DESALINATION SHIP AND METHOD FOR PRODUCING DESALINATED WATER

申请号 EP04817834.7 申请日 2004-11-18 公开(公告)号 EP1697261B1 公开(公告)日 2010-03-03
申请人 Water Standard (CI), LP; 发明人 GORDON, Andrew, W.;
摘要 Systems, methods, and apparatus for desalinating water are provided. A vessel includes a water intake system, a reverse osmosis system, a concentrate discharge system, a permeate transfer system, a power source, and a control system. The concentrate discharge system includes a plurality of concentrate discharge ports.
权利要求 A desalination ship (101) configured to float on a body of water comprising: a water intake system (201) comprising a water intake pump (203) configured to draw water from the body of water; a water desalination system (200) configured to produce desalinated water and concentrate from water drawn from the body of water; and a concentrate discharge system (207) configured to discharge the concentrate into the body of water,
characterized in that the water intake system (201) further comprises: a water intake member extending down from a hull of the ship (101) and operable to intake water from the body of water at a plurality of depths, and in that the water desalination system (200) is operable to produce at least 5,000 cubic meters of desalinated water per day.
The desalination ship (101) according to claim 1, characterized in that the desalination ship (101) further comprises: a sea chest disposed on the desalination ship, and in that the desalination ship is operable to select between intaking water through the sea chest or the water intake member (2701).The desalination ship (101) according to any of the preceding claims, characterized in that the water intake member (2701) is operable to extend to a depth within or below a thermocline region (640) of the body of water.The desalination ship (101) according to any of the preceding claims, characterized in that the concentrate discharge system comprises: a plurality of concentrate discharge ports (602).The desalination ship (101) according to any of the preceding claims, characterized in that the concentrate discharge system (207) comprises: a discharge member (601) extending down from the desalination ship, and in that the discharge member (601) is operable to extend to a plurality of depths in the body of water such that the discharge member (601) is operable to discharge concentrate at a plurality of depths in the body of water.The desalination ship (101) according to claim 5, characterized in that the discharge member (601) comprises: a plurality of discharge tubes, and in that each of the plurality of discharge tubes extends to a different depth.The desalination ship (101) according to any of the preceding claims, characterized in that the desalination system (200) comprises: a reverse osmosis system (204) comprising a high pressure pump (205) and a reverse osmosis membrane (206).The desalination ship (101) according to any of the preceding claims, characterized in that the desalination ship (101) further comprises: a packaging system (110) for packaging the desalinated water.The desalination ship (101) according to any of the preceding claims, characterized in that the desalination ship (101) further comprises: a power source (103) for generating electricity for powering the desalination system (200), and in that the power source (103) is capable of transferring electricity to land.The desalination ship (101) according to claim 5, characterized in that the discharge member (601) is configured to float on a surface of the body of water.The desalination ship (101) according to claim 4, characterized in that each of the plurality of concentrate discharge ports (602) has a circumference that is variable.The desalination ship (101) according to any of the preceding claims, characterized in that the water intake member (2701) comprises a plurality of water intakes (2702).The desalination ship (101) according to any of the preceding claims, characterized in that the water intake member (2701) comprises: a water intake (2702) positioned at the distal end of the water intake member (2701).A method of desalinating water on a desalination ship (101) comprising:intaking water from the body of water onto the desalination ship; producing (2310) desalinated water and concentrate on the desalination ship (101); and discharging (2320) the concentrate into the body of water,characterized in that the method further comprises: extending a water intake member from a hull of the desalination ship (101) into a body of water on which the desalination ship (101) floats, and in that the intaking of the water is performed at a plurality of depths in the body of water by extending down the member (2701) to the plurality of depths in the body of water, and in that the desalination ship produces at least 5,000 cubic meters of desalinated water per day.The method of desalinating water according to any of the preceding claims; characterized in that the method further comprises: intaking the water from within or below a thermocline region (640) of the body of water.The method of desalinating water according to claim 14 or 15, characterized in that the method further comprises: discharging (2320) the concentrate into the body of water through a plurality of concentrate discharge ports (602).The method of desalinating water according to any of claims 14 to 16, characterized in that the method further comprises: producing electricity on the desalination ship (101) to power the production of the desalinated water and concentrate, and transferring (2540) the electricity produced on the desalination ship (101) to land.The method of desalinating water according to any of claims 14 to 17, characterized in that the method further comprises: diluting (2210) the concentrate with water drawn from the body of water on the desalination ship (101) prior to discharge (2320).The method of desalinating water according to any of claims 14 to 18, characterized in that the method further comprises: extending a member (601) of the concentrate discharge system (207) to a plurality of depths in the body of water, and discharging (2320) concentrate from the member (601) at the plurality of depths in the body of water.The method of desalinating water according to any of claims 14 to 19 characterised in that the concentrate is pressurized prior to being discharged through the plurality of concentrate discharge ports (602).The method of desalinating water according to claim 14, characterized in that the producing (2310) desalinated water and concentrate on the desalination ship (101) comprises using a reverse osmosis system (204) comprising a high pressure pump (205) and a reverse osmosis membrane (206), and in that the reverse osmosis system (204) produces the desalinated water and the concentrate using pressure from the high pressure pump (205) to separate the desalinated water and the concentrate across the reverse osmosis membrane (206).
说明书全文

CLAIM FOR PRIORITY

This application is a continuation-in-part of U.S. Patent Application No. 10/630,351, filed July 30, 2003, which claims priority to U.S. Provisional Application No. 60/416,907, filed October 8, 2002, and to U.S. Patent Application No. 10/453,206, filed June 3, 2003, and converted to U.S. Provisional Application No. 60/505,341, on July 14,2003, the priority benefit each of which is claimed by this application.

FIELD OF THE INVENTION

The present invention relates to ships and methods for water desalination and purification including the removal of dissolved solids and contaminants from sea water and brackish water. The present invention may be advantageously utilized to provide potable, or otherwise purified water, from a seawater or brackish water source.

BACKGROUND

The antiquity of water supply systems is well established. The practice of water treatment dates back to at least 2000 B.C., when Sanskrit writings on medical lore recommended storage of water in copper vessels, exposure of water to sunlight, filtering through charcoal, and boiling of foul water for the purpose of making water drinkable. Later, two significant advancements helped to establish drinking water treatment. In 1685, the Italian physician Lu Antonio Porzio designed the first multiple-stage filter. Prior to that, in 1680, the microscope was developed by Anton Van Leeuwenhoek. With the discovery of the microscope enabling the detection of microorganisms and the ability to filter out these microorganisms, the first water-filtering facility was built in the town of Paisley, Scotland, in 1804 by John Gibb. Within three years, filtered water was piped directly to customers in Glasgow, Scotland.

In 1806, a large water treatment plant began operating in Paris with filters made of sand and charcoal, which had to be renewed every six hours. Pumps were driven by horses working in three shifts. Water was then settled for twelve hours before filtration.

In the 1870's, Dr. Robert Koch and Dr. Joseph Lister demonstrated that microorganisms existing in water supplies can cause disease, and then began the quest for effective ways to treat raw water. In 1906, in eastern France, ozone was first used as a disinfectant. A few years later, in the United States, the Jersey City waterworks in 1908 became the first utility in America to use sodium hypochlorite for disinfecting the water supply. Also, in that same year, the Bubbly Creek Plant in Chicago, Illinois, instituted chlorine disinfectant. Over the next several decades, work began on improving the efficiency of filtration and disinfectant.

By the 1920's, the filtration technology had evolved so that pure, clean, bacteria free, sediment free, and particulate free water was available. During World War II, Allied military forces operated in arid areas and began ocean water desalination in order to supply troops with fresh drinking water. In 1942, the U.S. Public Health Service adopted the first set of drinking water standards, and the membrane filter process for bacteriological analysis was approved in 1957.

By the early 1960's, more than 19,000 municipal water systems were in operation throughout the United States. With the 1974 enactment of the Safe Drinking Water Act, the federal government, the public health community and water utilities worked together to provide secure water production for the United States.

