自律型無人潜機をナビゲートするためのシステムおよび方法

申请号 JP2016503182 申请日 2014-03-14 公开(公告)号 JP2016520810A 公开(公告)日 2016-07-14
申请人 ハダル, インコーポレイテッド; ハダル, インコーポレイテッド; 发明人 リチャード ジェイ. リコスキー,; リチャード ジェイ. リコスキー,;
摘要 可変深度ソナーのためのシステムおよび方法が、本明細書に説明される。第1の動作周 波数 帯域と第2の動作周波数帯域との間の周波数応答内のヌルが、識別される。第1および第2の動作帯域の各々に対する中心動作周波数が、周囲圧 力 に基づいて調節される。さらに、ビークルの速度状態が、周期的速度更新を使用して計算され得る。少なくとも1つのトランスデューサは、第1の 信号 を第1の方向に伝送し、ドップラセンサが、第1の信号のエコーを受信する。ビークルは、第2の方向に方向転換され、少なくとも1つのトランスデューサは、第2の信号を第2の方向に伝送する。第1および第2の速度測定値を使用して、ビークルの速度状態が、計算される。
权利要求

可変深度ソナーを使用する方法であって、 ソナー機器のための1つ以上の周波数帯域を決定することと、 前記周波数帯域に基づいて、周波数応答内のヌルを識別することと、 前記ソナー機器に加えられている周囲圧を決定することと、 前記周囲圧力に基づいて、前記周波数帯域に対する中心動作周波数を調節することと を含む、方法。前記ソナー機器に加えられている前記周囲圧力を決定することは、現在の深度を決定することを含む、請求項1に記載の方法。前記周波数応答内のヌルは、第1の動作周波数帯域と第2の動作周波数帯域との間で生じる、請求項1に記載の方法。前記第1および第2の動作帯域の前記中心動作周波数は、前記周波数応答内のヌルと前記第1および第2の動作帯域のそれぞれの制限周波数との間の中心に置かれる、請求項3に記載の方法。ソナーシステムであって、 前記ソナーシステムに加えられている周囲圧力を検出するように構成されている圧力センサと、 処理回路と を備え、 前記処理回路は、 前記ソナーシステムに対する1つ以上の周波数帯域を決定することと、 前記周波数帯域に基づいて、周波数応答内のヌルを識別することと、 前記周囲圧力を前記圧力センサから受信することと、 前記周囲圧力に基づいて、前記周波数帯域に対する中心動作周波数を調節することと を行うように構成されている、システム。前記処理回路は、現在の深度を決定することによって、前記ソナー機器に加えられている前記周囲圧力を決定するように構成されている、請求項5に記載のシステム。前記周波数応答内のヌルは、前記第1の動作周波数帯域と第2の動作周波数帯域との間で生じる、請求項5に記載のシステム。前記第1および第2の動作帯域の前記中心動作周波数は、前記周波数応答内のヌルと前記第1および第2の動作帯域のそれぞれの制限周波数との間の中心に置かれる、請求項7に記載のシステム。ビークルの速度状態を計算する方法であって、 少なくとも1つのトランスデューサを使用して、第1の信号を第1の方向に伝送することと、 ドップラセンサを使用して、前記第1の信号のエコーを受信することと、 前記少なくとも1つのトランスデューサを使用して、第2の信号を第2の方向に伝送することと、 前記ドップラセンサを使用して、前記第2の信号のエコーを受信することと、 前記第1の信号および前記第2の信号の前記受信されたエコーを使用して、少なくとも1つの速度測定値を計算することと、 前記少なくとも1つの速度測定値に基づいて、ビークルの速度状態を計算することと を含む、方法。前記第2の方向は、前記第1の方向と異なる、請求項9に記載の方法。前記第2の方向は、前記第1の方向に直交する、請求項9に記載の方法。前記ビークルの速度状態に基づいて、ビークルの位置状態を計算することをさらに含む、請求項9に記載の方法。前記少なくとも1つの速度測定値は、前記第1の信号に基づく第1の速度測定値および前記第2の信号に基づく第2の速度測定値を備え、前記第2の信号は、前記第1の速度測定値から観測可能ではない前記ビークルの速度状態の部分を提供する、請求項9に記載の方法。前記ビークルの速度状態を計算することは、前記少なくとも1つの速度測定値を航法フィルタに提供することを含む、請求項9に記載の方法。前記航法フィルタは、拡張カルマンフィルタである、請求項13に記載の方法。前記ビークルを前記第2の方向に方向転換することをさらに含む、請求項9に記載の方法。第3の信号を第3の方向に伝送することと、 前記第3の信号に基づいて、第3の速度測定値を計算することと をさらに含み、前記ビークルの速度状態を計算することは、前記第3の速度測定値に基づく、請求項9に記載の方法。ビークルの速度状態を計算するためのシステムであって、 少なくとも1つのトランスデューサであって、前記少なくとも1つのトランスデューサは、 第1の信号を第1の方向に伝送することと、 前記少なくとも1つのトランスデューサを使用して、第2の信号を第2の方向に伝送することと を行うように構成されている、少なくとも1つのトランスデューサと、 ドップラセンサであって、前記ドップラセンサは、 前記第1の信号のエコーを受信することと、 前記第2の信号のエコーを受信することと を行うように構成されている、ドップラセンサと、 処理回路であって、前記処理回路は、 前記第1の信号および前記第2の信号の前記受信されたエコーを使用して、少なくとも1つの速度測定値を計算することと、 前記少なくとも1つの速度測定値に基づいて、ビークルの速度状態を計算することと を行うように構成されている、処理回路と を備えている、システム。前記第2の方向は、前記第1の方向と異なる、請求項18に記載のシステム。前記第2の方向は、前記第1の方向に直交する、請求項18に記載のシステム。前記処理回路は、前記ビークルの速度状態に基づいて、ビークルの位置状態を計算するようにさらに構成されている、請求項18に記載のシステム。前記少なくとも1つの速度測定値は、前記第1の信号に基づく第1の速度測定値および前記第2の信号に基づく第2の速度測定値を備え、前記第2の信号は、前記第1の速度測定値から観測可能ではない前記ビークルの速度状態の部分を提供する、請求項18に記載のシステム。前記処理回路は、前記少なくとも1つの速度測定値を航法フィルタに提供することによって、前記ビークルの速度状態を計算するように構成されている、請求項18に記載のシステム。前記航法フィルタは、拡張カルマンフィルタである、請求項18に記載のシステム。前記第1の方向から前記第2の方向に方向転換するように構成されているビークルをさらに備えている、請求項18に記載のシステム。前記処理回路は、 第3の信号を第3の方向に伝送することと、 前記第3の信号に基づいて、第3の速度測定値を計算することと を行うようにさらに構成され、 前記処理回路は、前記第3の速度測定値に基づいて、前記ビークルの速度状態を計算するように構成されている、請求項18に記載のシステム。前記少なくとも1つのトランスデューサは、前記ビークルの直径とサイズがほぼ等しく、前記ビークルの本体長さに沿って向けられている、請求項18に記載のシステム。ビークルの速度状態を計算する方法であって、 少なくとも1つのトランスデューサを使用して、第1の信号を第1の方向に伝送することと、 前記第1の信号のエコーを受信することと、 前記第1の信号を伝送することに続いて、前記少なくとも1つのトランスデューサを使用して、第2の信号を前記第1の方向に伝送することと、 前記第2の信号のエコーを受信することと、 前記第2の信号のエコーを前記第1の信号のエコーと相関させることと、 前記相関に基づいて、前記ビークルの変位を計算することと、 前記変位と、前記第1の信号と前記第2の信号との間の時間とに基づいて、少なくとも1つの速度測定値を計算することと を含む、方法。前記第1および第2の信号は、単一トランスデューサを使用して伝送される、請求項28に記載の方法。前記第1の信号のエコーと前記第2の信号のエコーとを相関させることは、ビークルの進行方向に沿って、前記第1の信号のエコーおよび前記第2の信号のエコーを相関させることを含む、請求項28に記載の方法。前記ビークルの前記変位は、第2の方向に沿ったものであり、前記第2の方向は、前記第1の方向と異なる、請求項28に記載の方法。前記第2の方向は、ビークルの進行方向である、請求項31に記載の方法。前記第1および第2の信号は、海底上の第1の区域に照準される、請求項28に記載の方法。前記少なくとも1つのトランスデューサは、直径Dを伴う開口を有し、前記変位は、D/2を上回らない、請求項28に記載の方法。前記少なくとも1つのトランスデューサは、パラメトリックソナーを備えている、請求項28に記載の方法。ビークルの速度状態を計算するためのシステムであって、 少なくとも1つのトランスデューサであって、前記少なくとも1つのトランスデューサは、 第1の信号を第1の方向に伝送することと、 前記第1の信号を伝送することに続いて、第2の信号を前記第1の方向に伝送することと を行うように構成されている、少なくとも1つのトランスデューサと、 センサであって、前記センサは、 前記第1の信号のエコーを受信することと、 前記第2の信号のエコーを受信することと を行うように構成されている、センサと、 処理回路であって、前記処理回路は、 前記第2の信号のエコーを前記第1の信号のエコーと相関させることと、 前記相関に基づいて、前記ビークルの変位を計算することと、 前記変位と、前記第1の信号と前記第2の信号との間の時間とに基づいて、少なくとも1つの速度測定値を計算することと を行うように構成されている、処理回路と を備えている、システム。前記少なくとも1つのトランスデューサは、単一トランスデューサである、請求項36に記載のシステム。前記処理回路は、ビークルの進行方向に沿って、前記第1の信号のエコーおよび前記第2の信号のエコーを相関させることによって、前記第1の信号のエコーおよび前記第2の信号のエコーを相関させるように構成されている、請求項36に記載のシステム。前記ビークルの変位は、第2の方向に沿ったものであり、前記第2の方向は、前記第1の方向と異なる、請求項36に記載のシステム。前記第2の方向は、ビークルの進行方向である、請求項39に記載のシステム。前記第1および第2の信号は、海底上の第1の区域に照準される、請求項36に記載のシステム。前記少なくとも1つのトランスデューサは、直径Dを伴う開口を有し、前記変位は、D/2を上回らない、請求項36に記載のシステム。前記少なくとも1つのトランスデューサは、パラメトリックソナーを備えている、請求項36に記載のシステム。

