协调非需求发动机启停与换挡

申请号 CN201610168296.7 申请日 2016-03-23 公开(公告)号 CN106004854A 公开(公告)日 2016-10-12
申请人 福特全球技术公司; 发明人 伯纳德·D·内佛西; 丹尼尔·斯科特·科尔文; 马修·约翰·谢尔顿; 马克·斯蒂芬·耶马扎基; 马文·保罗·克拉斯卡;
摘要 本 发明 涉及协调非需求 发动机 启停与换挡。提供一种用于混合动 力 车辆的在低的驾驶员需求或减小的驾驶员需求期间增强驾驶性能的控制策略。在 变速器 换挡和发动机的停止或(非需求)启动之间的协调可增强驾驶性能。车辆包括 马 达/发 电机 ,所述马达/发电机的一侧选择性地结合到发动机,另一侧选择性地结合到变速器。当在驾驶员需求减小且需求变速器换挡的同时发动机启动或停止被 请求 时,所述控制策略起作用。为了禁止这些事件同时进行,控制策略延迟发动机启动或停止直到变速器已经完成换挡为止,反之亦然。
权利要求

1.一种车辆,包括:
发动机
电机
离合器,被布置为选择性地结合发动机和电机;
变速器,选择性地结合到电机;
控制器,被配置为在变速器正在减挡的同时响应于接收到的使离合器分离以将发动机从电机分离的命令,延迟分离离合器直到所述减挡完成为止。
2.根据权利要求1所述的车辆,其中,所述控制器被进一步配置为:保持离合器处于位置直到所述减挡完成为止。
3.根据权利要求2所述的车辆,其中,所述控制器被进一步配置为:响应于所述减挡完成,解锁离合器。
4.根据权利要求1所述的车辆,其中,所述控制器被进一步配置为:保持离合器处于锁止状态直到所述减挡完成为止。
5.根据权利要求4所述的车辆,其中,所述控制器被进一步配置为:响应于所述减挡完成,解锁离合器。
6.根据权利要求1所述的车辆,其中,所述控制器被配置为延迟分离离合器持续预定时间。

说明书全文

协调非需求发动机启停与换挡

技术领域

[0001] 本公开总体上涉及在混合动车辆中协调发动机运行与换挡。更具体地,本公开涉及在串-并联混合动力车辆中禁止非需求发动机启动或停止直到换挡完成为止,反之亦然。

背景技术

[0002] 混合动力电动车辆包括用于向车轮提供驱动扭矩的发动机和至少一个电机(达/发电机)。混合动力电动车辆有多种类型。例如,“并联”混合动力车辆通常包括离合器,所述离合器选择性地启用发动机和马达两者或其中之一以提供驱动扭矩。“串联”混合动力车辆通常包括电动马达和发动机,所述电动马达总是可驱动地连接到车轮,所述发动机非机械地连接到车轮。换句话说,发动机不提供推进车辆所需的任何扭矩。相反,在串联混合动力车辆中,发动机为发电机提供动力以产生电能,所述电能存储在电池中和/或由马达使用。“串-并联”混合动力利用串联混合动力和并联混合动力两者的优势。离合器将发动机从电机分离,所述电机可沿着共同的空间轴线布置。这允许电机仍可单独推进车辆,还允许连接发动机并推进车辆以及可选地在推进车辆的同时给电机充电。
[0003] 例如,串-并联混合动力可提供能够以多个驱动模式运转的好处。在电动模式中,电机单独推进车辆。在发动机模式中,发动机单独推进车辆。在混合动力模式中,两种动力源推进车辆。在再生模式中,发动机能够从电机分离,或者如果发动机与电机连接则发动机被布置为消耗尽可能少的燃料或者不消耗燃料。如果连接,则发动机将通过将机械运动转化成损失来使车辆减速,同时电机将机械运动转化成电能储存在电池中。
[0004] 在这样的混合动力车辆中,具有用于电动模式的换挡计划、用于混合动力模式的换挡计划和用于再生模式的换挡计划。对于各自的驱动模式,每个换挡计划试图将电机、发动机或两者置于最高效或最佳的动力运转点。在变速器的松开加速踏板换挡(tip-out shift)期间,由于一些与驾驶员动作无关的其它事件(诸如,电池的荷电状态是耗尽或是饱满),车辆状态可从电动模式转换到混合动力模式,或从电动模式转换到再生模式,或从混合动力模式转换到电动模式。同时发生的发动机启动/停止或变速器换挡会降低驾驶性能。发明内容
