以内にしうることが必要である。
    【0025】
    明らかなように、本発明は、回転しているロータ羽根に作用する径方向及び接線方向の流れ成分から生ずる横滑り角βの測定に依拠しており、これは、羽根迎え角の影響を受けず且つ翼端効果から離れるように適切な横滑り検出器を羽根上に位置決めしなければならないことを意味している。 これらの理由により、検出器は、ロータ羽根の下面であって、局所速度が比較的に迎え角の影響を受けず、しかも熱伝達率が殆ど一定である羽根翼弦の50%〜95%の範囲内の領域に設けることが好ましいと考えられる。
    【0026】
    横滑り検出器の径方向位置は、検出器を内側に設けることにより横滑り角を最大にする必要性と、検出器を十分に外側に設けることにより胴体の干渉効果を避けると共に高次振動を最小化する必要性という矛盾する条件に基づいて決められる。 従って、検出器は、50%の径方向位置よりも外側、好適には約75%の径方向位置に位置決めすべきであり、そこでは、機首及び尾部部材の影響により横滑り角に最小の擾乱が発生するにすぎず、検知しているロータ羽根と交差する翼端後方の渦の影響は信号をろ波することによって除去できる遷移的性質のものである。
    【0027】
    図6に実線で示したように、電気出力(ボルト)が横滑り角βにほぼ正比例する設計のものであれば、任意の適当な横滑り検出器を使用することができる。 大きな横滑り角でのある程度の感度の低下は認容可能であり、較正しうるが、破線で示したような小さな横滑り角での感度の喪失は、対気速度についての正確さを落とすので、認められない。
    【0028】
    横滑り角を直接に検出するか、或は横滑り角の計算に使用しうる径方向流成分を検出する際に、幾つかの別の計装システムを用いるのが適当である。
    【0029】
    図7には、風洞テストで一般に用いられているものに類似する圧力検知ヨーメーターの2つの実施形態が羽根の横滑り角βの測定に適するものとして示されている。 図7において、羽根23の図示部分は上下逆さまに示されている。 従って、空力的に釣り合いのとれた形状の小さな膨出部32か、テーパ付きベーン33のどちらかが羽根23の翼弦方向に取り付けられ、横滑りによる圧力差を測定するため、圧力差変換器(図示せず)に接続された圧力ポート34を分離している。
    【0030】
    図8には、遠心力の有害な影響の可能性を排除する更に別の横滑り角検知器が示されている。 この検知器は、羽根23の表面に設けられた空力的に釣り合いの取れた形状の膨出部36の回りの気流により生ずる熱伝達差を測定するために、同膨出部36の両側の面にホットフィルムゲージ35を使用する。 該ゲージは膨出部36と一体的に製造可能であり、汚染を防止するために保護層で被覆されている。
    【0031】
    図示しないが、図8のゲージ35に類似する位置に、温度感知トランジスタを使用して、膨出部36の各側における熱伝達の差を検出し、この差から横滑り角βを計算することができる。
    【0032】
    膨出部36、ゲージ35、温度感知トランジスタ及び必要な電気配線は、既存のロータ羽根に後から取り付けることもできるし、新たに羽根を製作する際に合体させることもできる。
    【0033】
    表面上の流れの方向と強さの双方を測定しうる別の形式のホットフィルム装置は、図9に示すように、逆“V”の形に装着された長さと幅の比がほぼ100のツインホットフィルムフィラメント37からなる。 このツインフィラメントもしくはゲージは、熱境界層の差を測定することによって平滑な表面上の流れ方向を検出する。 該ツインフィラメントもしくはゲージからの熱伝達、従って同ツインゲージの出力は入射流に対して余弦関係(余弦を分数で累乗する)に従い、この関係から差信号を得ることができる。
    【0034】
    このようなホットフィルム“V”ゲージは、本発明において使用するのに特に適すると考えられる。 その理由は、ツインゲージ37は、羽根表面上に直接装着でき、後付けを可能としてもよいし、或は羽根の製造中に最終的に形成してもよいからである。 かかるツインゲージの特性の分析結果は、広範囲の横滑り角度にわたり最大の感度が得られ、この範囲内で出力は線形である最適形状が達成可能であることを示唆している。
    【0035】
    横滑り角βを容易に計算できるロータ羽根に沿った径方向流れを検出する別の方法は、超音波の使用である。 可能な据え付けの態様が図10に示されている。 同図において、ロータ羽根23は、下側表面上で翼弦方向に離間した2つの超音波変換器38(明瞭にするため大きさを誇張して描かれている)を備えるものとして、上下逆に示されている。
    【0036】