说明书全文

(関連出願の引用) 本願は、米国仮出願第61/792,708号(2013年3月15日出願)の利益を主張し、上記出願の内容は、その全体が参照により本明細書に引用される。

大抵の陸上ベースのアプリケーションでは、ナビゲーンションは、しばしば、GPS、無線標識、またはアプリオリな地図等の定位置インフラストラクチャによって補助される。中での航行およびマッピングは、とりわけ、広範囲の水中GPS同等のものが存在せず、海底の大部分が依然として未開であるため困難である。

水中航行のための現在の技法は、公的に入手可能な深度図を使用する。しかしながら、これらの地図は、比較的粗く、正確な航行には不適切である。他のソナーベースの航行システムは、ソナーデータ自体を使用する位置決めスキームに依存する。例えば、オンザフライの音響特徴ベースのシステムは、自然発生的な目印を検出するためにソナーを使用しようとする。航行問題の他の解決法は、未知の場所で低費用のトランスポンダを配備し、それにより、ビークルとトランスポンダ標識との間のレンジベースの測定値を可能にすることを含む。しかしながら、これらのトランスポンダはしばしば、互から遠い距離にある場所で配備され、しばしば、レンジのみの情報により、部分的にのみ観測可能である。したがって、これらの技術は、小型ビークル経路を横断する航行には不適切である。

近年の技術は、地形の事前地図に対する水中地形の航行を可能にする。そのような技術は、地形の画像を生成するために合成開口ソナーシステムを使用し、次いで、画像は、地形に関連付けられる事前画像に対して比較される。次いで、水中ビークルは、地図上のそれらの場所に対して地形上でナビゲートすることが可能であり得る。しかしながら、これらの技術は、消費される電の量、システムのサイズおよび形状を含む、複数の欠陥に悩まされている。加えて、そのような航行システムの性能は、伝送機の周波数が増加し波長が減少するにつれて、またはレンジが増加するにつれて劇的に減少する。

ソナープロジェクタおよび受信機等のほとんどのソナー機器は、ヌルを含む、周波数応答を有する。エンジニアは、典型的には、そのようなソナープロジェクタおよび受信機の動作帯域が、ヌル間にあるように設計する(特に、オフ共鳴動作されるソナーの場合)。例えば、ソナー受信機は、低周波数(LF)帯域および別個の高周波数(HF)帯域等、いくつかの動作帯域で動作するように設計され、意図的に作り出されたヌルが、2つの帯域を分離し得る。しかしながら、増加圧力が、ソナー要素に加えられ、要素が収縮するにつれて、周波数応答は、変化し得る。ヌルは、動作帯域の中に移動し、それによって、ソナー機器の性能を劣化させ得る。典型的解決策の1つは、ソナーをある深度帯域(例えば、海面から3000mまで、3000m〜6000m等)内で動作するように設計することである。しかしながら、これは、ある範囲の深度および海洋環境において動作する用途には実行可能ではない。そのような可変環境では、いくつかのバージョンのソナー機器が、可変環境の深度帯域の各々に対して要求され、重量およびコストを増加させるであろう。したがって、可変深度ソナーシステムの必要性がある。

慣性航法は、水中での一般的航行方法であるが、時間に伴って増加する誤差に悩まされる。雑音のある加速測定値は、積分された誤差を伴う速度推定および二重に積分された誤差を伴う位置推定につながる。これらの誤差は、速度を明示的に測定する(時々でも)ことによって軽減され、それによって、慣性システムが、速度推定内のバイアスを除去することを可能にし、位置誤差増加率を有意に減少させることができる。最先端のドップラセンサは、典型的には、複数のクラスタ化されたペンシルビームトランスデューサから成る。複数の方向に信号を伝送することは、トランスデューサのクラスタが、複数のベクトル(典型的には、直交ではないが、可能としてあり得る)に沿って、速度を測定することを可能にする。それらの複数の速度ベクトルは、次いで、融合され、真の3次元速度推定を提供することができる。

上述のように、ビークルが地形の事前地図に対して地形をナビゲートすることを可能にするセンサを適切に装備したビークルにおいて、(陸上であろうと水中であろうと)地形をナビゲートできることが望ましくあり得る。とりわけ、サイドスキャンソナーおよび合成開口ソナー(SAS)を含む、いくつかのソナーベースの撮像およびマッピング技術が存在する。これらの技術では、地図または画像の質は、その分解能に関係する。2つの標的をソナー画像内で分離することができる最小角度である、角分解能は、波長で測定されるアレイ長に反比例する。より長いアレイまたは高い周波数(より小さい波長)が、より良い角周波数を与える。サイドスキャンソナーは、海底の異なる部分を網羅するために、受信機の固定長移動アレイを使用する。典型的なサイドスキャンソナーが、1つまたはいくつかのビームを生成し、ソナーを移動させ、反復パルスを使用することによって、画像が生成される。より長いアレイが、典型的には、ビークル上でより多くの電子機器、ハードウェア、および空間を必要とするため、サイドスキャンソナーシステムは、高周波数(必ずではないが、典型的には、100kHzより大きい)で動作する小型アレイを含む。しかしながら、海中の音の周波数依存性吸収は、高周波数サイドスキャンソナーのレンジに制限を加える。

合成開口ソナー(SAS)撮像システムは、サイドスキャンソナーシステムの欠陥のうちのいくつかを克服することに成功した。SAS技術は、はるかに長いアレイを合成するために、小型の物理的アレイの前進運動を使用し、したがって、実際の物理的アレイよりもはるかに微細な進路に沿った分解能および高い信号対雑音比(SNR)をもたらす。したがって、SASは、サイドスキャンソナーシステムよりも低い周波数で、はるかに高い分解能を可能にする。実際に、サイドスキャンソナーよりも高いレンジを提供するために、大抵の現在のSAS技術は、低い周波数(100kHz未満)で動作する。増加したレンジに加えて、低い周波数が、より高い相対帯域幅を可能にする。

サイドスキャンおよびSAS技術の両方が、地図ベースの航行システムに使用されてきた。サイドスキャンソナー画像は、航行情報を提供し、機雷様物体を認識するために、テンプレート照合および空間制約を使用して、インコヒーレントに処理されてきた。近年、低周波数SAS画像のホログラフィック性質、すなわち、低周波数SAS画像が異なる見晴らしの利く地点から同一の標的を捕捉するという観測が、コヒーレント地形認識および航行に活用されてきた。したがって、低周波数SASは、概して、高周波数サイドスキャンソナーよりも地図ベースの航行に良く適している。

それにもかかわらず、低周波数SASのいくつかの不利点がある。より低い周波数は、移動SASプラットフォームの場合、誤差および角度変動を導入し得る、より長い開口を要求する。さらに、低周波数システムは、より大型の電子機器およびより多くの電力、より小型の自律型無人潜水機(AUV)または無人航空機(UAV)上で利用可能ではない場合がある高級品を必要とする。同様に、低周波数プロジェクタはしばしば、それらの高周波数同等物よりも重く、小型軽量システム上でのそれらの使用を妨げる。

現在の地図ベースの航行技術は、減衰増加および性能不良により、航行のための高周波数SAS(約100kHzより大きい)の使用を阻止し、そして、減衰増加および性能不良は、地形の起伏における陰影、閉塞、および複雑な3D起伏変化の影響に起因すると考えられた。これらの影響は、音声信号のシグネチャを変化させ、したがって、垂直側面の変化がピッチの変化にマップするという仮定を無効にすると考えられた。

可変深度ソナーを使用するためのシステムおよび方法が、本明細書に説明される。一側面によると、1つ以上の動作周波数帯域が、ソナー機器に対して決定される。周波数応答内のヌルが、所望の動作周波数帯域間にあるように、トランスデューサ設計の際に識別および調整される。いくつかの実施形態では、周波数応答内のヌルは、第1の動作周波数帯域と第2の動作周波数帯域との間で生じる。他の実施形態では、ヌルは、第1、第2、および第3の動作周波数帯域間で生じる。周囲圧力が、決定され、動作帯域の各々に対する中心動作周波数が、周囲圧力に基づいて調節される。中心周波数は、周波数応答内のヌルと動作帯域内の上限または上界との間の中心に置かれ得る。いくつかの実施形態では、周囲圧力を決定することは、現在の深度を決定することを含む。