[0005] 根据一个实施例,一种车辆包括发动机、电机和被布置为选择性地结合发动机和电机的离合器。车辆还包括选择性地结合到电机的变速器。车辆中的控制器被配置为:在变速器正在减挡的同时响应于接收到的使离合器分离以将发动机从电机分离的命令,延迟分离离合器直到所述减挡完成为止。
[0006] 电机可运转为推进车辆的马达,或者运转为从旋转运动产生电能的发电机。
[0007] 在另一个实施例中,一种车辆包括发动机、选择性地机械地结合到发动机的马达/发电机以及选择性地机械地结合到电机的变速器。车辆中的控制器被配置为:在驾驶员需求正在减小并且需求变速器的换挡的同时响应于接收到的启动发动机的请求,延迟对变速器进行换挡直到发动机已经启动为止。
[0008] 根据本发明,提供一种车辆,所述车辆包括:发动机;马达/发电机,选择性地机械地结合到发动机;变速器,选择性地机械地结合到电机;控制器,被配置为在驾驶员需求正在减小并且需求变速器的换挡的同时响应于接收到的启动发动机的请求,延迟对变速器进行换挡直到发动机已经启动为止。
[0009] 根据本发明的一个实施例,所述车辆还包括电结合到马达/发电机的电池,其中,启动发动机的请求基于电池的荷电状态。
[0010] 根据本发明的一个实施例,所述控制器进一步被配置为:响应于发动机被启动,命令输出大小超过驾驶员需求的发动机扭矩并将过量的发动机扭矩经由马达/发电机转化成电能。
[0011] 根据本发明的一个实施例,所述车辆还包括被配置为机械地结合发动机和马达/发电机的离合器,其中,所述控制器被进一步配置为在驾驶员需求正在减小的同时,命令增加马达/发电机的扭矩输出并接合离合器以启动发动机。
[0012] 根据本发明的一个实施例,所述换挡是减挡。
[0013] 根据本发明的一个实施例,所述控制器被进一步配置为延迟对变速器进行换挡直到预定的时间段已经到期为止。
[0014] 在又一个实施例中,提供一种控制动力传动系统的方法,所述方法包括:当减小的驾驶员需求引起需求的换挡时,响应于引起启动选择性地结合到电机的发动机的请求的牵引电池的荷电状态下降到低于阈值,增加在选择性地结合到电机的变速器的需求的换挡和变速器的实际的换挡之间的时间。
[0015] 根据本发明的一个实施例,所述换挡是减挡。
[0016] 根据本发明的一个实施例,所述方法还包括:响应于发动机被启动,对变速器进行减挡。
[0017] 根据本发明的一个实施例,所述方法还包括:响应于发动机被启动,使发动机扭矩增加到超过驾驶员需求的大小,并将过量的发动机扭矩经由电机转换成电能。
[0018] 根据本发明的一个实施例,所述控制器进一步被配置为延迟变速器的减挡持续预定时间。
[0019] 根据本发明的一个实施例,所述换挡是加挡。附图说明
[0020] 图1是使用在此描述的控制策略的混合动力车辆的一个实施例的示意图。
[0021] 图2是示出了用于禁止变速器换挡直到非需求发动机启动或停止完成为止的控制策略的流程图
[0022] 图3是示出了用于禁止发动机停止或启动直到变速器的换挡完成为止的控制策略的流程图。

具体实施方式

[0023] 在此描述本公开的实施例。然而,应理解的是,公开的实施例仅为示例并且其它实施例可以采用各种和替代的形式。附图不一定按比例绘制;可夸大或最小化一些特征以显示特定组件的细节。因此,在此所公开的具体结构和功能细节不应被解释为限制,而仅作为用于教导本领域技术人员以各种形式使用实施例的代表性基础。如本领域普通技术人员将理解的,参照任一附图示出和描述的各种特征可与在一个或更多个其它附图中示出的特征相组合,以产生未明确示出或描述的实施例。示出的特征的组合为典型应用提供代表性实施例。然而,与本公开的教导一致的特征的各种组合和变型可被期望用于特定应用或实施方式。