The world has a shortage of potable water for drinking and water for agricultural, irrigation, and industrial use. In some parts of the world, prolonged drought and chronic water shortages have slowed economic growth and may eventually cause the abandonment of certain population centers. In other parts of the world, an abundance of fresh water exists, but the water is contaminated with pollution such as chemicals from industrial sources and from agricultural practices.

The world faces severe challenges in our ability to meet our future water needs. Today there are over 300 million people living in areas with severe water shortages. That number is expected to increase to 3 billion by 2025. About 9,500 children die around the world each day because of poor quality drinking water according to United Nations reports. The population growth has increased the demand on drinking water supplies, while the available water, world wide, has not changed. In the coming decades, in addition to improving water reuse efficiency and promoting water conservation, we will need to make additional water resources at a cost and in a manner that supports urban, rural and agricultural prosperity and environmental protection.

There has been a 300 percent increase in water use over the past 50 years. Every continent is experiencing falling water tables, particularly on the southern Great Plains and the Southwest in the United States, and in North Africa, Southern Europe, the entire Middle East, Southeastern Asia, China and elsewhere.

Evaporation and reverse osmosis are two common methods to produce potable water from sea water or brackish water. Evaporation methods involve heating sea water or brackish water, condensing the water vapor produced, and isolating the distillate. Reverse osmosis is a membrane process in which solutions are desalted or purified using relatively high hydraulic pressure as the driving force. The salt ions or other contaminants are excluded or rejected by the reverse osmosis membrane while pure water is forced through the membrane. Reverse osmosis can remove approximately 95% to approximately 99% of the dissolved salts, silica, colloids, biological materials, pollution, and other contaminants in water.

The only inexhaustible supply of water is the sea. The desalination of sea water using a land-based plant in quantities large enough to supply a major population center or large scale irrigation projects presents many problems. Land-based plants that desalinate sea water through evaporation methods consume enormous amounts of energy.

Land-based plants that desalinate water through reverse osmosis methods generate enormous quantities of effluent comprising the dissolved solids removed from the sea water. This effluent, also referred to as concentrate, has such a high concentration of salts, such as sodium chloride, sodium bromide, etc., and other dissolved solids that simply discharging the concentrate into the waters surrounding a land-based desalination plant would eventually kill the surrounding marine life and damage the ecosystem. In addition, the concentrate that emerges from conventional land based reverse osmosis desalination plants has a density greater than sea water, and hence, the concentrate sinks and does not quickly mix when conventionally discharged directly into the water surrounding a land-based plant.

Even if the health of the marine life and ecosystem surrounding a land-based reverse osmosis desalination plant was not a concern, discharging the concentrate into the water surrounding the land-based plant would eventually raise the salinity of the intake water for the plant and foul the membranes of the reverse osmosis system. If a membrane in a reverse osmosis system is heavily fouled, it must be removed and treated to eliminate the fouling material. In extreme cases, the fouling material cannot be removed, and the membrane is discarded.

As a result of all of these factors, potable water produced from land-based reverse osmosis desalination plants is costly and presents significant engineering problems for disposing of the effluent. Hence, despite the world's shortage of potable water, only a small percentage of the world's water is produced by the desalination or purification of water using reverse osmosis methods. Therefore, the need exists for a method and system to consistently and reliably supply potable water using desalination technology that does not present the engineering and environmental problems that a conventional land-based desalination plant presents.

Off-shore desalination has also been provided as described in for example US2002/0125190 and US6348148.

Known ship-board water desalination systems are designed and operated for ship-board consumption of water, and thus are designed and operated according to various maritime standards. Maritime standards for water desalination systems and plants and water quality are less stringent than the standards governing the design and operation of land-based desalination plants and systems, especially those promulgated by the United States, United Nations, and World Health Organization. With the world's increasing shortage of potable water, a need exists to alleviate this shortage. Therefore, there is a demonstrable need for methods and systems that can be utilized at sea to provide desalinated water for land-based consumption. Moreover, the desalinated water produced at sea can be stored, maintained, and transported in a manner consistent with those regulations and standards governing the design and operation of land-based water desalination plants and systems.

SUMMARY

The present invention is defined in the appended claims.

The present invention overcomes the aforementioned disadvantages of the prior art and provides a desalination ship and methods for providing water. The present invention may be advantageously utilized to provide potable water, drinking water, and/or water for industrial uses.

The present invention comprises a ship and includes methods and apparatus for purifying and/or desalinating the water on which the ship floats, including brackish and/or polluted sea, lake, river, sound, bay, estuary, lagoon water, etc. Water produced on the ship may be delivered to land through the use of transport vessels, pipes, transfer ports and the like. The water may be transferred in bulk form and/or may be packaged in containers prior to transport. The water may be stored on the production ship, accompanying vessels, and/or other storage means prior to transport to land.

Methods of the present invention include ship production of water, including potable water or water suitable for residential industrial, or agricultural uses, on the ship and subsequent transportation of the water to land. The methods may further comprise storage and/or packaging of the water.

The present invention includes the ship and associated apparatus for producing, transporting, storing, refreshing, and/or packaging the water. Embodiments of the present invention are described in detail herein.

Embodiments of the present invention may take a wide variety of forms. In one exemplary embodiment, a ship includes a water intake system, a reverse osmosis system, a concentrate discharge system, a permeate transfer system, a power source, and a control system. The water intake system includes a water intake and a water intake pump. The reverse osmosis system includes a high pressure pump and a reverse osmosis membrane. The concentrate discharge system includes a plurality of concentrate discharge ports. The permeate transfer system includes a transfer pump. The reverse osmosis system is in communication with the water intake system. The concentrate discharge system and the permeate transfer system are in communication with the reverse osmosis system. The power source is in communication with the pumps of the water intake system, the reverse osmosis system, and the permeate transfer system. The control system is in communication with the water intake system, the reverse osmosis system, the concentrate system, the permeate transfer system, and the power source.

In a further exemplary embodiment, a method of producing permeate on a floating structure includes the production of a concentrate that is discharged into the surrounding water. The concentrate is discharged through a concentrate discharge system that includes a plurality of concentrate discharge ports.

Another exemplary embodiment includes a ship having means for producing a permeate and means for mixing a concentrate with seawater and means for delivering the permeate from the ship to a land-based distribution system.

A further exemplary embodiment comprises a ship comprising means for producing energy and land-based means for transferring the energy from the vessel to a land-based distribution system.

A further exemplary embodiment comprises a ship operable to produce desalinated water, means for delivering the desalinated water from the vessel to a land-based water distribution system, and means for transferring the electricity from the vessel to a land-based electrical distribution system.

In a further exemplary embodiment, a ship comprises a hull comprising a first surface and a second surface, means for producing desalinated water, means for mixing a concentrate with seawater, and means for storing the desalinated water. The water storing means comprises a tank disposed within the hull. The tank comprises a first surface and a second surface. The second surface of the tank being separated from the first surface of the hull.

In a further exemplary embodiment, a method comprises providing a ship operable to generate energy and transferring the energy from the vessel to a land-based distribution system.

In a further exemplary embodiment, a method comprises providing a ship operable to produce desalinated water and to generate electricity, delivering the desalinated water produced by the vessel to a land-based water distribution network, and transferring the electricity generated by the vessel to a land-based electrical distribution network.

In still a further exemplary embodiment, a method comprises producing desalinated water, mixing a concentrate with seawater, and storing the desalinated water in a tank. The tank is disposed in a hull of a ship. The hull comprises a first surface and a second surface. The tank comprises a first surface and a second surface. The second surface of the tank is separated from the first surface of the hull.

An advantage of the present invention can be to use a drought-resistant source of water.

Another advantage of the present invention can be to provide a sea-borne desalination facility that is less expensive than a land-based desalination facility.

Another advantage of the present invention can be to provide a more secure desalination facility.

Another advantage of the present invention can be to mitigate the environmental impacts of a desalination facility.