本願はさらに、ビークルの速度状態を計算するためのシステムおよび方法を含む。一側面によると、少なくとも1つのトランスデューサは、第1の信号を第1の方向に伝送し、ドップラセンサは、第1の信号のエコーを受信する。少なくとも1つのトランスデューサは、ビークルの直径とサイズがほぼ等しく、ビークルの本体長さ(長さ方向)に沿って向けられ得る。少なくとも1つのトランスデューサは、第2の信号を第2の方向に伝送し得る。いくつかの実施形態では、ビークルは、第1の方向から第2の方向に物理的に方向転換され得る。他の実施形態では、第2の方向は、第1の方向と実質的に同一であり得る。いくつかの実施形態では、少なくとも1つのトランスデューサは、2つ以上のトランスデューサのクラスタを備え得、第1のトランスデューサは、信号を第1の方向に伝送し、第2の異なるトランスデューサは、信号を第2の方向に伝送する。そのような実施形態では、第1のトランスデューサおよび第2のトランスデューサは、同時に、または異なる時間にシーケンスとしてのいずれかにおいて、そのそれぞれの信号を伝送し得る。代替実施形態では、単一トランスデューサのみ、第1および第2の信号をシーケンスとして伝送するために使用され得る。

いくつかの実施形態では、第2の方向は、第1の方向に直交する。いくつかの実施形態では、第2の速度測定値は、第1の速度測定値から観測可能ではないビークルの速度状態の部分を備えている。ドップラセンサは、第1および第2の信号のエコーを受信し、少なくとも1つの速度測定値は、受信されたエコーから計算され得る。少なくとも1つの速度測定値を使用して、ビークルの速度状態が、計算される。いくつかの実施形態では、少なくとも1つの速度測定値は、第1の信号に基づく第1の速度測定値および第2の信号に基づく第2の速度測定値を備え得る。代替実施形態では、少なくとも1つの速度測定値は、第1の信号および第2の信号の両方に基づく、単一速度測定値を備え得る。いくつかの実施形態では、少なくとも1つの速度測定値が、ビークルの位置状態を計算するために、航法フィルタに提供され得る。いくつかの実施形態では、本航法フィルタは、拡張カルマンフィルタであり得る。他の実施形態では、ビークルの位置状態がさらに、ビークルの速度状態に基づいて、計算される。

ある実施形態では、第3の速度測定値が、第3の方向から求められ得、第3の方向は、第1および第2の方向と異なる。ビークルの速度状態は、第1、第2、および第3の速度測定値に基づき得る。

本発明の他の目的、特徴、および利点は、添付の図面と関連して検討される、以下の発明を実施するための形態の検証に応じて明白となるであろう。

本明細書に説明されるシステムおよび方法は、添付の請求項に記載される。しかしながら、説明の目的のために、いくつかの例証的実施形態は、以下の図に記載される。

図1は、本開示の例証的実施形態による、例示的遠隔操作ビークルを描写する、ブロック図である。

図2は、本開示で説明されるシステムおよび方法の少なくとも一部分を実装するための例示的なコンピュータシステムのブロック図である。

図3は、ビークルの速度状態を計算するためのビークル操縦の例証的実施例を描写する。

図4は、ビークルの速度状態を計算するためのビークル操縦の別の例証的実施例を描写する。

図5は、ビークルの速度状態を計算するためのビークル操縦の別の例証的実施例を描写する。

図6は、一例証的実施形態による、可変深度ソナーシステムを使用するためのプロセスを描写する。

図7は、一例証的実施形態による、ビークルの速度状態を計算するためのプロセスを描写する。

図8は、一例証的実施形態による、ビークルの速度状態を計算するための別のプロセスを描写する。

本発明の全体的な理解を提供するために、ある例証的実施形態を説明する。しかしながら、本明細書で説明されるシステムおよび方法は、他の好適な用途のために適合および修正され得、そのような他の追加および修正は、本明細書の範囲から逸脱しないであろうことが、当業者によって理解されるであろう。

本明細書で説明されるシステムおよび方法は、高周波数(「HF」)ホログラフィック航行、すなわち、約100kHz以上の周波数で捕捉される合成開口ソナー(SAS)画像の多面ホログラフィック性質を使用する、地図ベースの航行を含む。本明細書で説明されるシステムおよび方法はまた、約100kHz未満の周波数での低周波数(「LF」)ホログラフィック航行も含む。特に、本明細書で説明されるシステムおよび方法は、周波数および側面(aspect)に重複があるとき、現在捕捉されている画像と事前地図との間のコヒーレント相関を可能にする。そのようなコヒーレント相関は、位置および/または機首方位ベースの航行を可能にする。高周波数で、発明者らは、画像が、画像および/または相関ゆがみを引き起こす、空間的に変動する位相誤差(例えば、レンジ(range)変動位相誤差)を被ることを認識している。そのような位相誤差は、高度変動があるときに、低い周波数でさえも存在し得る。ある実施形態では、位相誤差が帯域幅よりもはるかに小さいとき、画像はゆがめられ得ないが、相関(したがって航行)は困難であり得る。本明細書で説明されるシステムおよび方法は、画像を、位相が比較的一定である、より小さい領域に切り分け、画像の複数部分を補正するためにこれらの位相測定値を使用するように構成されている、位相誤差補正器を導入することによって、従来技術の欠陥を克服する。

本明細書で説明されるシステムおよび方法は、発明者らが認識している、合成開口画像のホログラフィック性質の種々の他の側面を利用する。例えば、音響信号のその2次元シェーディングおよびシャドウイングに基づいて、形状の3次元モデルを決定するためのシステムおよび方法が、本明細書で説明される。本明細書で説明されるシステムおよび方法は、HFホログラフィック航行を使用して、高精度で(津波センサ等の)センサおよび航行標識を位置付けるための方法を含む。本明細書で説明されるシステムおよび方法は、HFホログラフィック航行を使用して取得される高精度位置測定値に基づいて、自律型無人潜水機(AUV)を使用して水柱を監視およびモデル化する方法を含む。ある実施形態では、本システムおよび方法は、より高い分解能で完全平面合成開口ソナーを形成するように、直交伝送機と複数の受信機との組み合わせを有する、地震探査システムを含む。

他の側面では、本明細書で説明されるシステムおよび方法は、複数の伝送機をアレイに追加し、直交ピング発射シーケンスを生成することを含む。特に、本明細書で説明されるシステムおよび方法は、低格子サイドローブを有するSAS、複数の伝送機を使用する、高い被覆率を有するSAS、およびSASシステムのレンジを増加させるための過剰ピング発射シーケンスを含む。本明細書で説明されるシステムおよび方法はさらに、地形に対して高精度でエミッタまたは受信機を局所化するためのバイスタティックおよびモノスタティックホログラフィックギャップ充填技法を含む。なおも他の側面では、本明細書で説明されるシステムおよび方法は、重複周波数の事前実開口画像とコヒーレントに相関させることができるように、実開口画像をビーム形成することを伴う、同時局所化およびマッピング(SLAM)技法を含む。本明細書で説明される、これらおよび他のシステムおよび方法の各々は、互から独立して、または1つ以上の任意の他のシステムおよび方法の任意の好適な組み合わせで使用され得る。本明細書で説明されるシステムおよび方法を参照して説明される修正および変形例は、本開示の範囲から逸脱することなく、本明細書で説明される任意の他のシステムおよび方法に適用され得る。

ソナープロジェクタおよび受信機等のほとんどは、ヌルを含む、周波数応答を有する。エンジニアは、典型的には、そのようなソナープロジェクタおよび受信機の動作帯域が、ヌル間にあるように設計する(特に、オフ共鳴動作されるソナーの場合)。例えば、ソナー受信機は、低周波数(LF)帯域および別個の高周波数(HF)帯域等、いくつかの動作帯域で動作するように設計され、意図的に作り出されたヌルが、2つの帯域を分離し得る。しかしながら、増加圧力が、ソナー要素に加えられ、要素が収縮するにつれて、周波数応答は、変化し得、ヌルは、動作帯域の中に移動し、それによって、周波数応答の性能を劣化させ得る。典型的解決策の1つは、ソナーをある深度帯域(例えば、海面から3000mまで、3000m〜6000m等)内で動作するように設計することである。しかしながら、これは、ある範囲の深度および海洋環境において動作する用途には実行可能ではない。そのような可変環境では、いくつかのバージョンのソナー機器が、可変環境の深度帯域の各々に対して要求され、重量およびコストを増加させるであろう。したがって、可変深度ソナーシステムの必要性がある。

本明細書に説明されるシステムおよび方法は、周波数応答の挙動を制御するために、圧力に基づいて、応答における中心周波数をシフトさせることによって、本問題を解決する。典型的には、これは、中心周波数を周波数応答におけるヌル間の固定場所に保つために行われるが、所与のレンジおよび電力に対して分解能を最大化するため(深度に伴う吸収の低下を利用する)、深度に伴って電力を最小化するため(伝送電力を減少させ、減少吸収を反映させる)、または周波数に伴って電力を成形するため(周波数応答が変化する場合、電力を変動させ、平坦伝送スペクトルまたは平坦受信スペクトルを維持する)にも行われ得る。平坦受信スペクトルに対して、これは、ソナーのレンジ内の任意の場所においてであり得る(伝送時の平坦応答を伴う広帯域ソナーは、長距離において、概して、より高い、いくつかの周波数において、応答減少を有し、最大距離において平坦応答を伴うソナーは、近距離において、より高い周波数に有利に働くようにバイアスされた周波数応答を有するであろうという理解の下で)。同じように、周波数応答および周波数成分も、可変雑音条件に応答して、均一SNRを提供するように変動させられ得る。