[0024] 参照图1,示出了根据本公开的实施例的混合动力电动车辆(HEV)10的示意图。图1示出了组件之间的代表性关系。组件在车辆中的物理布局和定向可改变。HEV 10包括动力传动系统12。动力传动系统12包括驱动传动装置16的发动机14,所述传动装置16可被称为模化混合动力传动装置(MHT)。如下文将要进一步详细描述的,传动装置16包括诸如电动马达/发电机(M/G)18的电机、关联的牵引电池20、变矩器22以及多阶梯传动比自动变速器齿轮箱24。
[0025] 发动机14和M/G 18均是HEV 10的驱动源。发动机14通常代表可以包括内燃发动机(诸如,汽油、柴油或天然气驱动的发动机)或燃料电池的动力源。发动机14产生发动机功率以及当发动机14和M/G 18之间的分离离合器26至少部分地接合时供应给M/G 18的对应的发动机扭矩。M/G 18可以由多种类型的电机中的任意一种实现。例如,M/G 18可以是永磁同步马达。如下文将要描述的,电力电子器件将由电池20提供的直流(DC)电力调节至符合M/G 18的要求。例如,电力电子器件可以向M/G 18提供三相交流电(AC)。
[0026] 当分离离合器26至少部分地接合时,动力可以从发动机14流到M/G 18或者从M/G 18流到发动机14。例如,分离离合器26可接合且M/G 18可运转为发电机以将曲轴28和M/G轴
30提供的旋转能转换成电能储存在电池20中。分离离合器26也可分离以将发动机14与动力传动系统12的剩余部分隔离,使得M/G 18能够作为HEV 10的唯一驱动源。轴30延伸通过M/G 
18。M/G 18持续地可驱动地连接到轴30,而发动机14只有当分离离合器26至少部分地接合时才可驱动地连接到轴30。
[0027] M/G 18经由轴30连接到变矩器22。因此,当分离离合器26至少部分地接合时,变矩器22连接到发动机14。变矩器22包括固定到M/G轴30的轮和固定到变速器输入轴32的涡轮。由此,变矩器22在轴30和变速器输入轴32之间提供液力耦合。当泵轮旋转得比涡轮快时,变矩器22将动力从泵轮传递到涡轮。涡轮扭矩和泵轮扭矩的大小通常取决于相对转速。当泵轮转速与涡轮转速的比值足够高时,涡轮扭矩是泵轮扭矩的倍数。还可设置变矩器旁通离合器34,变矩器旁通离合器34在接合时摩擦地或机械地结合变矩器22的泵轮和涡轮,允许更高效的动力传递。变矩器旁通离合器34可被运转为起步离合器以提供平稳的车辆起步。可替代地或组合地,对于不包括变矩器22或变矩器旁通离合器34的应用,可以在M/G 18和齿轮箱24之间提供类似于分离离合器26的起步离合器。在一些应用中,分离离合器26通常称为上游离合器而起步离合器34(可以是变矩器旁通离合器)通常称为下游离合器。
[0028] 齿轮箱24可以包括通过摩擦元件(诸如,离合器和制动器(未示出))的选择性接合而选择性地置于不同齿轮比以建立期望的多个离散或阶梯传动比的齿轮组(未示出)。可以通过连接和分离齿轮组的特定元件以控制变速器输出轴36和变速器输入轴32之间的传动比的换挡计划来控制摩擦元件。齿轮箱24基于各种车辆和环境工况通过关联的控制器(诸如,动力传动系统控制单元(PCU))从一个传动比自动换挡至另一个传动比。齿轮箱24随后将动力传动系统输出扭矩提供至输出轴36。
[0029] 应理解的是,与变矩器22一起使用的液压控制的齿轮箱24仅是齿轮箱或变速器布置的一个示例;用于本公开的实施例的从发动机和/或马达接受输入扭矩并随后以不同的传动比将扭矩提供至输出轴的任何多传动比齿轮箱是可以接受的。例如,齿轮箱24可以通过包括沿换挡拨叉轴平移/旋转换挡拨叉以选择期望的齿轮比的一个或更多个伺服马达的自动机械式(或手动)变速器(AMT)进行实施。如本领域普通技术人员通常理解的,例如在具有较高扭矩需求的应用中可以使用AMT。
[0030] 如图1中的代表性实施例所示,输出轴36连接至差速器40。差速器40经由连接至差速器40的相应的车桥44驱动一对车轮42。差速器向每个车轮42传输大约相等的扭矩,同时允许轻微的转速差异(诸如,当车辆转弯时)。可以使用不同类型的差速器或类似的装置将扭矩从动力传动系统分配至一个或更多个车轮。在一些应用中,例如取决于特定的运转模式或状况,扭矩分配可以变化。