Another advantage of the present invention can be to provide large quantities of desalinated water to coastal and maritime locales anywhere in the world or to locales distant from a body of water through the use of a distribution system.

Another advantage of the present invention can be to provide relief to disaster-stricken areas.

Another advantage of the present invention ban be to provide mobile production and storage of desalinated water.

Another advantage of the present invention can be to minimize the amount of land-based infrastructure.

Another advantage of the present invention can be to provide a desalination facility in a shorter amount of time than is needed for a land-based desalination facility.

Another advantage of the present invention can be to provide a desalination facility that can be moved to avoid natural disruptions and calamities.

Another advantage of the present invention can be to deliver emergency supplies and pre-packaged water.

Another advantage of the present invention can be to remediate aquifers and wetlands.

Another advantage of the present invention can be to provide a Federal strategic water reserve system.

Another advantage of the present invention can be to provide tradable and transportable water surpluses.

Another advantage of the present invention can be to provide a modular water-plant design that can be upgraded and modified.

Another advantage of the present invention can be to deliver electricity to areas suffering from an acute shortage of power.

Another advantage of the present invention can be to generate and transfer electricity to shore while off-loading desalinated water from a vessel.

Another advantage of the present invention can be to vary the amount of desalinated water provided to a location by substituting differently-sized vessels and/or plants.

Another advantage of the present invention can be to readily relocate the location of a source of intake water and/or the discharge of concentrate, as desired.

A further advantage of the present invention can be to produce, store and maintain water aboard a vessel consistent with the standards and requirements of land-based desalination systems and plants.

Another advantage of the present invention can be to reduce or eliminate uptake of water containing discharged concentrate into a water intake system.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which constitute part of this specification, help to illustrate embodiments of the invention. In the drawings, like numerals are used to indicate like elements throughout.

  • Figure 1A is an side view of a vessel according to an embodiment of the present invention.
  • Figure 1B is a plan view of the vessel of Figure 1B.
  • Figure 2 is a schematic of a system according to an embodiment of the present invention.
  • Figure 3 is a bottom view of the vessel of Figure 1A.
  • Figure 4 is a side view of a vessel according to another embodiment of the present invention.
  • Figure 5A is a perspective view of a dispersion device according to an embodiment of the present invention.
  • Figure 5B is a section view of the grate of Figure 5A taken along line I-I.
  • Figure 6A is a side view of a vessel according to another embodiment of the present invention.
  • Figure 6B is a side view of a vessel according to another embodiment of the present invention.
  • Figure 7 is a front view of a vessel according to another embodiment of the present invention.
  • Figure 8 is a schematic of a system according to an embodiment of the present invention.
  • Figure 9 is a perspective view of a mixing tank according to an embodiment of the present invention.
  • Figure 10 is a top view of a vessel according to another embodiment of the present invention.
  • Figure 11 is a top view of a vessel according to another embodiment of the present invention.
  • Figure 12 is a side view of a vessel according to another embodiment of the present invention.
  • Figure 13 is a schematic of a system according to another-embodiment of the present invention.
  • Figure 14 is a schematic of a system according to another embodiment of the present invention.
  • Figure 15 a schematic of a system according to another embodiment of the present invention.
  • Figure 16 is a side view of a vessel according to another embodiments of the present invention.
  • Figure 17 is a side view of a vessel according to another embodiment of the present invention.
  • Figure 18 is a method according to another embodiment of the present invention.

DETAILED DESCRIPTION

The present invention provides a ship and a method for producing water as defined by the claims.

In an embodiment a system of the present invention comprises: a water production ship and a distribution system for distributing the water produced to end users. The distribution system may comprise apparatus for pumping, piping, storing, transporting, packaging or otherwise distributing the water produced on the vessel.

For the purposes of this specification, unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification are approximations that can vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein, and every number between the end points. For example, a stated range of "1 to 10" should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, e. g. 1 to 6.1, and ending with a maximum value of 10 or less, e.g., 5.5 to 10; as well as all ranges beginning and ending within the end points, e.g. 2 to 9, 3 to 8, 3 to 9, 4 to 7, and finally to each number 1, 2, 3,4, 5, 6, 7, 8, 9 and 10 contained within the range.

It is further noted that, as used in this specification, the singular forms "a," "an," and "the" include plural referents unless expressly and unequivocally limited to one referent.

The present invention comprises a ship and methods for desalinating water from sea water, brackish, and/or polluted water. The ship and method for desalinating water described herein can generally be operable to be utilized at sea, aboard, to provide desalinated water consistent with the standards and requirements generally imposed on land-based water desalination plants and systems. The invention described herein, however, is not limited to sea-based applications, but is provided as one such embodiment.

With reference now to the drawings, and in particular, to Figures 1 and 2, there is shown a vessel 101 comprising: a water purification system 200 comprising a water intake system 201 comprising a water intake 202 and a water intake pump 203; a reverse osmosis system 204 comprising a high pressure pump 205 and a reverse osmosis membrane 206; a concentrate discharge system 207 comprising a plurality of concentrate discharge ports; a permeate transfer system 208 comprising a transfer pump 209; a power source 103; and a control system 210.

The reverse osmosis system 204 is in communication with the water intake system 201, and the concentrate discharge system 207 and the permeate transfer system 208 are in communication with the reverse osmosis system 204. The power source 103 is in communication with the water intake system 201, the reverse osmosis system 204, and the permeate transfer system 208. The control system 210 is in communication with the water intake system 201, the reverse osmosis system 204, the concentrate discharge system 207, the permeate transfer system 208, and the power source 103.

The terms "communicate" or "communication" mean to mechanically, electrically, or otherwise contact, couple, or connect by either direct, indirect, or operational means.

The water intake system 201 provides water to the high pressure pump 205 and the high pressure pump 205 pushes water through the reverse osmosis membrane 206, whereby a concentrate is created on the high pressure side of the reverse osmosis membrane 206. The concentrate is discharged into the water surrounding the vessel 101 through the plurality of concentrate discharge ports of the concentrate discharge system 207. On the low pressure side of the reverse osmosis membrane 206, the permeate created can be transferred from the vessel 101 through the permeate transfer system 208.

The vessel 101 may further comprise a propulsion device 102 in communication with the power source 103. A separate power source may provide power to each of the water intake system 201, reverse osmosis system 204, permeate transfer system 208, and propulsion device 102. For example, each of the water intake pump 203, high pressure pump 205, and permeate transfer pump 209 may be in communication with a separate power source. The vessel 101 may be either a self-propelled ship, a moored, towed, pushed or integrated barge, or a flotilla or fleet of such vessels. The vessel 101 may be manned or unmanned. The vessel 101 may be either a single hull or double-hull vessel.

In an alternate embodiment, one power source may provide power to a combination of two or more of the water intake system 201, reverse osmosis system 204, permeate transfer system 208, and propulsion device 102. For example, the electric power for the high pressure pump 205 may be provided by a generator driven by the power source for the vessel's propulsion device, such as a vessel's main engine. In such an embodiment, a step-up gear power take off or transmission would be installed between the main engine and the generator in order to obtain the required synchronous speed. Further, an additional coupling between the propulsion device and the main engine allows the main engine to drive the generator while the vessel is not under way. Moreover, an independent power source (not shown), such as a diesel, steam or gas turbine, or combination of such, can power the reverse osmosis system 204, the propulsion device 102, or both.

In another embodiment, the power source of water purification system 200 is dedicated to the water purification system 200 and is not in communication with any propulsion device on the vessel 101.

In another embodiment, the plurality of concentrate discharge ports of the concentrate discharge system 207 may act as an auxiliary propulsion device for the vessel 101 or act as the sole propulsion device for the vessel 101. Some or all of the concentrate may be passed to propulsion thrusters to provide idling or emergency propulsion.

In another embodiment, the power source may comprise electricity producing windmills or water propellers that harness the flow of the air or water to generate power for the water purification system or the operation of the ship.