加えて、ビークル(vehicle)の速度状態を計算するためのシステムおよび方法も、本明細書に説明される。前述のように、慣性航法は、水中での一般的航行方法であるが、時間に伴って増加する誤差に悩まされる。雑音のある加速測定値は、積分された誤差を伴う速度推定および二重に積分された誤差を伴う位置推定につながる。これらの誤差は、速度を明示的に測定する(時々でも)ことによって軽減され、それによって、慣性システムが、速度推定内のバイアスを除去することを可能にし、位置誤差増加率を有意に減少させることができる。最先端のドップラセンサは、典型的には、複数のクラスタ化されたペンシルビームトランスデューサから成る。複数の方向に信号を伝送することは、トランスデューサのクラスタが、複数のベクトル(典型的には、直交ではないが、可能としてあり得る)に沿って、速度を測定することを可能にする。それらの複数の速度ベクトルは、次いで、融合され、真の3次元速度推定を提供することができる。ドップラシフトを使用して、ベクトルに沿って速度を推定するためのセンサは、本明細書では、ドップラ速度ログ(DVL)と称される。

ほとんどのドップラセンサは、少なくとも2つの理由から、比較的に高周波数で動作する。第1に、ドップラシフトは、中心周波数の固定割合であるが、スペクトル分解能は、信号長の関数である。したがって、より高い周波数は、固定された所望の精度が与えられた場合、より短い信号を使用するので、固定長信号に対してより精密な測定値をもたらすことができる。第2に、所与の方向におけるドップラシフトを測定することが望ましいため、伝送/受信された信号方向性を与える開口を使用することが一般的である。周波数が高いほど、必要な開口はより小さくなる。残念ながら、高周波数音は、高速に吸収される。自律型無人潜水機に共通のドップラセンサは、概して、海洋底の数百メートル以内でドップラロックを喪失する。角度45度でのChallenger Deep(深度11km)の海底への潜航は、数百メートルとは対照的に、15.5kmにより近いレンジを伴うセンサを要求するであろう。有意により低い周波数が、そのようなレンジを達成するために必要である。

一実施形態では、相関速度ログ(CVL)は、変位を測定するために、単一センサからの測定値をコヒーレントに相関させる。DVLのように、そのレンジおよび精度は、周波数および帯域幅に関連する。本実施形態では、CVLは、合理的相関を有するために明確に定義された区域内で反復観測を行い、追加の制御およびシステム複雑性を要求する。位置変位を(別々の目印の反復インコヒーレント測定値等)介して速度を推定する代替方法が、可能であるが、より高いレベルの意思決定(ロボットが、概して、不得意とするもの)を要求し、多くの場合、コヒーレント相関の正確度に近づくものではない。本明細書では、CVLが、レンジ内の信号を相関させ、周波数が増加するにつれて、改良された速度推定をもたらす、位相レベル精度を有すると仮定される。本明細書に説明されるシステムおよび方法は、DVLおよびCVL用途の両方を対象とし得るが、CVL用途は、好ましい実施形態である。ビークルが、相関され得る2つのエコーを産生するために十分に安定する限り、CVLおよびDVLは、同一様式で使用され得、DVLを用いるシステムによって使用される動作技法は、CVLを利用するシステムによって採用されることができることを理解されたい。そのような場合、DVLおよびCVLのために使用される更新方程式は、異なり得ることも理解されたい。本明細書で使用されていない、代替解釈では、CVLは、舷側に照準を合わせられる複数の受信機を利用する技法を指し得る。CVLのこの解釈を使用する実施形態では、第1の信号が、伝送され、複数の受信機において受信されたエコーが、比較され、前進を決定する。そのような実施形態では、より高い周波数は、速度推定を改善しない。CVLのこの代替解釈に関するさらなる詳細は、Quazi,An Overview on the Time Delay Estimate in Active and Passive Systems for Target Localization,IEEE Transations on Acoustics,Speech,and Signal Processing,Vol.ASSP−29、No.3(1981年6月)に見出され得、その内容全体が、参照することによって本明細書に組み込まれる。

いくつかの実施形態では、速度および/または位置は、音響的に測定される。好ましい実装では、DVLまたはCVLのいずれかとして使用するために好適な信号を産生することができるのは、潜航ビークルの機首上の単一の大型パラトリックトランスデューサである。ロボットは、ピングを送り、信号を受信しながら、固定直線経路に沿って潜航し、その経路(直交方向ではない)に沿って速度測定を可能にする。次いで、ロボットは、方向転換し、新しい経路(好ましくは直交であるが、必須ではない)に沿って潜航し、別の測定を行い、以前に観測可能ではなかったビークルの速度状態の部分を観測する。これらの最初の2つの速度測定は、深度と組み合わせられた場合、ビークルの速度状態を完全に観測するために十分であり得、ビークルの速度状態は、最初の2つの速度測定から計算され得る。いくつかの実施形態では、第3の方向転換を行うことによって、ビークルは、速度状態を完全に観測するために、第3の測定を行うことができる。ビークルは、次いで、プロセスを繰り返し、速度状態の更新を継続し得る。

いくつかの実施形態では、第3の速度測定は、別個のトランスデューサによって行われ得る。いくつかの実施形態では、トランスデューサのクラスタを使用する代わりに(多くの市販のドップラのように)、本明細書に説明されるシステムおよび方法は、単一パラトリックトランスデューサを採用し得る(但し、複数のトランスデューサも使用し得る)。このように、第3の速度測定は、単一トランスデューサによって行われ得、第3の信号は、最初の2つの信号後に順に伝送される。さらに他の実施形態では、第3の速度測定は、深度センサ等の完全に異なるタイプのセンサによって観測され得る。

一実施形態では、純粋なドップラセンサが、ビークルの位置状態を計算するために使用され得る。ドップラセンサは、信号を伝送するためのトランスデューサと、信号のエコーを検出するためのドップラ信号受信機の両方を備え得る。センサは、別個の伝送および受信要素を使用するか、または伝送および受信の両方を行うための単一要素を使用し得る。長距離において、海底のロックを達成するために、センサは、低周波数を使用し得る。トランスデューサ要素のサイズを最小化するために、パラトリックトランスデューサを使用し得る。パラトリックトランスデューサは、水中の非線形相互作用に起因して、和および差周波数に変わる、一対の高周波数信号を伝送し得る。和周波数は、高速で吸収される一方、差周波数は、長距離まで伝搬する。ドップラセンサは、他のハードウェアによって妨害されない、ビークル上の便利な場所内に搭載され得る。いくつかの実施形態では、ドップラセンサは、ビークルの底部と同一平面に搭載され得る。いくつかの実施形態では、ドップラセンサは、障害物回避ソナー制約に応じて、ビークルの機首に搭載され得るか、または障害物回避ソナーと要素を共有し得る。さらに他の実施形態では、ドップラセンサは、本体外の媒体(例えば、ビークルのタイプに応じて、空気または水)の流れの中で搭載され得る。しかしながら、いくつかの実施形態では、ドップラセンサは、ビークルの直径とサイズが匹敵し得、したがって、流動を著しく妨害する可能性がある。この場合、ドップラセンサは、音響透過性のフェアリングによって覆われ得る。

潜航中、ビークルは、トランスデューサを使用して伝送し、次いで、エコーの受信を待ちながら、固定進路を維持し得る。総飛行時間は、非常に長くなり得る。例証的実施例として、Challenger deep(11km深度)直上角度45度では、飛行時間は、約21秒となるであろう。ドップラシフト信号の受信に応じて、速度測定値が、航法フィルタ(限定ではないが、拡張カルマンフィルタ等)を更新するために使用される。任意の好適な航法フィルタが、使用され得、航法フィルタは、図1に関連して以下にさらに詳細に説明される、CCUの中に組み込まれ得る。航法フィルタは、ビークルの位置、速度、および加速状態のうちの1つ以上のものを継続的に更新し得る。航法フィルタは、限定ではないが、典型的デカルト座標系(1D、2D、または3Dにおいて)、回転座標系、ビークル中心座標系、または地球中心座標系を含む、任意の好適な座標系を採用し得る。位置、速度、および加速状態の各々は、航法フィルタによって採用される座標系に好適な成分を備え得る。例えば、X、Y、およびZ方向を伴う、従来の3Dデカルト座標系では、速度状態は、X速度成分、Y速度成分、およびZ速度成分を備え得る。

航法フィルタは、加速状態を積分し、速度状態を決定し、速度状態を積分し、位置状態を決定し得る。航法フィルタは、所定の時間間隔または可変時間間隔において周期的に更新され得る。航法フィルタはまた、1つ以上のセンサ測定値を受信し、センサ測定値に基づいて、ビークルの位置、速度、および加速状態のいずれかを更新するように構成され得る。例えば、1つ以上のドップラ信号が、速度測定値を計算するために使用され得、これは、ビークルの速度状態を更新するために使用され得る。いくつかの実施形態では、航法フィルタは、推定された位置、速度、および加速状態の相違、ならびに1つ以上のセンサ測定値の各々の予期される相違を追跡し得る。センサ測定値の予期される相違に基づいて、航法フィルタは、適宜、位置、速度、または加速状態のうちの1つ以上のものの相違を更新し得る。例証的実施例として、深度センサは、位置状態の予期される相違と比較して、高正確度および低相違を有し得る。そのような深度センサからの測定値に基づく、位置状態の更新は、深度測定方向に対応する位置状態の成分の相違および不確実性を大幅に低減させ得る。1つ以上のセンサからの更新は、任意の好適な時間間隔において周期的に受信され得る。