[0031] 动力传动系统12进一步包括关联的控制器50,诸如动力传动系统控制单元(PCU)。虽然被示出为一个控制器,但控制器50可以是更大的控制系统的一部分并且可以通过整个车辆10中的各种其它控制器(诸如,车辆系统控制器(VSC))控制。所以,应理解,动力传动系统控制单元50和一个或更多个其它控制器可以统称为“控制器”,所述“控制器”响应于来自各种传感器信号而控制各种致动器以控制多种功能,诸如启动/停止发动机14、运转M/G 
18以提供车轮扭矩或给电池20充电、选择或计划变速器换挡等。控制器50可包括与各种类型的计算机可读存储装置或介质通信的微处理器中央处理器(CPU)。例如,计算机可读存储装置或介质可包括只读存储器(ROM)、随机存取存储器(RAM)和保活存储器(KAM)中的易失性和非易失性存储器。KAM是可以用于在CPU掉电时存储各种操作变量的持久或非易失性存储器。计算机可读存储装置或介质可以使用任意数量的已知存储装置实施,诸如PROM(可编程只读存储器)、EPROM(电可编程只读存储器)、EEPROM(电可擦除可编程只读存储器)、闪存或能存储数据的任何其它电、磁性、光学或组合的存储装置,这些数据中的一些代表由控制器使用以控制发动机或车辆的可执行指令。
[0032] 控制器经由输入/输出(I/O)接口与各种发动机/车辆传感器和致动器通信,所述输入/输出(I/O)接口可以实施为提供各种原始数据或信号调节、处理和/或转换、短路保护等的单个集成接口。可替代地,在将特定的信号提供至CPU之前,一个或更多个专用硬件固件芯片可以用于调节和处理该特定的信号。如图1中的代表性实施例总体上示出的,控制器50可以将信号发送至发动机14、分离离合器26、M/G 18、起步离合器34、传动装置齿轮箱24和电力电子器件56和/或发送来自发动机14、分离离合器26、M/G 18、起步离合器34、传动装置齿轮箱24和电力电子器件56的信号。尽管未明确示出,但是本领域的普通技术人员将认识可以通过控制器50控制的在上文指出的每个子系统内的各种功能或组件。可使用通过控制器执行的控制逻辑直接或间接致动的参数、系统和/或组件的代表性示例包括燃料喷射正时、速率和持续时间、节气位置、(用于火花点火式发动机的)火花塞点火正时、进气/排气门正时和持续时间、前端附件驱动(FEAD)组件(诸如,交流发电机)、空调压缩器、电池充电、再生制动、M/G运转、用于分离离合器26和起步离合器34以及传动装置齿轮箱24的离合器压力等。例如,通过I/O接口传输输入的传感器可以用于指示涡轮增压增压压力、曲轴位置(PIP)、发动机转速(RPM)、车轮转速(WS1、WS2)、车速(VSS)、冷却液温度(ECT)、进气歧管压力(MAP)、加速踏板位置(PPS)、点火开关位置(IGN)、节气门位置(TP)、空气温度(TMP)、排气(EGO)或其它排气成分浓度或存在、进气流量(MAF)、变速器挡位、传动比或模式、变速器油温(TOT)、传动装置涡轮转速(TS)、变矩器旁通离合器34状态(TCC)、减速或换挡模式(MDE)。
[0033] 可以通过一个或更多个附图中的流程图或类似图表来表示通过控制器50执行的控制逻辑或功能。这些附图提供可以使用一个或更多个处理策略(诸如,事件驱动、中断驱动、多任务、多线程等)执行的代表性控制策略和/或逻辑。这样,示出的各个步骤或功能可以以示出的序列执行、并行执行或在某些情况下省略。尽管没有总是明确地示出,但是本领域内的普通技术人员将认识到,根据使用的特定处理策略,可以反复执行一个或更多个示出的步骤或功能。类似地,处理顺序对于实现在此描述的特征和优点并非必需的,而是为了便于示出和描述才提供的。可以主要在通过基于微处理器的车辆、发动机和/或动力传动系统控制器(诸如,控制器50)执行的软件中执行控制逻辑。当然,根据特定应用,可以以在一个或更多个控制器中的软件、硬件或者软件和硬件的结合来执行控制逻辑。当在软件中执行时,可以在存储有代表通过计算机执行以控制车辆或其子系统的代码或指令的数据的一个或更多个计算机可读存储装置或介质中提供控制逻辑。计算机可读存储装置或介质可以包括利用电、磁和/或光学存储器以保持可执行指令和关联的校准信息、操作变量等的许多已知物理装置中的一个或更多个。