The water intake system 201 is capable of taking in water from the body of water surrounding the vessel and providing it to the reverse osmosis system 204. In an embodiment, the water intake 202 of the water intake system 201 comprises one or more apertures in the hull of the vessel below the water line. An example of a water intake 202 is a sea chest. Water is taken into the vessel through the water intake 202 comprising the one or more apertures, passed through the water intake pump 203, and supplied to the high pressure pump 205 of the reverse osmosis system 204.

The reverse osmosis system 204 comprises a high pressure pump 205 and a reverse osmosis membrane 206. Reverse osmosis membranes are of composite construction. One extensively used form comprises two films of a complex polymeric resin which together define a salt passage. In this process, pretreated raw water is pressed through a semipermeable barrier that disproportionately favors water permeation over salt permeation. Pressurized feedwater enters a staged array of pressure vessels containing individual reverse osmosis membrane elements where it is separated into two process streams, permeate and concentrate. Separation occurs as the feed water flows from the membrane inlet to outlet. The feed water first enters evenly spaced channels and flows across the membrane surface with a portion of the feed water permeating the membrane barrier. The balance of the feedwater flows parallel to the membrane surface to exit the system unfiltered. The concentrate stream is so named because it contains the concentrated ions rejected by the membrane The concentrated stream is also used to maintain minimum crossflow velocity through the membrane element with turbulence provided by the feed-brine channel spacer. The type of reverse osmosis membrane used in the present invention is limited only by its compatibility with the water and/or contaminants in the surrounding body of water.

The high pressure pump 205, operable to push the raw water through the reverse osmosis membrane 206, comprises any pump suitable to generate the hydraulic pressure necessary to push the raw water through the reverse osmosis membrane 206.

In an embodiment, the vessel 101 may comprise a plurality of reverse osmosis systems 104, also referred to as trains. The plurality of reverse osmosis systems may be installed on the vessel's deck 105. The plurality of reverse osmosis systems 104 may also be installed in other parts of the vessel 101. The plurality of reverse osmosis systems 104 may also be installed on multiple levels. For example, each reverse osmosis system of the plurality of reverse osmosis systems 104 may be installed in a separate container. Several containers can be placed on top of each other to optimize the use of the deck 105 on the vessel 101 and to decrease the time and expense associated with construction of the water purification system on the vessel 101. The plurality of reverse osmosis systems 104 are preferably installed in parallel, but other configurations are possible.

The permeate transfer system 208 is capable of transferring the permeate produced to a permeate delivery means, such as a tug-barge unit or tanker vessel In an embodiment, the permeate transfer system 208 is capable of transferring the permeate produced to a permeate delivery means comprising a transfer vessel means while the vessel 101 and the transfer vessel means are under way. The permeate transfer system 208 is also capable of transferring the permeate produced to a permeate delivery means comprising a pipeline in communication with the permeate transfer system 208.

The control system 210 comprises any system capable of controlling the operation of the water intake system 201, the reverse osmosis system 204, the concentrate discharge system 207, the permeate transfer system 208, and the power source 103 on the vessel 101. The control system 210 is located in a suitable location according to the needs of the vessel 101. The control system 210 may further comprise any system capable of controlling the operation of the vessel 101. In an embodiment, the control system may comprise a processor to make autonomous operational decisions to run the vessel 101 and the water purification system 200. A specific control system envisioned is the TLX software available from Auspice Corp., although other systems can be included in the design such as a programmable logic control (PLC) system.

The processor generally is in communication with the control system 210. Suitable processors include, for example, digital logical processors capable of processing input, executing algorithms, and generating output. Such processors can include a microprocessor, an Application Specific Integrated Circuit (ASIC), and state machines. Such processors include, or can be in communication with media, for example computer readable media, which store instructions that, when executed by the processor, cause the processor to perform the steps described herein as carried out, or assisted, by a processor.

One embodiment of a suitable computer-readable medium includes an electronic, optical, magnetic, or other storage or transmission device capable of providing a processor, such as the processor in a web server, with computer-readable instructions. Other examples of suitable media include, but are not limited to, a floppy disk, CD-ROM, magnetic disk, memory chip, ROM, RAM, ASIC, configured processor, all optical media, magnetic tape or other magnetic media, or any other medium from which a computer processor can read. Also, various other forms of computer-readable media may transmit or carry instructions to a computer, including router, private, or public network, or other transmission device or channel.

In one embodiment, the control system 210 comprises security systems operable to control physical access to the control system 210. In another embodiment, the control system 210 comprises network security systems operable to control electronic access to the control system 210.

The concentrate discharge system 207 is configured to increase the mixing of the concentrate discharged into the surrounding body of water. The plurality of concentrate discharge ports of the concentrate discharge system 207 can be physically located above or below the water line of the vessel 101.

Referring now to Figure 3, in an embodiment, a plurality of concentrate discharge ports 301 are physically located in such a way that a portion of the concentrate discharged through the plurality of concentrate discharge ports 301 is capable of being mixed with the water surrounding the vessel 101 by a propulsion device 102 for the vessel 101.

In an embodiment comprising a plurality of reverse osmosis systems, a separate concentrate discharge system is connected to each reverse osmosis system.

Referring now to Figure 4, in another embodiment comprising a plurality of reverse osmosis systems, the concentrate discharged from each reverse osmosis system is collected by the concentrate discharge system 207 in one or more longitudinally oriented manifold pipes, structural box girders, or tunnels. At intervals along the vessel 101, a plurality of discharge ports 401, allows the concentrate to be discharged over a substantial portion of the vessel's 101 length.

Referring now to Figure 5, in another embodiment of the concentrate discharge system 207, each discharge port incorporates a grate 507 designed to assist mixing having divergently oriented apertures 502. A grating with protrusions into the grating's apertures may also be used to assist mixing.

In another embodiment, the concentrate discharge ports of the concentrate discharge system 207 are configured in a manner similar to the exhaust nozzles on an F-15 fighter jet such that the concentrate discharge ports may change their circumference and may also change the direction of the flow of the concentrate.

Temperatures in oceans decrease with increasing depth. The temperature range extends from 30 °C at the sea surface to -1 °C at the sea bed. Areas of the oceans that experience an annual change in surface heating have a shallow wind-mixed layer of elevated temperature in the summer. This wind-mixed layer is nearly isothermal and can range from 10 to 20 meters in depth from the surface. Below the wind-mixed layer, the water temperature can decrease rapidly with depth to form a seasonal thermocline layer having sharp vertical temperature change. During winter cooling and increased wind mixing at the ocean surface, convective overturning and mixing erase the seasonal thermocline layer and deepen the wind-mixed isothermal layer. The seasonal thermocline layer can reform with summer temperatures. At depths below the wind-mixed layer and any seasonal thermocline, a permanent thermocline separates water from temperate and subpolar regions. The permanent thermocline exists from depths of about 200 m to about 1,000 m. Below this permanent thermocline, water temperatures decrease much more slowly toward the sea floor.

Thermocline regions in the ocean can reduce mixing between water in regions above and below a thermocline. Further, water in a thermocline region also may not rapidly mix with water in regions above or below the thermocline region.

As used herein, the term "thermocline" refers to a temperature gradient in a layer of sea water, in which the temperature decrease with depth is greater than that of the overlying and underlying water.

Referring now to Figure 6A, in embodiments where the vessel 101 is moored, the concentrate discharge system 207 may comprise a member 601 extending down from the hull of the vessel 101 with a plurality of discharge ports 602 on the member 601. Depending on various factors such as water depth, water temperature, water currents, and the surrounding ecosystem, the member 601 may extend to the depth or depths that optimize the mixing of the concentrate with the surrounding body of water.

In an embodiment, the member 601 can be lowered from and retracted to the vessel 101 by mechanical means, such as, for example, a hydraulic assembly. Alternatively, other suitable means can be used to lower and retract the member 601 , including those used in conventional maritime drilling operations. In another embodiment, the member 601can have sufficient mass and/or density that the member 601 can be lowered from the vessel 601 to a desired depth without mechanical assistance. Such member 601 is generally retracted to the vessel 101 by mechanical means.