航法フィルタは、周期的に、更新されるため、単一測定において3次元速度を完全に観測する必要はない。むしろ、単一ドップラ定点は、そのベクトルに沿った速度推定を改善し得る。ドップラ定点は、最新の速度推定を更新するために適用され得るが、より優れたフィルタは、伝送時間に対応する状態情報と受信時間に関する状態情報とを明示的に維持し、両速度に基づいて、ドップラシフトを測定し得る(すなわち、Δf=g(u(t)、u(t−Δt)))。1つ以上のドップラ測定値を受信後、ビークルは、トランスデューサを新しい方向に向けるように方向転換または回転し、その新しい方向における速度を更新し得る。いくつかの実施形態では、新しい方向は、第1の方向に直交し得る。一例証的実施例では、ビークルは、3辺を伴う多角形螺旋として潜航し得る。他の潜航プロファイルも、可能性として考えられる。

パラメトリックソナーは、離れた海底に対してドップラシフトを測定するために使用され得る低周波数音を小型パッケージ内で産生することができるが、低精度の重要な問題が残る。1秒の伝送を用いると、スペクトル分解能は、約1Hzである。1kHzでは、それは、音速の約0.1%または15cm/sとなるであろう。いくつかの実施形態では、パラトリックトランスデューサは、ビークルの進行方向に沿って相関ソナーを生成するために使用され得る。一般に、所与の方向に向けた開口Dを伴うトランスデューサは、開口がD/2を上回ってボアサイトからシフトされないことを前提として(ボアサイトに沿ってシフトされ得る)、海底の第1のピングをシフトされた位置からの後続ピングと相関させることが可能であろう。海底の初期観測後、後続観測を行うことによって、観測間に進行した距離を測定することが可能である。2つの位置間の差異の測定値は、これが位置を得るために積分される必要がある状態を更新しないという利点を有し、したがって、雑音を被りにくい。残念ながら、1度に1ベクトルに沿った更新のみ可能にする。ビークルは、別の方向に回転し、別の対(または、それを上回る)測定を行い、別のベクトルに沿って速度誤差を取り除く必要がある。いくつかの実施形態では、ビークルが測定を行いながら潜降する必要がある、開口が描く「トンネル」は、D/2より大きくなり得る。D/2ルールは、従来のトランスデューサによって生成される足跡に基づく。パラトリックトランスデューサに適用されると、この制約は、f/df*D/2であるように拡張され得、式中、fは、一次周波数であり、dfは、差周波数であり、Dは、オリジナル開口である。例証的実施例として、周波数の10:1減少に対して、トンネルは、5Dに拡張する。

代替として、単一または複数のチャネルパラメトリックソナーを使用するホログラフィック航行を使用してナビゲートすることが可能である。サイズDの要素を伴うSASは、典型的には、D/2の間隔を用いてサプリングするが、パラメトリックSASは、f/df*D/2の間隔のみを必要とし、式中、fは、一次周波数であり、dfは、差周波数である。適切に構築されたパラメトリックSAS画像を用いて、単一チャネルホログラフィック航行を使用して航行可能である。代替として、2つのパラメトリックSAS画像は、航行解決のために比較されることができる。好ましい実施形態では、ビークルは、パラメトリックソナーを使用して、潜航しながら、パラメトリックSAS画像を生成する。1つ以上のパラトリックトランスデューサは、舷側に照準を合わせられるであろう。トランスデューサが、斜傾される(squinted)かどうかは、潜航角度およびビーム幅に依存するであろう。SAS画像は、全深度において、海面近傍のみ、海底近傍のみ、またはいくつかの便利な水中場所において作成されることができる。データは、連続更新のために、またはビークルが海底に到達した後のバッチ更新の一部として使用されることができる。ビークルが海底に到達し、高周波数ソナーを用いて、海底ロックを達成することができると、単一チャネルパラメトリックSAS画像内の誤差は、大幅に減少されることが予期され得る。本状況の場合、クリーンであるが、高度にバイアスされた海底SAS画像を参照することは、海面近傍から単一チャネル定点となるであろうことから理にかない得る(高航行精度が存在する場合)。

一実施形態では、ビークルは、主に、潜航の間、一平面内に留まり、ほぼ同一見通し角から同一海底地形を一貫して見る。代替実施形態では、ロボットは、降下の間、複数の潜航平面を横断する。例証的実施例として、ビークルは、角錐の辺上に投影される螺旋に類似する経路を進行し得る。ビークルは、角錐の上部から開始し、降下し始める。ビークルが、角錐の任意の所与の面上にある場合、角錐との交差点における海底のその観測の見通し角は、一定となるであろう。一定の潜航角度で角錐の辺に沿ってのみ進行することによってロボットは、同一レンジの水平角度内で角錐の底辺における区域を見る傾向となるであろう。これは、ホログラフィック航行および見通し角補償制約の全てを満たすことを促進するであろう。

図1は、本開示の例証的実施形態による、例証的遠隔操作ビークルを描写する、ブロック図である。システム100は、ソナー信号を送信および受信するためのソナーユニット110と、受信(または反射)信号を調節するためのプリプロセッサ120と、パルス圧縮およびビーム形成を行うための整合フィルタ130とを含む。システム100は、高周波数(約100kHzよりも大きい)ソナー信号を使用して、ナビゲートすることを可能にするように構成される。そのようなHF航行を可能にするために、システム100は、見通し角誤差を補償するため、および位相誤差を補正するための信号補正器140を含む。システム100はまた、受信された画像を地図とコヒーレントに相関させるための信号検出器150も含む。いくつかの実施形態では、システム100は、搭載された航行コントローラ170、モータコントローラ180、およびセンサコントローラ190を含む。航行コントローラ170は、GPS/RFリンク172(利用可能であるとき)、加速度計174、ジャイロスコープ、およびコンパス176から航行パラメータを受信するように構成され得る。モータコントローラ180は、ビークルを操縦するための複数のモータ182、184、および186を制御するように構成され得る。センサコントローラ190は、バッテリモニタ172、温度センサ194、および圧力センサ196から測定値を受信し得る。システム100はさらに、ソナー測定値ならびに他の航行およびセンサパラメータに基づいて航行パラメータを決定するため、およびビークルの移動を制御するためにハブとしての機能を果たし得る、中央制御ユニット(CCU)160を含む。

水面または水中ビークルとの関連で、CCU160は、位置(緯度および経度)、速度(任意の方向)、方角、機首方位、加速度、および高度等の航行パラメータを決定し得る。CCU160は、航跡に沿った方向(前方および後方)、航跡を横断する方向(左舷および右舷)、および垂直方向(上および下)に沿った運動を制御するために、これらの航行パラメータを使用し得る。CCU160は、ビークルの向きを変える(yaw)、ビークルを傾ける(ピッチ)、ビークルを転がす(roll)、または別様にビークルを回転させる(rotate)ように運動を制御するために、これらの航行パラメータを使用し得る。水中動作中、AUV等のビークルは、ソナーユニット110において高周波数実開口ソナー画像または信号を受信し得、次いで、画像または信号は、地形の合成開口ソナー(SAS)地図に対して処理され、フィルタにかけられ、補正され、相関させられ得る。相関を使用して、次いで、CCUは、地形をナビゲートすることを支援するために、高精度および他の航行パラメータを用いてAUVの位置を決定し得る。精度は、SAS地図および/または獲得されたソナー画像の信号および空間帯域幅によって決定され得る。ある実施形態では、正方画素を伴う事前SAS地図とのソナー画像の少なくともほぼ完璧な重複があると仮定し、類似要素サイズおよび帯域幅を有する単一のチャネルを用いて再取得が行われたと仮定し、かつ見通し角補償の損失がほとんどまたは全くないと仮定すると、エンベロープは、要素サイズの約2分の1であろう。その結果として、ある実施形態では、エンベロープのピークは、波長の約1/100までを含む高精度で識別され得る。例えば、分解能は、レンジ方向において、2.5cm未満、または1cm未満、あるいは約0.1mm未満および約0.1mmであり得る。

概して、長波長(低周波数)センサを使用する地形認識は、物体シグネチャの側面依存性により困難であり得る。ソナーまたはレーダ画像は、ソナーおよび物体側面の両方とともに変化し、インコヒーレント画像相関を極端に困難にする、スペックルによって支配され得る。コヒーレントに、重複周波数帯を有しない信号を伴う任意の相関演算は、ゼロという解答をもたらすであろう(相関が周波数ドメインでの乗算であるため)。2つのソナー画像が相関するためには、それらの空間周波数が重複することは十分ではなく、2つの画像内の同一の点が重複周波数において表されなければならない。一般的な実開口ソナーに対して、複雑な光景の同一のシグネチャは、典型的には、元の観測位置および向きを再訪し、同一の周波数を使用することのみによって、再観測することができる。その結果として、一般に、2つの複雑なソナーまたはレーダ画像をコヒーレントに相関させることは、測度ゼロ発生であり、予期される相互相関が、ゼロに接近していることを証明することができる。インコヒーレント航行は、独特な地形がある場合に(すなわち、エンベロープのみを使用して)可能であるが、均一な底面(干潟、砂利場、海底等)に対して、これは通常可能ではない。

例えば、AUV上で実装されるシステムを使用する、地形のホログラフィック航行は、実開口画像のうちの少なくとも1つを合成開口画像と置換することによって、この問題を解決する。合成開口画像は、一種のホログラム(または準ホログラム)であるため、周波数および角度の何らかの範囲にわたって、全ての可能な実開口画像を含む。その結果として、合成開口画像に対して実開口画像を相関させ、ゼロではない予期される相互相関を有することが可能であり得る。しかしながら、閉鎖/開放開口の定理によれば、合成開口が平面合成開口であることが要求され得、それが2次元で完全にデータ投入され、ナイキストサンプリングされていることを意味する。この種類の集団およびサンプリング周波数は、一般に非実用的である。