[0034] 车辆的驾驶员使用加速踏板52提供需求的扭矩指令、功率指令或驱动指令以推进车辆。通常,踩下和释放踏板52产生加速踏板位置信号,所述加速踏板位置信号可以分别被控制器50解读为增加功率或减小功率的需求。至少基于来自踏板的输入,控制器50命令来自发动机14和/或M/G 18的扭矩。控制器50还控制齿轮箱24内的换挡的正时以及分离离合器26和变矩器旁通离合器34的接合或分离。与分离离合器26类似,可在接合位置和分离位置之间的范围内调节变矩器旁通离合器34。除泵轮和涡轮之间的液力耦合产生的可变打滑之外,这也在变矩器22中产生可变打滑。可替代地,根据特定应用,变矩器旁通离合器34可以运转为止或打开而不使用调节的运转模式。
[0035] 为了通过发动机14驱动车辆,分离离合器26至少部分地接合以将至少一部分发动机扭矩通过分离离合器26传输至M/G 18并且再从M/G 18传输通过变矩器22和齿轮箱24。当发动机14单独提供推进车辆的必要扭矩时,该运转模式可称为“发动机模式”、“纯发动机模式”或“机械模式”。
[0036] M/G 18可以通过提供使轴30转动的额外动力而辅助发动机14。该运转模式可称为“混合动力模式”、“发动机-马达模式”或“电动辅助模式”。
[0037] 为了利用M/G 18作为唯一动力源驱动车辆,除了分离离合器26将发动机14与动力传动系统12的剩余部分隔离开之外,动力流动保持相同。这段时间期间可以禁用或者关闭发动机14中的燃烧以节省燃料。例如,牵引电池20通过线路54将存储的电能传输至可以包括逆变器的电力电子器件56。电力电子器件56将来自电池20的DC电压转换成AC电压以供M/G 18使用。控制器50命令电力电子器件56将来自电池20的电压转换成提供至M/G 18的AC电压,以将正的或负的扭矩提供至轴30。该运转模式可称为“纯电动模式”、“EV(电动车辆)模式”或“马达模式”。
[0038] 在任何运转模式中,M/G 18可以作为马达运转并且为动力传动系统12提供驱动力。或者,M/G 18可以作为发电机运转并且将来自动力传动系统12的动能转换成电能存储在电池20中。例如,在发动机14为车辆10提供推进动力的同时,M/G 18可作为发电机。此外,在来自旋转的车轮42的旋转能回传通过齿轮箱24并转换成电能存储在电池20中的再生制动的时间期间,M/G 18还可作为发电机。
[0039] 应理解图1中示出的示意图仅仅是示例并且不意味着限制。可以设想利用发动机和马达两者的选择性接合以通过传动装置进行传输的其它配置。例如,M/G 18可以相对曲轴28偏置、可以提供额外的马达来启动发动机14和/或可以在变矩器22和齿轮箱24之间设置M/G 18。在不脱离本公开的范围的情况下,可以设想其它配置。
[0040] 在高需求的情况下M/G 18输出必要扭矩的能力会被限制。例如,如果HEV以纯马达模式运转并且驾驶员增大加速踏板的踩压以指示需要更高的扭矩需求,则控制器50具有可用于增大实际驱动扭矩的选项。为了满足所需求的扭矩,控制器50可命令发动机14启动,使得车辆能够以混合动力模式或纯发动机模式运转。或者,控制器50可命令变速器24的减挡。控制器50可命令减挡和发动机启动两者,以尽快地将足够的扭矩提供通过传动系从而满足增加的驾驶员需求。这两个操作同时发生会使驾驶性能差。然而,在驾驶员需求的扭矩快速增加的时间期间,为了以准确、精确的扭矩输出来迅速地满足驾驶员需求,在一定程度上可牺牲驾驶性能。换句话说,在高的驾驶员需求扭矩的高增长的时间期间,匹配驾驶员的扭矩需求会是更重要的,而不是确保激活发动机时的平稳转换。