In a further embodiment (not pictured), the discharge member 601 incorporates an aspirator through which water from the surrounding body of water can be drawn into member 601. The flow of concentrate into member 601 creates a reduction in pressure (Venturi effect) and draws water in from the surrounding body of water for mixing with the concentrate before discharge. The resulting mixture is discharged through a plurality of discharge ports 602.

Referring now to Figure 6B, wherein the water intake 202 of a water intake system 201 comprises a sea chest, discharge ports 602 are located on the member 601 such that each discharge port 602 is disposed within or below a thermocline region 640 relative to the water intake 202. Such a configuration may reduce or eliminate uptake of discharged concentrate into the water purification system 200. In embodiments where the water intake 202 comprises an aperture in the hull of the vessel and the draught of the vessel 101 is less than the depth of the wind-mixed isothermal surface layer of a surrounding body of water, the member 601 can extend into or below a seasonal thermocline region wherein the plurality of discharge ports are disposed within or below the seasonal thermocline. For example, the draught of ships having a dead weight tonnage of less than 200,000 is typically less than 20 meters and also less than the depth of the isothermal wind-mixed layer. Sea chests disposed below the water line on the forward part of the vessel 101 would be expected to draw water from the isothermal wind-mixed layer.

Referring now to Figure 7, in another embodiment, the concentrate discharge system 207 comprises a member 701 having a plurality of concentrate discharge ports 702 wherein the member 701 floats on the water's surface through the use of support pontoons or a catenary having support pontoons, or the member 701 may be inherently buoyant.

In another embodiment, each concentrate discharge port of the concentrate discharge system 207 may be mounted on dispersion devices that enable the discharge ports to move in a full hemi-sphere range. The dispersion devices may comprise a universal joint, a swivel, a gimble, a ball and socket, or other similar devices known to one skilled in the art. Through the oscillation or motion of the plurality of concentrate discharge ports, the concentrate should be more evenly dispersed into the surrounding water.

In another embodiment, the concentrate discharge system 207 may further comprise a pump to increase the water pressure of the concentrate prior to being discharged through the plurality of concentrate discharge ports.

In another embodiment, the vessel 101 further comprises a heat recovery system in communication with the exhaust of a power source, the water intake system 201, the control system 210, and the reverse osmosis system 204. The heat recovery system can use the heat energy generated by one or more power sources to heat the water taken in by the water intake system 201 before for the water passes to a reverse osmosis membrane 206.

In another embodiment, the vessel 101 may further comprise a heat exchange system in communication with the reverse osmosis system 204 and the concentrate discharge system 207. The heat exchange system comprises a heat exchanger and a cooling system. The heat exchange system reduces the temperature of the concentrate to at or about the temperature of the water surrounding the vessel 101. Since the concentrate normally has an elevated temperature as compared to the temperature of the intake water, installing a heat exchanger system operationally between the reverse osmosis system 204 and concentrate discharge system 207 provides the advantage of reducing or eliminating any impact on the surrounding ecosystem that could result from the discharge of concentrate at an elevated temperature. In another embodiment, a heat exchange system is in communication with other systems on the vessel 101 .

Referring now to Figure 8, in another embodiment, the water purification system 200 comprises, a water intake system 201 comprising a water intake 202 and a water intake pump 203, a storage tank 830, a pretreatment system 840, a reverse osmosis system 204 comprising a high pressure pump 205 and a reverse osmosis membrane 206, a concentrate discharge system 207, a permeate transfer system 208 comprising a permeate transfer pump 209, an energy recovery system 810, and a permeate storage tank 220. The energy recovery system 810 is operable to recover or convert into electricity the energy associated with the pressure of the concentrate.

The storage tank 830 is in communication with the water intake pump 203 and the pretreatment system 840. The pretreatment system 840 is in communication with the storage tank 830 and the high pressure pump 205. The energy recovery device 810 is in communication with the high pressure side of the reverse osmosis membrane 206, the high pressure pump 205, and the concentrate discharge system 207.

In an embodiment, the pretreatment system 840 comprises at least one of a debris prefilter system, a reservoir, and a surge tank. A debris filter system is typically used to insure stable, long-term reverse osmosis system performance and membrane life. The debris prefilter system may include clarification, filtration ultrafiltration, pH adjustment, removal of free chlorine, antiscalant addition, and 5 micrometer (micron) cartridge filtration.

In one embodiment, the pretreatment system 840 comprises a plurality of pretreatment systems (not shown). In warm, clean waters, one pretreatment system 840 is generally sufficient. However, colder raw water temperatures (as well as more polluted waters) may require several stages of pretreatment. While the vessel 101 can be custom-built for a predetermined locale, and thus with a single pretreatment system 840, providing the vessel 101 with a plurality of pretreatment systems can permit the vessel 101 to operate in a wide variety of enviromnents across the globe. Such an embodiment for the vessel 101 may enhance the flexibility of governmental or United Nations crisis or disaster-response planning in which disaster locations and environmental conditions cannot be readily anticipated or adequately planned for.

The energy recovery system 810 is operable to recover or convert the energy associated with the pressure of the concentrate. Examples of a energy recovery system 810 include devices such as a turbine. The energy recovered can be used to remove a stage of the high pressure pump 205, to assist in interstage boosting in a two stage water purification system, or to generate electricity.

Referring now to Figures 9 through 12 in general, in another embodiment, the vessel 101 further comprises a mixing system in communication with the reverse osmosis system 204 and the concentrate discharge system 207. The mixing system is capable of mixing the concentrate with water taken directly from the surrounding body of water before discharging the concentrate. Such a system is operable to dilute and/or cool the concentrate before returning it to the surrounding body of water.

Referring now to Figure 9, in an embodiment, a mixing system comprises a mixing tank 905 comprising a concentrate inlet 910, a concentrate outlet 915, a mixing water intake system 920 comprising a water intake and a pump, a series of baffles 925, and a mixing barrier 935 comprising a plurality of apertures 935, wherein water taken in through the mixing water intake system 920 (i.e. native water) and the concentrate are forced through the mixing barrier and mixed before flowing to the concentrate discharge system 207. The size, shape, location and number of apertures 935 are selected to optimize mixing of the concentrate with the native water. The apertures 935 should induce turbulence in fluids flowing through the mixing barrier 930. The mixing barrier 930 extends from one side of the mixture tank 905 to the opposing side of the mixing tank 905. Adjacent baffles are coupled to opposing sides of the mixing tank 905. The baffles are arranged in a staggered relationship such that a portion of each baffle 925 overlaps with an adjacent baffle 925. The fluid passing though the mixing barrier 930 must follow a convoluted route before reaching the concentrate discharge system 207.

In another embodiment (not pictured), the mixing system comprises a mixing tank comprising a concentrate inlet, a concentrate outlet, a mixing water intake system comprising a water intake and a pump, and any device capable of forming a substantially homogeneous mixture from the concentrate and native water. Example of such devices include high speed paddle mixers and a static mixer.

By mixing the concentrate with native water, the water purification system 200 is capable of returning a diluted concentrate back into the surrounding body of water. For example, if the surrounding body of water contained total dissolved solids (TDS) of 30,000 mg/L and the water purification system were operating at a recovery of 50% permeate, then the TDS of the concentrate would be about 60,000 mg/L. By mixing native water with the concentrate, the TDS of the diluted concentrate would be between 60,000 and 30,000 TDS.

In another embodiment, the water intake of the mixing tank is operable to provide diluting water to the mixing tank having a TDS below the TDS of the water surrounding the vessel. Examples of sources such diluting water include, but are not limited to, permeate from the reverse osmosis system and rain water collected on the vessel or another vessel.

In another embodiment, the water intake of the mixing system is the same water intake as the water intake 202 of the water intake system 201. In another embodiment, the water intake of the mixing system is a separate water intake. The baffles may be oriented horizontally, transversely, or longitudinally.