地形が表面上に埋め込み散乱体を伴う多様体であると仮定し、臨界角を上回るサブボトムプロファイル/動作を回避することによって、またはSNRが低い場合、臨界角を下回って動作することによって、周波数を変更することができるならば、平面開口は、輪郭開口と置換されることができることを示すことが可能である。例えば、アクティブソナーまたはレーダ、および平底上のレンジにおいて5センチメートル離間した2つの散乱体を考慮されたい。地面から散乱体を見るソナーまたはレーダの視点から、2つのエコーの進行距離は、10cm異なる(行き、および戻り)。代わりに、観測者が、水平より上側の45度の角度で見下ろしている場合、差異は、45度(半分)の余弦によって7.07cmに短縮される。よって、水平で、10cm波長は、正確に1サイクル位相がずれ(建設的に干渉する)、20センチメートル波長は、正確に半サイクル位相がずれるであろう(破壊的に干渉する)。45度で、同じことが7.07cm波長および14.14cm波長に当てはまるであろう。両方の波長は、同一量だけ拡大縮小される(反比例であることを除き同様に、周波数も拡大縮小される)。より一般的に、高度角の変化が、全ての周波数を偏移させ、角度の余弦によって信号長を変化させる。これは、周波数の倍増が1オクターブのピッチの変化に対応する、ピッチの変化ほど大きい周波数の偏移ではない。よって、水平から60度で見下ろすことへ観測角を変化させることによって、予期される帰還は、半分短縮され、ピッチを1オクターブ増加させる。これが機能するために、第1の観測に対して適切に拡大縮小された周波数で第2の観測が行われることが必要であり、非常に狭い帯域のシステムに対して、見通し角の過剰な変化は、単に、既知のシグネチャが帯域外になることにつながる。

本明細書で説明されるシステムおよび方法の見通し角補償および事前合成開口画像を使用する、いくつかの実施形態では、単一要素ソナーまたはレーダを使用して、地形に対してナビゲートすることが可能である。合成開口システムは極めて高価であるが、単一要素システムは、概して、非常に安価である。これは、非常に高価なマッピングシステムが、最小限の慣性航行とともに、安価な自律システムの広範な使用を可能にできることを意味する。しかしながら、現在までの成功したホログラフィック航行実装が全て、低周波数ソナー(すなわち、50kHz未満)を使用している一方で、より高い周波数のシステムは機能していない。これは、より低い周波数の伝送機が、一般に、より大型、より高電力、およびより高価であるため、不利である。したがって、高周波数単一要素ホログラフィック航行システムを有することが望ましい。ホログラフィック航行システムおよび方法のさらなる例証的実施形態が、米国特許出願第12/802,453号、第12/454,486号、第12/454,484号、および第12/454,885号で開示され、その各々の内容は、それらの全体で参照することにより本明細書に組み込まれる。

上述のように、システム100は、音響信号を伝送および受信するためのソナーユニット110を含む。ソナーユニットは、一列に配列される、1つ以上の伝送要素またはプロジェクタと複数の受信要素とを有するトランスデューサアレイ112を含む。ある実施形態では、トランスデューサアレイ112は、別個のプロジェクタおよび受信機を含む。トランスデューサアレイ112は、SASモード(進路要図またはスポットライトモードのいずれか)で、または実開口モードで動作するように構成され得る。ある実施形態では、トランスデューサアレイ112は、マルチビーム音波発信機、サイドスキャンソナー、またはセクタスキャンソナーとして動作するように構成される。伝送要素および受信要素は、所望に応じて、サイズ決定および成形され得、本開示の範囲から逸脱することなく、所望に応じて、任意の構成で、および任意の間隔を用いて配列され得る。トランスデューサアレイ112の数、サイズ、配列、および動作は、地形に高周波の音波を当て、地形または物体の高分解能画像を生成するように選択および制御され得る。アレイ112の一実施例は、123/4インチビークルに搭載された5cm要素を伴う16チャネルアレイを含む。

ソナーユニット110はさらに、トランスデューサから受信される電気信号を受信および処理するための受信機114と、電気信号をトランスデューサに送信するための伝送機116とを含む。ソナーユニット110はさらに、開始および終了を含む伝送機の動作、およびピングの周波数を制御するための伝送機コントローラ118を含む。

受信機114によって受信される信号は、調節および補償のためにプリプロセッサに送信される。特に、プリプロセッサ120は、異常値を排除するため、およびハイドロホン変動を推定して補償するためのフィルタ調節器122を含む。プリプロセッサはさらに、ビークルの運動を推定、および補償するためのドップラ補償器124を含む。前処理された信号は、整合フィルタ130に送信される。

整合フィルタ130は、レンジ内で整合フィルタリングを行うためのパルス圧縮器132と、方位角において整合フィルタリングを行い、それにより、方向推定を行うためのビームフォーマ134とを含む。

信号補正器140は、見通し角の差異を補償するようにソナー画像を調整するための見通し角補償器142を含む。典型的には、ソナーが点散乱体の集合を撮像する場合、画像は観測角とともに変化する。例えば、固定高度および機首方位で動作し、海底経路を観測するSASシステムは、異なるレンジで異なる画像を生成するであろう。同様に、固定水平レンジで作製されるSAS画像は、高度が変化させられた場合に変化するであろう。そのような場合において、画像の変化は、見通し角の変化によるものであろう。見通し角補償器142は、見通し角不変画像を生成するように構成される。1つのそのような見通し角補償器が、「Apparatus and Method for Grazing Angle Independent Signal Detection」と題された米国特許出願第12/802,454号で説明され、その内容は、それらの全体で参照することにより本明細書に組み込まれる。

信号補正器140は、レンジ変動位相誤差を補正するための位相誤差補正器144を含む。概して、位相誤差補正器144は、画像をより小さい断片に分け、各断片は、実質的に一定の位相誤差を有する。次いで、位相誤差が、より小さい断片の各々について推定および補正され得る。

システム100はさらに、信号相関器152および記憶装置154を有する、信号検出器150を含む。信号検出器150は、潜在的な標的を検出し、検出された物体の位置および速度を推定し、標的またはパターン認識を行うように構成され得る。一実施形態では、記憶装置154は、1つ以上の以前に取得されたSAS画像、実開口画像、または任意の他の好適なソナー画像を含み得る、地図記憶部を含み得る。信号相関器152は、信号補正器140から取得される受信および処理された画像を、地図記憶部154からの1つ以上の事前画像と比較するように構成され得る。

システム100は、本開示から逸脱することなく、図示されていない他の構成要素を含み得る。例えば、システム100は、データロギングおよび記憶エンジンを含み得る。ある実施形態では、データロギングおよび記憶エンジンは、科学的データを記憶するために使用され得、次いで、データは、航行システムを支援するための後処理で使用され得る。システム100は、システム100の1つ以上の特徴へのアクセスを制御するため、および1つ以上の特徴の使用を認可するためのセキュリティエンジンを含み得る。セキュリティエンジンは、アクセスを制御するための好適な暗号化プロトコルおよび/またはセキュリティキーおよび/またはドングルを伴って構成され得る。例えば、セキュリティエンジンは、地図記憶部154に記憶された1つ以上の地図を保護するために使用され得る。地図記憶部154の中の1つ以上の地図へのアクセスは、適切なライセンス、権限、または許可を有する、ある個人または実体に限定され得る。セキュリティエンジンは、これらの個人または実体が権限を与えられたことを確認すると、これらの個人または実体に1つ以上の地図へのアクセスを選択的に許可し得る。セキュリティエンジンは、限定されないが、航行コントローラ170、モータコントローラ180、センサコントローラ190、伝送機コントローラ118、およびCCU160を含む、システム100の他の構成要素へのアクセスを制御するように構成され得る。

概して、トランスデューサ112を除いて、システム100の種々の構成要素が、図2のコンピュータシステム200等のコンピュータシステムで実装され得る。より具体的には、図2は、本開示の例証的実施形態による、ネットワークにアクセスする汎用コンピュータの機能ブロック図である。本願で説明されるホログラフィック航行システムおよび方法は、図2のシステム200を使用して実装され得る。

例示的なシステム200は、プロセッサ202と、メモリ208と、相互接続バス218とを含む。プロセッサ202は、マルチプロセッサシステムとしてコンピュータシステム200を構成するための単一のマイクロプロセッサまたは複数のマイクロプロセッサを含み得る。メモリ208は、例証的に、メインメモリおよび読み取り専用メモリを含む。システム200はまた、例えば、種々のディスクドライブ、テープドライブ等を有する、大容量記憶デバイス210も含む。メインメモリ208はまた、ダイナミックランダムアクセスメモリ(DRAM)および高速キャッシュメモリも含む。動作および使用中、メインメモリ208は、メインメモリ208に記憶されたデータ(例えば、地形のモデル)を処理するときにプロセッサ202による実行のための命令の少なくとも複数部分を記憶する。

