用于通过低温蒸馏进行空气分离的方法和设备

申请号 CN201380024638.2 申请日 2013-02-27 公开(公告)号 CN104755360B 公开(公告)日 2017-09-29
申请人 乔治洛德方法研究和开发液化空气有限公司; 发明人 B·达维迪安; R·杜贝蒂尔-格勒尼耶; A·吉亚尔; L·乔利; P·勒博; P·佩乔娃;
摘要 本 发明 涉及一种用于在塔系统中通过低温蒸馏分离空气的方法,该塔系统至少包括在第一压 力 下运行的第一塔(100)和在低于第一压力的第二压力下运行的第二塔(102),第一塔的顶部通过 蒸发 器 ‑ 冷凝器 (21)热联接至第二塔的贮槽,富含氮的气体的第一部分(17)被从第一塔的顶部提取出、在入口 温度 不超过‑150℃的 压缩机 (19)中被压缩并在 蒸发器 ‑冷凝器中冷凝,富 氧 流体 (43)被从第二塔的下部部分提取出并在交换管线中被加热,富氮气体(41)被从第二塔的上部部分提取出并在交换管线中被加热,所述富含氮的气体的第二部分在未经压缩的情况下在 涡轮 中膨胀。
权利要求

1.一种用于在塔系统中通过低温蒸馏分离空气的方法,该塔系统至少包括在第一压下运行的第一塔(100)和在低于第一压力的第二压力下运行的第二塔(102),第一塔的顶部通过蒸发器-冷凝器(21)热联接至第二塔的底部,在所述方法中:
i)经纯化的空气在交换管线(9)中冷却并且被传送到第一塔以便在所述第一塔中分离,
ii)富含氮的气体被从第一塔的顶部提取出并分成两部分,第一部分(17)在入口温度最高为-150℃的压缩机(19)中被压缩并在蒸发器-冷凝器中冷凝,
iii)富含氮的气体的第二部分(23)在交换管线(9)中被再加热并在膨胀涡轮(27)中膨胀,
iv)富含的液体(35)或从该富含氧的液体得到的液体被从第一塔的底部传送到第二塔以便在所述第二塔中分离,而没有与来自第一塔的富含氮的气体换热而被再加热,v)将富含氮的液体(37)从第一塔的顶部传送到第二塔的顶部,
vi)富氧流体(43)被从第二塔的底部提取出并在交换管线中被再加热,
vii)富氮气体(41)被从第二塔的上部部分提取出并在交换管线中被再加热,viii)所述蒸发器-冷凝器是使第二塔的下部部分中的液体蒸发的唯一装置,其特征在于,富含氮的气体的所述第二部分在交换管线中被再加热和在膨胀涡轮中膨胀,而没有被压缩,
其中,根据第一和第二操作模式执行所述方法,在第一操作模式期间,所述压缩机(19)停机,进给空气(1)的压力增加并且从塔系统提取至少一种液体(38,51)作为最终产品,在第二操作模式期间,所述压缩机运行,进给空气(1)的压力低于第一操作模式的压力,第一塔(100)在低于第一操作模式的压力下运行,没有液体被从塔系统提取出作为最终产品,或者从塔系统提取至多为第一操作模式期间的四分之一的液体,
其中,在第一操作模式和第二操作模式中,所述蒸发器-冷凝器(21)接收处于相同压力下的氮。
2.根据权利要求1所述的方法,其中,所述富氧流体(43)含有至少97%的氧。
3.根据权利要求1或2所述的方法,其中,从第一塔(100)传送到第二塔(102)的富含氮的液体的氮含量小于被传送到蒸发器-冷凝器的富含氮的气体。
4.根据权利要求1或2所述的方法,其中,在蒸发器-冷凝器(21)中冷凝的所有气体作为回流被送回到第一塔(100)。
5.根据权利要求1或2所述的方法,其中,来自步骤vi)的富氧流体(43)是富氧气体。
6.根据权利要求5所述的方法,其中,所述富氧气体(43)在交换管线中再加热之后被压缩到其生产压力。
7.根据权利要求1或2所述的方法,其中,从第二塔(102)提取出富含氩的气体并将其传送到第三塔(106)以便生成比所述富含氩的气体更加富含氩的流,并且从第一塔提取出富氮气体作为产品。
8.根据权利要求1或2所述的方法,其中,压缩机(19)由达和/或由使空气或来自塔系统的富含氮的气体膨胀的膨胀涡轮(27)驱动。
9.根据权利要求2所述的方法,其中,所述富氧流体(43)含有至少99%的氧。