Referring now to Figures 10, 11, and 12, in an embodiment, the mixing tank 905 of the mixing system comprises a hold 109 in the vessel 101. As shown in Figure 10, in an embodiment, the baffles 925 are oriented transversely. As shown in Figure 11, in an embodiment, the baffles 925 are oriented longitudinally. As shown in Figure 12, in an embodiment, the baffles 925 are oriented horizontally.

Referring again to Figure 1A, in another embodiment, the vessel 101 further comprises a permeate storage tank comprising holds 109 for the permeate wherein the permeate storage tank is in communication with the reverse osmosis system 204 and the permeate transfer system 208. In another embodiment, the vessel 101 further comprises a packaging system 110 in communication with the permeate storage tank. The packaging system 110 includes extraction pumps with supply lines for drawing permeate out of the permeate storage tank. The packaging system 110 may be used in emergency situations where an infrastructure to distribute the permeate is not in place or has been damaged.

In another embodiment, the water purification system 200 of the vessel 101 further comprises a permeate treatment system in communication with the low pressure side of the reverse osmosis membrane 206 and the permeate transfer system 209. In one embodiment, the permeate treatment system comprises corrosion control system. In another embodiment, the permeate treatment system comprises a permeate disinfection system. In another embodiment, the permeate treatment system comprises a permeate conditioning system to adjust to taste characteristics of the permeate. In another embodiment, the permeate treatment system comprises a corrosion control systems, a permeate disinfection system and a permeate conditioning system. In another embodiment, the permeate treatment system is operationally located after the permeate transfer system 208. For example, see the description of one embodiment of the land-based distribution system 1330 below.

In another embodiment, the vessel 101 comprises a plurality of reverse osmosis systems 104 wherein the vessel 101 is capable of producing 5,000 to 450,000 cubic meters of permeate per day (approximately 1 to 100 million gallons of permeate per day). In other embodiments, the amount of water the vessel 101 is capable of producing will depend on the application and the size of the vessel 101 used.

In another embodiment, the vessel 101 has a dead weight tonnage (dwt) of between about 10,000 to 500,000. In another embodiment, the vessel 101 has a dwt of between about 30,000 and 50,000. In another embodiment, the vessel 101 has a dwt of between about 65,000 and 80,000. In another embodiment, the vessel 101 has a dwt of about 120,000. In another embodiment, the vessel 101 has a dwt of between about 250,000 and 300,000. In another embodiment, the dwt of the vessel 101 depends on the intended application, the minimum draft to keep the vessel 101 afloat, and/or the desired production capacity of the vessel 101.

Instead of purifying water using reverse osmosis methods, the vessel 101 may be equipped with other water desalination or purification technologies. For example, the vessel maybe equipped with multi-stage flash evaporation, multi-effective distillation, or mechanical vapor compression distillation.

Referring now to Figure 16, in embodiments where the vessel 101 is moored, the water intake system 201 comprises a water intake member 2701 extending from the hull of the vessel 101. The member 2701 has a water intake 2702 at the distal end of the water intake member 2701. In separate embodiments (not pictured), the water intake member 2701 may have a plurality of water intakes 2702, and the water intake(s) 2702 may be located in positions other than the distal end of the water intake member 2701. In another embodiment, the water intake member 2701 extends into or below a thermocline region 2740 and the concentrate discharge ports are disposed above the thermocline region 2740.

Referring now to Figure 17, in embodiments where the vessel 101 is moored, the water intake system 201 comprises a water intake member 2801 extending from the hull of the vessel 101. The water intake member 2801 has a water intake 2802 at the distal end of the water intake member 2801. In separate embodiments (not pictured), the water intake member 2801 may have a plurality of water intakes 2802, and the water intakes 2802 may be located in positions other than the distal end of the water intake member 2801. The vessel 101 in Figure 17 further comprises a concentrate discharge member 2851 extending down from the hull of the vessel 101 with a plurality of discharge ports 2852 on the member 2851. The water intake member 2801 extends into or below thermocline region 2840 such that each water intake 2802 is disposed within or below the thermocline region 2840. Further, the discharge ports 2852 are located above the thermocline region 2840. In another embodiment (not pictured), the location of the water intake 2802 and the concentrate discharge ports 2852 may be reversed such that the water intake 2802 is located above the thermocline region 2840 in which the plurality of concentrate discharge ports 2852 is located.

Plankton is the productive base of both marine and fresh water ecosystems. The plant-like community of plankton is known as phytoplankton and the animal like community is know as zooplankton. Most phytoplankton serve as food for zooplankton. Phytoplankton production is usually greatest from 5 to 10 meters below the surface of the ocean. Since little if any sunlight penetrates to debts below 20 meters, most phytoplankton exist above 20 meters.

Since phytoplankton is the foundation for a large part of the ecosystem and the ocean, one embodiment of the present invention is operable to reduce any disruption of an ecosystem resulting from the intake of plankton into the water purification system. Specifically, the system is operable to intake water into the water intake system at various depths to reduce intake of plankton. In one embodiment, the water intake system is operable to intake water at a depth below 10 meters. The draught of ships having a dwt of over 100,000 is usually at least 10 meters. Sea chests located on the lower most regions of the hull on ships having draught of more than 10 meters can intake water below 10 meters and potentially reduce any intake, of plankton into the water purification system.

In another embodiment, the water intake system is operable to intake water below depths of over 10 meters. Water intake members as shown in Figure 16 (2701) and Figure 17 (2801) are operable to intake water at depths below 10 meters and reduce any intake of plankton into the water purification system.

In another embodiment, the vessel and water purification system are operable to allow an operator to choose between using a sea chest or a water intake member to intake water into the water purification system. An operator may choose to use a sea chest or a water intake member to intake water based upon the location and depth of thermoclines in water surrounding the vessel and based on the amount of plankton at any particular depth. In a further embodiment, the vessel is equipped with instrumentation and sensors to allow an operator to detect the presence of and depth of thermoclines and/or plankton populations in the surrounding body of water. In addition, if large amounts of plankton are detected, instrumentation and sensors can assist an operator to navigate and operate in regions in the surrounding body of water containing fewer plankton or containing thermoclines that optimize any reduction in the mixing of discharge concentrate in water taken into the water purification system.

Referring now to Figure 18, in another aspect, the present invention provides a method 2301 for producing a permeate on a floating structure comprising: producing permeate wherein a concentrate is produced 2310; and discharging the concentrate into the surrounding water through a concentrate discharge system comprising a plurality of concentrate discharge ports 2320.

In an embodiment of the method 2301, the step of producing a permeate comprises pumping water through a reverse osmosis system comprising a high pressure pump and a filter element comprising a reverse osmosis membrane wherein a concentrate is produced on the high pressure side of the reverse osmosis membrane.

In another embodiment, the method 2301 further comprises the step of having the floating structure travel through the water while discharging the concentrate.

In another embodiment, the method 2301 comprises pumping water to be purified through a plurality of reverse osmosis systems in a parallel configuration.

In another embodiment, the method 2301 further comprises the step of having the floating structure travel through the water in a pattern selected from the group consisting of a substantially circular pattern, an oscillating pattern, a straight line, and any other pattern determined by testing to be most advantageous to dispersing the concentrate into the surrounding water and water currents.

In another embodiment, the method 2301 further comprises the step of having the floating structure remain substantially fixed relative to a position on land and having the concentrate dispersed by water current.

In another embodiment of the method 2301, the plurality of concentrate discharge ports are located on the vessel such that a substantial portion of the discharged concentrate is mixed with the surrounding water by a propulsion device of the floating structure. In another embodiment of the method 2301, the plurality concentrate discharge of ports may be located above or below the water line of the floating structure. In another embodiment of the method 2301, the plurality of concentrate discharge ports are located such that the discharged concentrate is capable of propelling the vessel in an auxiliary fashion or as the sole propulsion device.

In another embodiment of the method 2301, the method may further comprise the step of mixing the concentrate with water taken directly from the surrounding body of water before discharging the concentrate.