いくつかの実施形態では、システム200はまた、ネットワーク216を介したデータ通信のためのインターフェース212として、一例として示される、通信のための1つ以上の入出力インターフェースを含み得る。データインターフェース212は、モデム、イーサネット(登録商標)カード、または任意の他の好適なデータ通信デバイスであり得る。データインターフェース212は、直接的に、または別の外部インターフェースを通してのいずれかで、イントラネット、インターネット、またはInternet等のネットワーク216への比較的高速のリンクを提供し得る。ネットワーク216への通信リンクは、例えば、光学、有線、または無線(例えば、衛星または802.11Wi−Fiまたはセルラーネットワークを介した)リンク等の任意の好適なリンクであり得る。いくつかの実施形態では、通信は、音響モデムを介して起こり得る。例えば、AUVに対して、通信は、そのようなモデムを介して起こり得る。代替として、システム200は、ネットワーク216を介したウェブベースの通信が可能なメインフレームまたは他の種類のホストコンピュータシステムを含み得る。

いくつかの実施形態では、システム200はまた、好適な入出力ポートも含み、または、プログラミングおよび/またはデータ入力、読み出し、または操作目的でローカルユーザインターフェースとしての機能を果たす、ローカルディスプレイ204およびユーザインターフェース206(例えば、キーボード、マウス、タッチスクリーン)等と相互接続するための相互接続バス218を使用し得る。代替として、サーバ運営人員が、ネットワーク216を介して、遠隔端末デバイス(図に示されていない)からシステム200を制御および/またはプログラムするために本システムと相互作用し得る。

いくつかの実施形態では、システムは、1つ以上のコヒーレントセンサ(例えば、ソナー、レーダ、光学アンテナ等)214に連結される、航行コントローラ170等のプロセッサを必要とする。地形のモデルに対応するデータおよび/またはそのモデルに関連付けられるホログラフィック地図に対応するデータは、メモリ208または大容量記憶装置210に記憶され得、かつプロセッサ202によって読み出され得る。プロセッサ202は、本願で説明される方法のうちのいずれか、例えば、見通し角補償または高周波数ホログラフィック航行を行うように、これらのメモリデバイスに記憶された命令を実行し得る。

本システムは、情報を表示するためのディスプレイ204と、前述のデータの少なくとも一部分を記憶するためのメモリ208(例えば、ROM、RAM、フラッシュ等)と、前述のデータの少なくとも一部分を記憶するための大容量記憶デバイス210(例えば、ソリッドステートドライブ)とを含み得る。任意の一式の前述の構成要素が、入出力(I/O)インターフェース212を介してネットワーク216に連結され得る。前述の構成要素の各々は、相互接続バス218を介して通信し得る。

いくつかの実施形態では、システムは、1つ以上のコヒーレントセンサ(例えば、ソナー、レーダ、光学アンテナ等)214に連結される、プロセッサを要求する。ソナーアレイ214は、他の構成要素の中でもとりわけ、伝送機、受信アレイ、受信要素、および/または関連位相中心/仮想要素を伴う仮想アレイを含み得る。

地形のモデルに対応するデータ、モデルに関連付けられたホログラフィック地図に対応するデータ、および見通し角補償のためのプロセスは、プロセッサ202によって行われ得る。本システムは、情報を表示するためのディスプレイ204と、前述のデータの少なくとも一部分を記憶するためのメモリ208(例えば、ROM、RAM、フラッシュ等)と、前述のデータの少なくとも一部分を記憶するための大容量記憶デバイス210(例えば、ソリッドステートドライブ)とを含み得る。任意の一式の前述の構成要素が、入出力(I/O)インターフェース212を介してネットワーク216に連結され得る。前述の構成要素の各々は、相互接続バス218を介して通信し得る。

動作中、プロセッサ202は、センサ214に対する位置推定、センサ214からの波形または画像、および地形、例えば、海底のモデルに対応するデータを受信する。いくつかの実施形態では、そのような位置推定は、受信されなくてもよく、プロセッサ202によって行われるプロセスは、この情報なしで継続する。随意に、プロセッサ202は、航行情報および/または高度情報を受信し得、プロセッサ202は、コヒーレント画像回転アルゴリズムを行い得る。システムプロセッサ202からの出力は、ビークルが移動する必要がある位置を含む。

システム200に含まれる構成要素は、典型的には、サーバ、ワークステーション、パーソナルコンピュータ、ネットワーク端末、携帯用デバイス、および同等物等として使用される汎用コンピュータシステムで見出される。実際、これらの構成要素は、当技術分野で周知である、そのようなコンピュータ構成要素の広いカテゴリを表すことを目的としている。

本発明のシステムおよび方法に関与する方法は、不揮発性コンピュータ使用可能および/または読み取り可能な媒体を含む、コンピュータプログラム製品で具現化され得ることが、当業者に明白であろう。例えば、そのようなコンピュータ使用可能媒体は、その上に記憶されたコンピュータ読み取り可能なプログラムコードを有する、CD ROMディスク、従来のROMデバイス、またはランダムアクセスメモリ、ハードドライブデバイスまたはコンピュータディスケット、フラッシュメモリ、DVD、または任意の類似デジタルメモリ媒体等の読み取り専用メモリデバイスから成り得る。

随意に、本システムは、慣性航行システム、ドップラセンサ、高度計、ホログラフィック地図のデータ投入部分上にセンサを固定するギンブリングシステム、全地球測位システム(GPS)、長基線(LBL)航行システム、超短基線(USBL)航行、または任意の他の好適な航行システムを含み得る。

図3は、ビークルの速度状態を計算するためのビークル操縦の例証的実施例を描写する。操縦300は、第1の方向304に進む第1の時間T1にビークル302を含み、同一ビークル302は、第2の時間T2において、第2の方向306に進む。ビークル302は、少なくとも1つのトランスデューサを使用して、第1の信号を第1の方向304に伝送し得る。ビークル302は、ドップラセンサを使用して、第1の信号のエコーを受信し得る。ビークル302は、時間T1、時間T2、T1とT2との間の時間、またはT2後の任意の時間に、第1の信号のエコーを受信し得る。ビークル302は、次いで、第2の方向306に方向転換し得、第2の方向306は、第1の方向304と異なる。いくつかの実施形態では、第2の方向306は、第1の方向304に直交し得る。第2の信号は、第1の信号から以前に観測可能ではなかった速度状態の成分の測定値を伴い得る。ビークル302は、少なくとも1つのトランスデューサを使用して、第2の信号を第2の方向306に伝送し得る。ビークル302は、ドップラセンサを使用して、第2の信号のエコーを受信し得る。ビークル302は、時間T2またはT2後の任意の時間において、第2の信号のエコーを受信し得る。

いくつかの実施形態では、第2の信号は、第1の信号と同一トランスデューサから伝送され得る。代替実施形態では、第2の信号は、第1の信号と異なるトランスデューサから伝送され得る。

受信された第1および第2の信号のエコーに基づいて、ビークル302は、ビークルの速度状態の少なくとも一部を計算し得る。いくつかの実施形態では、ビークル302は、プロセッサ202等の処理回路を使用して、第1および第2の信号の各々に対するドップラシフトを計算し、それぞれのドップラシフトに基づいて、第1および第2の速度測定値を計算し得る。

図4は、ビークルの速度状態を計算するためのビークル操縦の別の例証的実施例を描写する。操縦400は、第1の時間T1において、第1の方向404に進むビークル402を含み、同一ビークル402は、第2の時間T2において、第2の方向406に進む。第1の方向404と第2の方向406とは、同一または実質的に類似し得る。ビークル402は、少なくとも1つのトランスデューサを使用して、第1の信号を第1の方向304に伝送し得る。ビークル402は、ドップラセンサを使用して、第1の信号のエコーを受信し得る。ビークル402は、時間T1、時間T2、T1とT2との間の時間、またはT2後の任意の時間に、第1の信号のエコーを受信し得る。ビークル402は、少なくとも1つのトランスデューサを使用して、第2の信号を第2の方向406に伝送し得る。ビークル402は、ドップラセンサを使用して、第2の信号のエコーを受信し得る。ビークル402は、時間T2またはT2後の任意の時間に第2の信号のエコーを受信し得る。

いくつかの実施形態では、第2の信号は、第1の信号と同一トランスデューサから伝送され得る。代替実施形態では、第2の信号は、第1の信号と異なるトランスデューサから伝送され得る。

受信された第1および第2の信号のエコーに基づいて、ビークル402は、ビークルの速度状態の少なくとも一部を計算し得る。いくつかの実施形態では、ビークル402は、プロセッサ202等の処理回路を使用して、第1および第2の信号の各々に対するドップラシフトを計算し、それぞれのドップラシフトに基づいて、第1および第2の速度測定値を計算し得る。代替実施形態では、ビークル402は、プロセッサ202等の処理回路を使用して、第1および第2の信号のエコーに基づいて、T1とT2との間で進行された距離を計算し得る。本情報を使用して、ビークル402は、単一速度推定を計算し得る。