说明书全文

用于通过低温蒸馏进行空气分离的方法和设备

技术领域

[0001] 本发明涉及用于通过低温蒸馏分离空气的方法和设备。所描述的发明特别提出一种用于优化生产高纯度(大于97%的O2)的空气分离单元的效率的解决方案。本文中所有与纯度有关的百分比都是摩尔百分比。
[0002] 为了使循环效率最大化,本发明提出冷压缩(即,在入口温度至多为-150℃的压缩机中对其进行压缩)从第一塔——称为中压(MP)塔——的顶部逸出、并被传送到蒸馏系统的主蒸发器-冷凝器(该主蒸发器-冷凝器热联接中压(MP)塔的顶部和第二塔——称为低压(LP)塔——的底部)的氮气流。该冷压缩使得可以降低主空气压缩机的排出压。氮气可以在不在交换管线中再加热的情况下被压缩,否则,其可以在主交换管线中被压缩之前部分地在交换管线中被再加热,然后可选地在被传送至蒸发器-冷凝器之前再次冷却。
[0003] 所设想的应用是包括生产纯氧的一个或多个空气分离单元的设备。

背景技术

[0004] 已知使用冷压缩机加热待用于低压空气分离塔的底部蒸发器-冷凝器的氮。在现有技术中,来自中压塔的氮的另一部分被用于蒸发来自中压塔的富含氧的液体或者加热低压塔的中间蒸发器。
[0005] 在某些类型的应用中,用于耗氧客户的工艺可能需要处于低压或高压的高纯度(通常约为99.5%)。
[0006] 为了减小装置的电力消耗,可以寻求尽可能降低主压缩机的排出压力,在常规设计中并且不考虑压降,该排出压力对应于中压(MP)塔的压力。
[0007] 为此,考虑生产纯度>97%的氧(即,仅含有氧和氩,不再含有任何氮)的传统的双塔设计(可选地具有氩塔),其中用于保存设备低温所需的制冷通过低温涡轮中的空气或氮的膨胀提供。通常,对于这样的氧纯度,MP塔和低压(LP)塔之间的热交换通过单一蒸发器-冷凝器、即单元的主蒸发器-冷凝器提供。
[0008] 然后考虑冷压缩机的安装,该冷压缩机压缩在MP塔的顶部提取的所有氮流,这对于运行单元的主蒸发器-冷凝器是必需的。该冷压缩机的作用因此是使MP塔的压力与蒸发器-冷凝器中的氮的压力不相关,这使得可以将MP塔的压力降低至低于执行蒸发器-冷凝器中的氮和氧之间的热交换所需的压力。因此降低了主空气压缩机的压力。
[0009] 该优化仅能够从涡轮产生足够的制冷从而低温压缩机的使用不会阻止设备保持低温的时刻实现。特别地,低温液体(液态氧、氮、氩)的产生“消耗”可用的制冷并且因此降低低温压缩机的效果。
[0010] 还应指出,该装置可应用于现有的场地,其中现有的空气(和在适当的情况下氧)压缩机被重新利用,仅替换冷箱。该优化使得可以大大降低空气压缩机的操作压力,只要机器的性能曲线允许即可。
[0011] 传统的双塔不能使得通过将主蒸发器-冷凝器的压力与主压缩机的压力解除相关来降低主压缩机的压力。
[0012] 在其它设计中,冷压缩机处理意在用于上部蒸发器-冷凝器的氮,该蒸发器-冷凝器使LP塔的中间位置处的(氧)含量很高的液体(约70%O2)蒸发。LP塔底部的蒸发通过利用液态空气运行的第二蒸发器-冷凝器实现。氧的主要产量不是在由该低温压缩机供应的蒸发器的高度处提取。另外,该设计仅用于生产纯度小于97%的氧。
[0013] JP-A-54020986描述了一种用于在塔系统中通过低温蒸馏分离空气的方法,该塔系统至少包括在第一压力下运行的第一塔和在低于第一压力的第二压力下运行的第二塔,第一塔的顶部通过蒸发器-冷凝器热联接至第二塔的底部,在所述方法中:
[0014] i)经纯化的空气在交换管线中冷却并且被传送到第一塔以便在所述第一塔中分离,
[0015] ii)富含氮的气体被从第一塔的顶部提取出并分成两部分,第一部分在入口温度最高为-150℃的压缩机中被压缩并在蒸发器-冷凝器中冷凝,
[0016] iii)富含氮的气体的第二部分在交换管线中被再加热并在膨胀涡轮中膨胀,[0017] iv)富含氧的液体或从该富含氧的液体得到的液体被从第一塔的底部传送到第二塔以便在所述第二塔中分离,而没有与来自第一塔的富含氮的气体换热而被再加热,[0018] v)将富含氮的液体从第一塔的顶部传送到第二塔的顶部,
[0019] vi)富氧流体被从第二塔的底部提取出并在交换管线中被再加热,[0020] vii)富氮气体被从第二塔的上部部分提取出并在交换管线中被再加热,[0021] viii)所述蒸发器-冷凝器是使第二塔的下部部分中的液体蒸发的唯一装置。
[0022] 这里,在涡轮中膨胀的所有氮在冷压缩机中被压缩。但是,该方法的能量消耗比本发明的能量消耗高3%,并且该现有技术的方法还要求使用较大的压缩机。