In an embodiment, the step of mixing the concentrate with water taken directly from the surrounding body of water comprises passing the concentrate and the water taken directly from the surrounding body of water together through a series of baffles before being discharged through the plurality of concentrate discharge ports. The baffles may be oriented horizontally, transversely, or longitudinally. Adjacent baffles are coupled to opposing sides of the mixing tank. The baffles are arranged in a staggered relation such that a portion of each baffle overlaps with an adjacent baffle. The water taken in and the concentrate follows a convoluted route before reaching the concentrate discharge system.

In another embodiment of the method 2301, the concentrate is mixed with water from the surrounding body of water within the concentrate discharge member. The water from the surrounding body of water is drawn into the discharge member through an aspirator which generates a suction as the concentrate flows into the discharge member. The concentrate is subsequently mixed with the incoming water before the mixture is discharged. The concentrate is discharged in a manner to increase the mixing of the concentrate with the surrounding body of water.

In another embodiment of the method 2301, the plurality of concentrate discharge ports are physically located in such a way that a portion of the concentrate discharged through the plurality of concentrate discharge ports is capable of being mixed with the water surrounding the vessel by the propulsion device.

In an embodiment of the method 2301 comprising a plurality of reverse osmosis systems, a separate concentrate discharge system is connected to each reverse osmosis system.

In an embodiment of the method 2301 comprising a plurality of reverse osmosis systems, the concentrate discharged from each reverse osmosis system is collected into one or more longitudinally oriented manifold pipes, structural box girders, or tunnels. At intervals along the floating structure, the plurality of discharge ports, allows the concentrate to be discharged over a substantial portion of the floating structure's length.

In another embodiment of the method 2301, each concentrate discharge port incorporates a grate designed to assist mixing with the surrounding body of water having divergently oriented apertures. A grating with protrusions into the grating's apertures may also be used to assist mixing.

In another embodiment of the method 2301, the concentrate discharge ports are configured in a manner similar to the exhaust nozzles on an F-15 fighter jet such that the concentrate discharge ports may change their circumference and may also change the direction of the flow the concentrate.

In an embodiment of the method 2301 where the floating structure is moored or otherwise stationary, the concentrate discharge may be discharged through a member extending down from the hull of the vessel or over the side of the vessel with a plurality of discharge ports on the member. Depending on various factors such as water depth, water temperature, water currents, and the surrounding ecosystem, the member may extend to the depth or depths that optimize the mixing of the concentrate with the surrounding body of water. In another embodiment, the member having a plurality of concentrate discharge ports may float on the water's surface through the use of support pontoons or a catenary having support pontoons, or through the inherent buoyancy of the member.

In another embodiment of the method 2301, each concentrate discharge port may be mounted on dispersion devices that enable the discharge ports to move in a full hemi-sphere range. The dispersion devices may comprise a universal joint, a swivel, a gimble, a ball and socket, or other similar devices known to one skilled in the art. Through the oscillation or motion of the plurality of concentrate discharge ports, the concentrate should be more evenly dispersed into the surrounding water.

In another embodiment of the method 2301, the concentrate may be further pressurized before being discharged through the plurality of concentrate discharge ports.

Referring now to Figure 13, a system 1601 for mitigating environmental impacts of a water purification system of a vessel 1610 on a maritime environment is shown. The water purification system (not shown) produces a permeate and a concentrate. The water purification system can be similar to that as described above. Alternatively, other suitable water purification systems can be used. Typically, the permeate produced includes desalinated water and the concentrate produced includes a brine.

In an embodiment, the system 1601 includes a mixing means for controlling the level of total dissolved solids of the concentrate discharged from the vessel 1610 into the surrounding body of water. As described above in greater detail, the mixing means is operable to dilute the concentrate and/or to regulate the temperature of the concentrate discharged from the vessel 1610.

In one embodiment, the system 1601 includes means for discharging the concentrate. Generally, the concentrate discharging means is operable to mix the concentrate with raw water prior to the discharge of concentrate to the surrounding body of water. In another embodiment, the concentrate discharging means is operable to mix the concentrate with water having a total dissolved solids below the level of total dissolved solids of the surrounding body of water prior to discharge. The concentrate discharging means can be similar to that described above.

In one embodiment, the concentrate discharging means includes a grate or other dispersing device. For example, the grate can include a plurality of divergently-oriented apertures. In another example, the grate can include a plurality of protrusions disposed in the plurality of apertures. The grate can be configured as described above and with reference to Figures 5A and 5B. Alternatively, the grating can be configured in other alternate means.

In another embodiment, the concentrate dispersing means includes a discharge member extending from the vessel and a plurality of orifices disposed in the discharge member. The discharge member can include a plurality of discharge tubes, each one of the tubes extending to a different depth. The discharge member can include a floating hose, which generally extends from the main deck of the vessel and into the water. The discharge member can also include a catenary. Other alternate dispersing means can be as that described above. Other suitable structures and dispersing means can be used.

Referring now to Figure 14, a system 1701 for producing and transferring energy to a land-based distribution system is shown. The system 1701 comprises a vessel 1710. The vessel 1710 comprises means for producing energy 1703. The system 1701 also comprises a land-based means 1720 for transferring the energy from the vessel 1710 to a land-based distribution system 1740. In one embodiment, a capacity of the energy producing means 1703 comprises a range between about 10 megawatts and 100 megawatts.

In one embodiment, the vessels 1710 comprises a dead-weight tonnage in a range between approximately 10,000 and 500,000. As described above, the vessel 1710 can be a reconfigured single-hull tanker. Other suitable vessels can be reconfigured, such as barges and other merchant vessels and retired (mothballed) naval vessels. Alternatively, the vessel 1710 can be custom built, i.e., designed and built especially for a particular application.

In one embodiment, the energy producing means 1703 comprises a supply transformer (not shown), a motor (not shown), a frequency converter (not shown), and a motor control (not shown). The frequency converter is operable to control a speed and a torque of the motor. Preferably the energy producing means 1703 comprises an electric drive propulsion drive, which is known in the art. Generally, the transformer is in communication with the motor and the frequency converter. Typically, the motor control is in communication with the transformer, the motor, and the frequency converter. The motor can be a drive motor or an electric motor generator.

Typically, the energy producing means 1703 is disposed entirely below the main deck. In an alternate embodiment, the energy producing means 1703 can be disposed on and above the main deck, as well as below the main deck. Moreover, the energy producing means 1703 can be supplemented by temporary electrical generators (not shown), such as, for example, diesel generators.

Preferably, the motor is an AC motor. The speed of the motor can be controlled by varying the voltage and frequency of its supply. The frequency converter is operable to create a variable frequency output. The frequency converter can also provide stepless control of three-phase AC currents from zero to maximum output frequency, corresponding to a desired shaft speed both ahead and astern. In another embodiment, the energy producing means comprises a fuel cell (not shown). Alternatively, other suitable energy producing means can be used, such as, for example, conventional maritime diesel engines, or nuclear or fossil-fueled steam plants.

The energy transferring means 1720 comprises means for synchronizing 1725 the energy from the vessel 1710 to the land-based distribution system 1740. As described above, the energy transferring means 1720 is a land-based, or shore-based, system. Utilizing a land-based energy transferring means 1720 rather than a ship-board energy transferring means allows the vessel 1710 to maximize its limited space for energy generation, and other additional functions. Additionally, a land-based energy transferring means 1720 is configured by the local energy authority to connect to the land-based distribution system 1740. Thus, the vessel 1710 would not have to be modified to accommodate variations among different grid systems.

In one embodiment, the synchronizing means 1725 comprises a generator step-up transformer (not shown) and a second converter (not shown). The generator step-up transformer is operable to step up a voltage from the vessel 1710 to a voltage substantially equal to the land-based distribution system 1740. For example, the generator step-up transformer can step-up the voltage from the vessel 1710, i.e., 600 V, to 38 kV, the voltage of the land-based distribution system 1740. In another example, the generator step-up transformer can step-up the voltage from the vessel 1710, i.e., 600 V, to 69 kV, the voltage of the land-based distribution system 1740.