図5は、ビークルの速度状態を計算するためのビークル操縦の別の例証的実施例を描写する。操縦500は、第1の時間T1において、第1の方向504に進むビークル502を含み、同一ビークル502は、第2の時間T2において、第2の方向506に進み、同一ビークル502は、第3の時間T3において、第3の方向508に進む(ページ外に出る)。図5では、方向504、506、および508は例証目的のために、異なるように示されるが、いくつかの実施形態では、方向504、506、および508のうちの任意の2つまたは3つは、同一または実質的に異なり得る。いくつかの実施形態では、方向504、506、または508のうちの任意の2つは、直交し得る。ビークル502は、少なくとも1つのトランスデューサを使用して、第1の信号を第1の方向504に伝送し得る。ビークル502は、ドップラセンサを使用して、第1の信号のエコーを受信し得る。ビークル502は、時間T1、T1とT3との間の時間、またはT3後の任意の時間に、第1の信号のエコーを受信し得る。第2の信号は、第1の信号から以前に観測可能ではなかった速度状態の成分の測定値を伴い得る。ビークル502は、少なくとも1つのトランスデューサを使用して、第2の信号を第2の方向506に伝送し得る。ビークル502は、ドップラセンサを使用して、第2の信号のエコーを受信し得る。ビークル502は、時間T2またはT2後の任意の時間に、第2の信号のエコーを受信し得る。第3の信号は、第1および第2の信号から以前に観測可能ではなかった速度状態の成分の測定値を伴い得る。ビークル502は、少なくとも1つのトランスデューサを使用して、第3の信号を第3の方向508に伝送し得る。ビークル502は、ドップラセンサを使用して、第3の信号のエコーを受信し得る。ビークル502は、時間T3またはT3後の任意の時間に、第3の信号のエコーを受信し得る。

いくつかの実施形態では、第2のおよび第3の信号は、第1の信号と同一トランスデューサから伝送され得る。代替実施形態では、第2のおよび第3の信号は、1つ以上の第1の信号と異なるトランスデューサから伝送され得る。

第1、第2、および第3の信号の受信されたエコーに基づいて、ビークル502は、ビークルの速度状態の少なくとも一部を計算し得る。いくつかの実施形態では、ビークル502は、プロセッサ202等の処理回路を使用して、第1および第2の信号の各々に対するドップラシフトを計算し、それぞれのドップラシフトに基づいて、第1、第2、および第3の速度測定値を計算し得る。

図6は、一例証的実施形態による、可変深度ソナーシステムを使用するためのプロセスを描写する。プロセス600は、ステップ602において、動作周波数帯域を決定し、ステップ604において、周囲圧力を決定し、ステップ606において、ソナー機器の動作周波数帯域を調節するステップを含む。

ステップ602では、ソナー機器に対する動作周波数帯域が、決定され得る。ソナー機器に対する周波数応答は、典型的には、ヌルを含み、動作帯域は、典型的には、ヌル間で生じるように設計される。例証的実施例として、ソナー受信機は、広帯域幅低周波数(BBLF)帯域および別個の高周波数(HF)帯域等、いくつかの動作帯域で動作するように設計され、意図的に作り出されたヌルが、2つの帯域を分離し得る。本情報は、ビークル上、例えば、メモリ208内に記憶され得る。

ステップ604では、周囲圧力が、決定され得る。周囲圧力を決定することは、ソナー機器またはソナー機器を搬送するビークルの現在の深度を決定することを含み得る。現在の深度と圧力とを相関させる所定の関係またはテーブルが、現在の深度に基づいて、周囲圧力を決定するために使用され得る。

ステップ606では、ソナー機器の動作周波数帯域が、周囲圧力に基づいて調節され得る。いくつかの実施形態では、中心動作周波数は、圧力に基づいて調節され得る。いくつかの実施形態では、圧力と周波数応答とを相関させる所定のテーブルが、最適中心動作周波数を決定するために使用され得る。いくつかの実施形態では、中心周波数は、周波数応答内のヌルおよび/または動作帯域内の上限または上界間の中心に置かれ得る。

図7は、一例証的実施形態による、ビークルの速度状態を計算するためのプロセスを描写する。プロセス700は、ステップ702において、第1の信号を第1の方向に伝送することと、ステップ704において、第1の信号のエコーを受信することと、ステップ706において、第2の信号を第2の方向に伝送することと、ステップ708において、第2の信号のエコーを受信することと、ステップ710において、少なくとも1つの速度測定値を計算することと、ステップ712において、ビークルの速度状態を計算することとを含む。

ステップ702では、第1の信号が、第1の方向に伝送され得る。第1の信号は、少なくとも1つのトランスデューサを使用して、伝送され得る。ステップ704では、ドップラセンサが、使用され、第1の信号のエコーを受信し得る。

ステップ706では、第2の信号が、第2の方向に伝送され得る。第2の方向は、同一、実質的に同一、または第1の方向と異なり得る。いくつかの実施形態では、ビークルは、第2の方向が、第1の方向と実質的に異なるように、物理的に方向転換し得る。代替実施形態では、ビークルは、実質的に同一方向に進行し得るが、トランスデューサは、第2の信号が、第1の信号と実質的に異なる方向に伝送されるように方向転換され得る。いくつかの実施形態では、第2の方向は、第1の方向に直交し得る。いくつかの実施形態では、第2の信号は、第1の信号から以前に観測可能ではなかった速度状態の成分の測定値を伴い得る。第2の信号は、第1の信号と同一または異なるトランスデューサを使用して、伝送され得る。ステップ708では、ドップラセンサが、使用され、第2の信号のエコーを受信し得る。

ステップ710では、プロセッサ202等の処理回路が、少なくとも1つの速度測定値を計算し得る。いくつかの実施形態では、処理回路は、受信されたエコーに基づいて、第1および第2の信号の各々に対するドップラシフトを計算し、それぞれのドップラシフトに基づいて、それぞれの第1および第2の速度測定値を計算し得る。代替実施形態では、処理回路は、受信されたエコーに基づいて、第1の信号と第2の信号との間の時間内に進行された距離を計算し得る。本情報を使用して、処理回路は、2つの受信されたエコーに基づいて、単一速度推定を計算し得る。

ステップ712では、処理回路は、ビークルの速度状態を計算し得る。いくつかの実施形態では、少なくとも1つの速度測定値が、少なくとも1つの速度測定値に基づいて、ビークルの速度状態の1つ以上の成分を更新する、航法フィルタに提供され得る。

図8は、一例証的実施形態による、別のビークルの速度状態を計算するためのプロセスを描写する。プロセス800は、ステップ802において、第1の信号を第1の方向に伝送することと、ステップ804において、第1の信号のエコーを受信することと、ステップ806において、第2の信号を第2の方向に伝送することと、ステップ808において、第2の信号のエコーを受信することと、ステップ810において、第3の信号を第3の方向に伝送することと、ステップ812において、第3の信号のエコーを受信することと、ステップ814において、少なくとも1つの速度測定値を計算することと、ステップ816において、ビークルの速度状態を計算することとを含む。

ステップ802では、第1の信号が、第1の方向に伝送され得る。第1の信号は、少なくとも1つのトランスデューサを使用して、伝送され得る。ステップ804では、ドップラセンサが、使用され、第1の信号のエコーを受信し得る。

ステップ806では、第2の信号が、第2の方向に伝送され得る。第2の方向は、同一、実質的に同一、または第1の方向と異なり得る。いくつかの実施形態では、ビークルは、第2の方向が、実質的に、第1の方向と異なるように、物理的に方向転換し得る。代替実施形態では、ビークルは、実質的に同一方向に進行し得るが、トランスデューサは、第2の信号が、第1の信号と実質的に異なる方向に伝送されるように方向転換され得る。いくつかの実施形態では、第2の方向は、第1の方向に直交し得る。いくつかの実施形態では、第2の信号は、第1の信号から以前に観測可能ではなかった速度状態の成分の測定値を伴い得る。第2の信号は、第1の信号と同一または異なるトランスデューサを使用して、伝送され得る。ステップ808では、ドップラセンサが、使用され、第2の信号のエコーを受信し得る。

ステップ810では、第3の信号が、第3の方向に伝送され得る。第3の方向は、第1および第2の方向と同一、実質的に同一、または異なり得る。いくつかの実施形態では、ビークルは、第3の方向が、実質的に、第1および第2の方向と異なるように、物理的に方向転換し得る。代替実施形態では、ビークルは、実質的に同一方向に進行し続け得るが、トランスデューサは、第3の信号が、第1および第2の信号と実質的に異なる方向に伝送されるように方向転換され得る。いくつかの実施形態では、第3の方向は、第1または第2の方向のいずれかに直交し得る。いくつかの実施形態では、第3の信号は、第1および第2の信号から以前に観測可能ではなかった速度状態の成分の測定値を伴い得る。第3の信号は、第1および第2の信号と同一または異なるトランスデューサを使用して、伝送され得る。ステップ812では、ドップラセンサが、使用され、第3の信号のエコーを受信し得る。

ステップ814では、プロセッサ202等の処理回路は、ビークルの速度状態を計算し得る。いくつかの実施形態では、処理回路は、受信されたエコーに基づいて、第1、第2、および第3の信号毎にドップラシフトを計算し、それぞれのドップラシフトに基づいて、それぞれの第1、第2、および第3の速度測定値を計算し得る。代替実施形態では、処理回路は、第1、第2、および第3の信号のうちの任意の2つの間の時間内に進行された距離を計算し、距離情報を使用して、3つの信号のうちの任意の2つに基づいて、速度測定値を計算し得る。

ステップ816では、処理回路は、ビークルの速度状態を計算し得る。いくつかの実施形態では、少なくとも1つの速度測定値が、少なくとも1つの速度測定値に基づいて、ビークルの速度状態の1つ以上の成分を更新する、航法フィルタに提供され得る。

そのような実施形態は、一例として提供されるにすぎないことは、当業者に明白となるであろう。多数の変形例、代替、変更、および代用が、本発明を実践する当業者によって採用され得ることを理解されたい。故に、本発明は、本明細書に開示される実施形態に限定されず、法律の下で許容される限り広範に解釈される、以下の請求項から理解されるべきであることを理解されるであろう。

QQ群二维码
意见反馈