发明内容

[0023] 根据本发明的一个主题,提供了一种用于在塔系统中通过低温蒸馏分离空气的方法,该塔系统至少包括在第一压力下运行的第一塔和在低于第一压力的第二压力下运行的第二塔,第一塔的顶部通过蒸发器-冷凝器热联接至第二塔的底部,在该方法中:
[0024] i)经纯化的空气在交换管线中冷却并且被传送至第一塔以便在该第一塔中分离,[0025] ii)富含氮的气体被从第一塔的顶部提取出并分成两部分,第一部分在入口温度至多为-150℃的压缩机中被压缩并在蒸发器-冷凝器中冷凝,
[0026] iii)富含氮的气体的第二部分在交换管线中被再加热并在膨胀涡轮中膨胀,[0027] iv)富含氧的液体或从该液体得到的液体被从第一塔的底部传送到第二塔以便在该第二塔中分离,而没有与来自第一塔的富含氮的气体换热而被再加热,[0028] v)将富含氮的液体从第一塔的顶部传送到第二塔的顶部,
[0029] vi)富氧流体被从第二塔的底部提取出并在交换管线中被再加热,[0030] vii)富氮气体被从第二塔的上部部分提取出并在交换管线中被再加热,[0031] viii)该蒸发器-冷凝器是用于蒸发第二塔的下部部分中的液体的唯一装置,[0032] 其特征在于,富含氮的气体的所述第二部分在交换管线中被再加热和在涡轮中膨胀,而没有被压缩。
[0033] 根据其它可选的主题:
[0034] -富氧流体含有至少97%的氧,或者甚至至少99%的氧。
[0035] -来自步骤v)的富氧流体是液体,该液体在交换管线中蒸发和被再加热。
[0036] -蒸发的液体在交换管线中预热之后被压缩。
[0037] -从第一塔传送至第二塔的富含氮的液体的氮含量小于被传送至蒸发器-冷凝器的富含氮的气体。
[0038] -在蒸发器-冷凝器中冷凝的所有气体作为回流被送回到第一塔。
[0039] -来自步骤v)的富氧流体是富氧气体。
[0040] -富氧气体在交换管线中再加热之后被压缩到其生产压力。
[0041] -从第二塔提取出富含氩的气体并将其传送到第三塔以便生成比该富含氩的气体更加富含氩的流,并且从第一塔提取出富氮气体作为产品。
[0042] -压缩机由达和/或由使来自塔系统的空气或富含氮的流膨胀的涡轮驱动。
[0043] -在第一操作/运行模式期间,压缩机停机,并且至少一种液体被从塔系统提取出作为最终产品,在第二操作模式期间,压缩机运行,没有液体被从塔系统提取出作为最终产品,或者比在第一操作模式期间少至少三倍的液体被提取出。
[0044] -仅在电价低于阈值时使用第一操作模式,并且仅在电价高于该阈值时使用第二操作模式。
[0045] 根据本发明的另一主题,提供了一种用于通过低温蒸馏分离空气的设备,该设备包括:塔系统,该塔系统至少包括在第一压力下运行的第一塔和在低于第一压力的第二压力下运行的第二塔,第一塔的顶部通过蒸发器-冷凝器热联接至第二塔的底部;交换管线;用于将待冷却的经纯化的空气传送到交换管线并用于将冷却的空气传送到第一塔以便在第一塔中分离的装置;用于从第一塔的顶部提取富含氮的气体的装置;入口温度至多为-
150℃的用于压缩富含氮的气体的第一部分的压缩机;用于将富含氮的气体的第二部分传送到交换管线的装置;用于使富含氮的气体的第二部分膨胀的涡轮,该涡轮连接至交换管线;用于将待冷凝的压缩气体传送到蒸发器-冷凝器的装置;用于将富含氧的液体或从该液体得到的液体从第一塔的底部传送到第二塔以便在第二塔中分离的装置;用于将富含氮的液体从第一塔的顶部传送到第二塔的顶部的装置;用于从第二塔的底部提取富氧流体的装置;用于将待被再加热的富氧流体传送到交换管线的装置;用于从第二塔的上部部分提取富氮气体的装置;用于将待被再加热的提取的气体传送到交换管线的装置;用于与来自第一塔的富氮气体作用而再加热送往第二塔的富氧液体的任何装置,并且该蒸发器-冷凝器是用于使第二塔的下部部分中的液体蒸发的唯一装置。
[0046] 根据其它可选的主题,该设备包括:
[0047] -用于在第一塔的比被传送到蒸发器-冷凝器的富含氮的气体低的高度处提取被从第一塔传送到第二塔的富含氮的液体的装置。
[0048] -用于将在蒸发器-冷凝器中冷凝的所有气体作为回流传送到第一塔的装置。
[0049] -富氧流体是富氧气体。
[0050] -所述设备包括用于在交换管线中再加热所述富氧气体之后将所述富氧气体压缩到其生产/产品压力的氧压缩机。
[0051] -所述设备包括:第三塔;用于将富含氩的气体从第二塔传送到第三塔的装置;用于从第三塔抽取比所述富含氩的气体更富含氩的流的装置;和用于从第一塔提取富氮气体作为产品的装置。
[0052] -压缩机由马达和/或由使空气或来自塔系统的富含氮的流膨胀的涡轮驱动。附图说明
[0053] 下面将参照示出根据本发明的方法的附图详细说明本发明。