The second converter is operable to synchronize the energy from the vessel 1710 with the land-based distribution system 1740. For example, the second converter can convert DC power from the vessel 1710 to the AC power of the land-based distribution system 1740. As another example, the second converter can convert the phase of the power from the vessel 1710 to the phase of the power in the land-based distribution system 1740.

The land-based distribution system 1740 can include an electrical grid or network to supply and transport electrical energy to commercial, industrial, and/or residential end-users. Such a land-based distribution system 1740 generally includes, but is not limited to, transmission towers, overhead and underground power lines, substations, transformers, converters, and wires, such as service drops. Alternatively, other suitable land-based distribution systems can be used.

Referring now to Figure 15, a system 1801 is shown. The system 1801 comprises a vessel 1810 operable to produce desalinated water and electricity. The system 1801 also includes means for delivering (not shown) the desalinated water from the vessel 1810 to a land-based water distribution system 1830 and means for transferring 1820 the electricity from the vessel 1810 to the land-based electrical distribution system 1840.

In one embodiment, the vessel 1810 comprises a dead-weight tonnage in a range between about 10,000 and 500,000. As described above, the vessel 1810 can be a reconfigured single-hull tanker. Other suitable vessels can be reconfigured, such as barges and other merchant vessels. Alternatively, the vessel 1810 can be custom-made for this particular application.

Generally, the vessel 1810 is operable to produce desalinated water in a range between about 3,78 million liters per day 378 million liters (1 million gallons per day and 100 million gallons) per day. Typically, the vessel 1810 produces desalinated water as described above, and thus, will not be repeated here. Alternatively, other suitable means of producing desalinated water can be used. Generally, a capacity of the vessel 1810 for producing electricity is in a range between about 10 megawatts and 100 megawatts.

While the vessel 1810 is producing desalinated water, the vessel 1810 generally is offshore 1803. When the vessel 1810 has produced its capacity of desalinated water - or when the vessel 1810 has produced as much as is desired or needed - the vessel 1810 heads to shore 1802 and is secured to or moored proximate to a pier 1831. Delivery or discharge of the desalinated water to the land-based distribution system 1830 can take about 12 hours, which, of course, can vary depending on the amount of water to be delivered from the vessel 1810.

In one embodiment, the means for delivering the desalinated water from the vessel 1810 to the land-based water distribution system 1830 includes a piping system 1832. Alternatively, other suitable embodiments can be used. The piping system 1832 is in communication with the land-based water distribution system 1830.

The land-based water distribution system 1830 generally includes at least one water storage tank 1833, a pumping station 1836, and a pipeline or a pipeline network 1835. In one embodiment, the land-based distribution system can include a plurality of tanks 1833 located in a single tank-farm or be distributed over several locations on shore 1802. The pipeline network 1835 can interconnect the plurality of tanks 1833. Additionally, the pipeline network 1835 can communicate the water supply with individual pumping stations (not shown) and/or end-users (not shown), such as industrial or residential users.

In one embodiment, the land-based water distribution system 1830 can include a chemical feed station (not shown) to adjust a plurality of water quality parameters. The chemical feed station can adjust water quality parameters such as pH, corrosion control, and fluoridation, as desired. Other suitable water quality parameters can be adjusted by the chemical feed station. In one embodiment, the chemical feed station is disposed upstream of the storage tanks 1833. In another embodiment, the chemical feed station is disposed downstream of the chemical feed station and upstream of the pumping station 1836. Alternatively, the chemical feed station can be disposed in other suitable locations.

In an alternate embodiment, the desalinated water can be transferred from the vessel 1810 to a land-based transportation system (not shown) for delivery directly to end-users or alternate water storage facilities. The land-based transportation system can include a plurality of tank trucks or a trucking network (not shown). The land-based transportation system can include a railroad or a railroad network. Additionally, the land-based transportation system can include a combination of a trucking network and a railroad network.

While the vessel 1810 is delivering the desalinated water to a land-based water distribution system 1830, the vessel 1810 can generate electricity for transfer to a shore-based electrical distribution system 1840. Generally, one megawatt is sufficient to provide power to 1000 typical American homes. Thus, where the capacity of the vessel 1810 is 100 megawatts, the vessel 1810 can provide power to about 100,000 homes. In addition to providing desalinated water, the vessel 1810 can provide critically-need power to help alleviate suffering in disaster-stricken areas by providing power to hospitals and other emergency infrastructure, as well as to homes.

In one embodiment, the vessel 1810 comprises a supply transformer (not shown), a motor (not shown), a frequency converter (not shown), and a motor control (not shown). The frequency converter is operable to control a speed and a torque of the motor.

Preferably the supply transformer, the motor, the frequency converter, and the motor control comprise an electric generating means 1803. Generally, the transformer is in communication with the motor and the frequency converter. Typically, the motor control is in communication with the transformer, the motor, and the frequency converter.

Typically, the electric generating means 1803 is disposed entirely below the main deck. In an alternate embodiment, the electric generating means 1803 can be disposed on and/or above the main deck, as well as below the main deck. Moreover, the electric generating means 1803 can be supplemented by temporary electrical generators (not shown), such as, for example, diesel generators.

Preferably, the motor is an AC motor. The speed of the motor can be controlled by varying the voltage and frequency of its supply. The frequency converter is operable to create a variable frequency output. The frequency-converter can also provide stepless control of three-phase AC currents from zero to maximum output frequency, corresponding to a desired shaft speed both ahead and astern. In another embodiment, the electric generating means 1803 comprises a fuel cell (not shown). Alternatively, other suitable energy producing means can be used, such as, for example, conventional maritime diesel engines.

The energy transferring means 1820 comprises means for synchronizing 1825 the energy from the vessel 1810 to the land-based distribution system 1840. As described above, the energy transferring means 1820 is a land-based, or shore-based, system.

In one embodiment, the synchronizing means 1825 comprises a generator step-up transformer (not shown) and a second converter (not shown). The generator step-up transformer is operable to step up a voltage from the vessel 1810 to a voltage substantially equal to the land-based distribution system 1840. For example, the generator step-up transformer can step-up the voltage from the vessel 1810, i.e., 600 V, to 38 kV, the voltage of the land-based distribution system 1840. In another example, the generator step-up transformer can step-up the voltage from the vessel 1810, i.e., 600 V, to 69 kV, the voltage of the land-based distribution system 1840.

The second converter is operable to synchronize the energy from the vessel 1810 with the land-based distribution system 1840. For example, the second converter can convert DC power from the vessel 1810 to the AC power of the land-based distribution system 1840. As another example, the second converter can convert the phase of the power from the vessel 1810 to the phase of the power in the land-based distribution system 1840.

In an embodiment, the vessel 1810 comprises means for cleaning exhaust 1807. Typically, exhaust refers to pollutants, as well as various particulates. The exhaust cleaning means 1807 is disposed upstream, or before the egress of exhaust from the vessel 1810. Exhaust from the vessel generally is produced in generating power. Of course, auxiliary ship-board functions may produce some additional exhaust. In one embodiment, the exhaust cleaning means 1807 comprises a scrubber. In another embodiment, the exhaust cleaning means 1807 comprises a particulate filter.

The ships and methods described above can be combined to provide a flotilla or fleet of vessels with varying functions, such as vessels that exclusively produce electricity and vessels that desalinate water. In such a fleet, the individual vessels can support one another. For example, the electric-producing vessel can provide or supplement the energy needs of the desalinated-water producing vessel. Additionally, the fleet can also include vessels to store and transport the desalinated water to shore or to other vessels. Such a fleet can provide multiple services (as well as relief to areas suffering from water and/or energy shortages) to shore-based areas. Of course, the individual vessels can also include multiple functions, such as water production, energy production, and/or water storage. In one embodiment, electrical power can be supplied to a vessel from ashore by, for example, buried cable, such that the vessel does not need its own power plant.

QQ群二维码
意见反馈