    この方法は、遠心力や、汚染や、ブリッジ平衡形にする要求等による影響を受けないという利点があり、非常に耐久性がある。 変換器38は全く小形であるから、無線伝送電子部品を検出器ハウジング内に収容してシステム自体を入れておくことができる。
    【0037】
    気流の方向を検知するための別の可能な方法はレーザー光を使用することである。 径方向流速度を検出するために、小形のレーザーダイオードを使用することもできる。
    【0038】
    羽根の横滑り検出器(どんな形状のものでも)からの電気信号は、回転している羽根から航空機の胴体内に処理装置として設けられている信号処理ユニットP(図1参照)に伝送される。 この伝送はスリップリングを用いて行うことができるが、無線等の手段を用いる非接触式伝送に基づくシステムが好ましい。 この伝送システムは小形であり、軽量であり、耐久性があり、廉価である。 必要な電気配線は製造中に新しい羽根に組み込むことができ、伝送のための電子部品は統合化することができる。
    【0039】
    この信号処理ユニットは、横滑り角βと対気速度の関係についての情報を適当な形で含んでいる。 信号の処理は、横滑り検出器からの信号をろ波してその位相と振幅を測定する必要があるだけなので、簡単である。 (図3に示したような)低速度では、信号は、その位相及び振幅を相対風向及び対気速度にそれぞれ直接に関連させて、余弦曲線にぴったり追従する。 位相角は、高対気速度で存在する高次振動の影響を最小にするように、ロータアジマスにおける0°の横滑り角の交叉点を検出することにより得られる。 振動の振幅及び位相は前進率のみに依存するので、処理された信号は、高前進速度においても使用するために容易に較正できる。
    【0040】
    対気速度及び相対風向の双方に関する処理された信号は、パイロットに表示するためコックピットにある既存の計装に入力することができる。 或は、図11に示すように、専用の計器を使用することもできる。 計器39は、相対風アジマス及び対気速度を表示するディジタルディスプレー(表示装置)40,41と、ヘリコプタの長手方向の中心線26からの相対風の方向を示す可動バー43を含む中央の円形ディスプレースクリーン42とを備える。 可動バー43の長さは、異なる対気速度を表す同心リング44と協同して、パイロットに対気速度の可視表示を与えるために、対気速度の変化に従って変化する。
    【0041】
    幾つかの実施形態を例示し説明してきたが、本発明の範囲から逸脱することなく数多くの改変が可能であることを理解されたい。 例えば、本発明の方法及び装置は、任意の数のロータ羽根を有する回転翼航空機に適用しうる。 また、任意の適当な検出器を使用できるし、複数の検出器を各羽根に使用して、システムの範囲及び感度を拡張もしくは最適にすることができる。 そのような配列の場合、複数の検出器間の自動的な切り替えも本発明の異なる局面を提供するものである。 ある据え付けの際には、検出器の全部又は一部をロータ羽根の上側表面に配置してもよい。
    【図面の簡単な説明】
    【図1】 本発明の方法及び装置で用いられる速度ベクトルを示すヘリコプタの概略平面図である。
    【図2】 横滑り角と対気速度の関係を示すグラフである。
    【図3】 50ノット以上の選択された対気速度について、ロータアジマスに対して横滑り角をプロットしたグラフである。
    【図4】 50ノット以下の選択された対気速度について、ロータアジマスに対して横滑り角をプロットしたグラフである。
    【図5】 風アジマスの変化による位相の変化を説明する、ロータアジマスに対して横滑り角をプロットしたグラフである。
    【図6】 横滑り検出器の望ましい特性を説明する線図である。
    【図7】 適当な検出器及び配列例を示す概要図である。
    【図8】 適当な検出器及び配列例を示す概要図である。
    【図9】 適当な検出器及び配列例を示す概要図である。
    【図10】 適当な検出器及び配列例を示す概要図である。
    【図11】 対気速度及び風向の情報を表示するのに適する計器の概略正面図である。
    【符号の説明】
    10…ヘリコプタ(回転翼航空機)、21…胴体、22…尾部部材、23…サステイニング用のロータ、23A〜23D…羽根、24…垂直な軸心、26…長手方向の中心線、27…ヘリコプタ速度ベクトル、28…自然風向、29…相対風ベクトル、32…膨出部(圧力検知ヨーメーター)、33…テーパ付きベーン(圧力検知ヨーメーター)、34…圧力ポート、35…ホットフィルムゲージ、36…膨出部(圧力検知ヨーメーター)、37…ホットフィルムフィラメント、38…超音波変換器、39…計器、40,41…ディジタルディスプレー(ディスプレー装置)、42…ディスプレースクリーン、43…可動バー、P…信号処理ユニット(処理装置)、β…横滑り角。

    QQ群二维码
    意见反馈