具体实施方式

[0054] 在图1中,塔系统仅包括双塔,该双塔具有第一塔100和在低于第一塔的压力下运行的第二塔102。这两个塔仅通过第二塔的底部冷凝器21集成在一起,底部冷凝器21由来自第一塔100、在冷压缩机19中压缩之后的塔顶氮气17加热。
[0055] 处于第一塔的压力下的空气流1在热交换器9中冷却后供应到第一塔。
[0056] 富含氧的液体35在过冷器104中冷却之后被从第一塔的底部传送到第二塔。富含氮的液体37被从第一塔传送到第二塔102的顶部。富氮气体41在过冷器104中并且然后在交换器9中被再加热。
[0057] 包含至少97%的氧的富氧液体43被从第二塔102的底部提取出,在第二塔的压力下在交换器45中蒸发,然后在压缩机47中被压缩。
[0058] 从第一塔100的顶部抽取的氮气的一部分17在未被再加热的情况下在压缩机19中被压缩,然后在底部蒸发器-冷凝器21中冷凝。
[0059] 氮气的剩余部分23在交换器9中被再加热到该交换器的一中间温度、在涡轮27中膨胀、从该交换器的冷端到热端被再加热以便形成富氮气体。
[0060] 与图1不同,图2包括氩塔106,该氩塔用于分离第二塔中存在的氩并由此改进氧的纯度或者使得能够从中压塔的顶部提取更多的氮,这可以使得用于冷压缩机的可用制冷最大化。塔106被供给以富含氩的流31并生产液体流33,液体流33被送回第二塔。该氩塔具有通常被液体35的一部分(未示出)冷却的塔顶冷凝器。富含氩的气体39与富氮气体41混合以便形成废物。
[0061] 两股空气流被送到交换器9,流1分成流3和流7。流3处于第一塔的压力下并以气态形式进入该塔。流7在增压器5中增压至一较高压力、在交换器中冷却、然后在蒸发器11中冷凝,液态氧在蒸发器11中蒸发以形成气态氧45。
[0062] 图3与图2的区别之处在于,气态氧在交换器9的下游不被压缩。液态氧的一部分51用作液态产品,其余部分43被传送到辅助塔108的顶部,该辅助塔具有底部再沸器121但是没有塔顶冷凝器。空气7被用于加热辅助塔108的底部再沸器121。将用作产品的气态氧57被从辅助塔108的顶部提取出并用作气态产品57。底部液体富含氪-氙并且可用于生产这些气体。
[0063] 可以用两种操作模式执行这三个附图中的方法。根据第一操作模式,压缩机19停机,空气1的压力增加使得再沸器21接收处于塔100的压力下的氮并且从塔系统提取至少一种液体作为最终产品(例如液态氧51和/或液态氮38)。在第二操作模式期间,塔100在低于第一操作模式的压力下运行。压缩机19运行并且没有液体被从塔系统提取出作为最终产品或者从塔系统提取比第一操作模式期间少至少三倍的液体(即,从塔系统提取至多为第一操作模式期间的四分之一的液体)。因此,在两种操作模式中用于加热再沸器21的氮处于相同的压力下。
QQ群二维码
意见反馈