[0041] 在扭矩需求停滞或减小的时间期间,发动机14也可以被启动。这些发动机启动可称为“非需求启动”,是由于发动机被命令启动不是基于扭矩需求。在一个示例中,车辆可以以纯电动模式运转,造成电池20的荷电状态(SOC)下降。可请求非需求发动机启动,使得发动机14可提供所需要的驱动扭矩,同时M/G 18可将扭矩转化成电能储存在电池20中以对电池20再充电。
[0042] 此外,在驾驶员需求减小或停滞期间,可请求发动机停止。例如,控制器50可基于驾驶员提供的扭矩需求的减小,命令运转模式从混合动力模式改变到纯电动模式,从而关闭发动机14。
[0043] 当非需求发动机启动或发动机停止恰逢变速器的挡位变换时,驾驶性能会受到影响。因为在这些时间时需求减小或者需求相对较低,所以必须特别注重平稳性和驾驶性能。与上文描述的当驾驶员需求增大以使发动机启动或使变速器减挡时的情况相比,当驾驶员需求相对较低或正在减小时,车辆的驾驶员不会容忍不平稳性。
[0044] 根据本公开,提供一种用于混合动力车辆(诸如上文描述的一种)的控制策略。所述控制策略在低的驾驶员需求或驾驶员需求正在减小的期间,将增强驾驶性能。在变速器换挡和发动机的停止或(非需求)启动之间的协调可增强驾驶性能。
[0045] 参照图2,在100处示出了包括存储在存储器中并由控制器50实施的算法的处理或方法。在100处的处理可被实施为延迟变速器齿轮箱中换挡的开始直到非需求发动机启动或停止完成为止,使得两个事件不同时发生并且不会使驾驶性能下降。所述处理在102处开始。
[0046] 在104处,计划将发生非需求发动机启动或停止。例如,如上文解释的,所述非需求发动机启动不是基于驾驶员需求的增加而发生,而是作为电池需要额外充电的功能。在106处,控制器确定是否禁止发动机启动或发动机停止。这是从下面描述的步骤212和步骤218确定的。如果禁止发动机启动或发动机停止,则在108处,控制器将命令延迟发动机启动或停止。在110处,控制器确定发动机超时定时器(从下文描述的步骤212中确定)是否已经到期。如果定时器已经到期,则所述处理进行到步骤114,这将在下文描述。
[0047] 然而,如果发动机超时定时器还未到期,则所述处理循环回到步骤106,并确定是否仍命令禁止发动机启动或停止。一旦所述禁止不再存在(如下文在步骤218处确定的),则所述处理进行到控制器设置换挡超时定时器的112,所述换挡超时定时器在下文描述的步骤210中使用。此时变速器的换挡也可以被禁止,并且这个禁止直到下文描述的步骤118才被清除。这个禁止允许发动机启动/停止而不允许变速器换挡。
[0048] 为了说明这个,在步骤114处控制器命令非需求发动机启动或停止。步骤116示出了允许发动机启动或停止完成直到进行到换挡禁止被清除的步骤118的控制。换挡禁止(在步骤112中被激活)的清除允许变速器根据它的要求换挡动作的换挡计划而换挡。
[0049] 参照图3,在200处示出了包括存储在存储器中并由控制器50实施的算法的另一个处理或方法。在200处的处理被实施为延迟非需求发动机启动或停止直到换挡完成为止,使得两个事件不会同时发生并且不会使驾驶性能下降。所述处理在202处开始。
[0050] 在204处,计划将发生动力断开换挡(power-off shift)。换挡表可以基于加速踏板位置和变速器输出转速。或者,可使用驾驶员扭矩需求来替代加速踏板输入。当加速踏板位置或驾驶员扭矩需求与变速器输出转速结合时产生指示变速器换挡的信号。“动力断开”换挡意味着在加速踏板被抬升(即,在释放加速踏板期间)时发生的换挡。例如,动力断开换挡可以是在驾驶员滑行并在不使用制动的情况下允许车辆减速时发生的减挡。这些换挡与“动力接通”换挡(“power-on”shift)相反,在动力接通换挡中,响应于踩下或下压加速踏板位置来计划换挡。无论发动机开启还是关闭,这两种类型的换挡均可发生。
[0051] 基于被计划发生的动力断开换挡,所述处理进行到步骤206。在206处,控制器确定动力断开换挡是否被禁止。这可从上文的步骤106、118中确定。如果换挡被禁止,则控制器将在208处命令延迟变速器的换挡。在210处,控制器确定换挡超时定时器(在上文描述的步骤112处设置)是否已经到期。如果该定时器已经到期,则所述处理进行到将在下文描述步骤214。
[0052] 然而,如果换挡定时器还未到期,则所述处理循环回到步骤206,并确定是否仍命令禁止动力断开换挡。一旦该禁止不再存在(如上文在步骤118处确定的),所述处理进行到控制器设置发动机超时定时器的212,所述发动机超时定时器在上文描述的评估步骤110中使用。此时启动和停止发动机也可被禁止,并且这个禁止直到下文描述的步骤218才被清除。这个禁止允许变速器换挡而不允许发动机启动或停止。
[0053] 为了说明这个,在步骤214处,控制器命令变速器换挡。步骤216示出了允许换挡完成直到进行到发动机启动或停止禁止被清除的步骤218的控制。发动机启动/停止禁止(在步骤212中被激活)的清除允许变速器根据它的要求换挡动作的换挡计划来换挡。
[0054] 如上所述,图2示出了用于禁止变速器换挡直到非需求发动机启动或停止完成并且所述禁止被清除为止的控制策略。图3示出了用于禁止发动机实现启动或停止直到换挡完成并且所述禁止被清除为止的控制策略。虽然示出了两个独立的控制策略,但应理解,这些控制策略是用于禁止发动启动/停止与变速器换挡同时发生的整个系统的一部分。由于一个策略中的许多步骤确定另一个策略的必要信息,因此两个控制策略彼此通信。
[0055] 还应理解,在112处的换挡超时定时器或在212处的发动机超时定时器可设置到允许一个暂时事件(例如,减挡)发生而不同时命令另一个暂时事件(例如,非需求发动机启动)的任何预定时间。所述定时器还可以是与挡位相关的,或者是基于其它模式(例如,扭矩、转速等)的。例如,所述定时器可被设置为十分之一秒的任意增量,诸如0.5或0.6秒。
[0056] 在此公开的处理、方法或者算法可以交付到可包括任何现有的可编程电子控制单元或专用的电子控制单元的处理装置、控制器或计算机,或者可以由这些处理装置、控制器或计算机来实施。同样地,可以以多种形式将所述处理、方法或算法存储为可通过控制器或计算机执行的数据和指令,所述形式包括但不限于永久性存储在非可写存储介质(诸如ROM装置)上的信息以及可改变地存储在可写存储介质(诸如软盘、磁带、CD、RAM装置及其他磁性和光学介质)上的信息。所述处理、方法或算法也可以实现为软件可执行对象。或者,所述处理、方法或算法也可以使用合适的硬件组件(诸如,专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机、控制器或其他硬件组件或装置)或者硬件、软件和固件组件的组合来全部地或部分地实现。
[0057] 虽然上面描述了示例性实施例,但是并不意味着这些实施例描述了权利要求所包含的所有可能的形式。说明书中使用的词语为描述性词语而非限制,并且应理解的是,在不脱离本公开的精神和范围的情况下,可作出各种改变。如之前所描述的,可组合各个实施例的特征以形成本发明的可能未被明确示出或描述的进一步的实施例。虽然各个实施例可能已被描述为提供优点或在一个或更多个期望的特性方面优于其他实施例或现有技术实施方式,但是本领域的普通技术人员应该认识到,根据特定应用和实施方式,一个或更多个特征或特性可被折衷以实现期望的整体系统属性。这些属性可包括但不限于成本、强度、耐久性、生命周期成本、市场性、外观、包装、尺寸、可维护性、重量、可制造性、易组装性等。因此,某种程度上被描述为在一个或更多个特性方面不如其他实施例或现有技术实施方式合意的实施例并不在本公开的范围之外,并且可以期望用于特定应用。
QQ群二维码
意见反馈