用于变速混合电动增压器组件的双比传动组件

申请号 CN201420192254.3 申请日 2014-03-14 公开(公告)号 CN203756329U 公开(公告)日 2014-08-06
申请人 伊顿公司; 发明人 R·P·本杰;
摘要 本实用新型提供一种 发动机 总成,其包括:具有电动 马 达 驱动轴 的电动马达;布置成通过第一 齿轮 组将转矩施加给发动机总成的 内燃机 的第一 离合器 ;和布置成通过第二齿轮组将转矩施加给发动机总成的 增压 器 的第二齿轮组。本实用新型还提供一种双比传动组件,包括布置成通过第一齿轮组将转矩从电动马达施加给内燃机的第一离合器;和布置成通过第二齿轮组将转矩从电动马达施加给 增压器 的第二离合器。
权利要求

1.一种发动机总成,其特征是,包括:
具有电动驱动轴的电动马达;
第一离合器,其布置成通过第一齿轮组将转矩施加给该发动机总成的内燃机;和第二离合器,其布置成通过第二齿轮组将转矩施加给该发动机总成的增压器。
2.如权利要求1所述的发动机总成,其特征是,该第一离合器构造成在第一组转速接合,并且该第二离合器构造成在第二组转速接合。
3.如权利要求2所述的发动机总成,其特征是,还包括在该第一组转速和该第二组转速之间的死区。
4.如权利要求2所述的发动机总成,其特征是,当该电动马达驱动轴的旋转方向改变时,该第一离合器进一步接合。
5.如权利要求1所述的发动机总成,其特征是,该第一齿轮组被优化以传递转矩。
6.如权利要求5所述的发动机总成,其特征是,该第二齿轮组被优化以传递转速。
7.如权利要求6所述的发动机总成,其特征是,该第一齿轮组提供5∶1的传动比
8.如权利要求7所述的发动机总成,其特征是,该第二齿轮组提供2∶1的传动比。
9.如权利要求1所述的发动机总成,其特征是,该第一齿轮组提供较高的传动比,而第二齿轮组提供较低的传动比。
10.一种双比传动组件,包括:
第一离合器,其布置成通过第一齿轮组将转矩从电动马达施加给内燃机;和第二离合器,其布置成通过第二齿轮组将转矩从电动马达施加给增压器
11.如权利要求10所述的双比传动组件,其特征是,该第一离合器构造成在第一组转速接合,并且第二离合器构造成在第二组转速接合。
12.如权利要求11所述的双比传动组件,其特征是,还包括在该第一组转速和该第二组转速之间的死区。
13.如权利要求11所述的双比传动组件,其特征是,当该电动马达的旋转方向改变时,该第一离合器再接合。
14.如权利要求10所述的双比传动组件,其特征是,该第一齿轮组被优化以传递转矩。
15.如权利要求14所述的双比传动组件,其特征是,该第二齿轮组被优化以传递转速。
16.如权利要求10所述的双比传动组件,其特征是,该第一齿轮组提供5∶1的传动比,该第二齿轮组提供2∶1的传动比。
17.如权利要求10所述的双比传动组件,其特征是,该第一齿轮组提供较高的传动比,而该第二齿轮组提供较低的传动比。

说明书全文

用于变速混合电动增压器组件的双比传动组件

[0001] 相关申请的交叉引用
[0002] 本申请要求于2013年3月15日提交的美国专利申请号No.61/786,449的优先权,其全部内容通过引用结合入本文。

技术领域

[0003] 本实用新型总体涉及一种包括增压器、电动达-发电机以及行星齿轮传动装置的增压器组件。

背景技术

[0004] 为了燃料经济性和成本降低,希望尺寸缩小的高能效发动机。较小的发动机提供的转矩小于较大的发动机。有时使用增压器来增大可从发动机获得的转矩。在低发动机转速下,当车辆操作员常常通过压下加速踏板请求较高的转矩时,增压器向发动机进气歧管提供增加的空气,从而增大空气压并由此允许发动机在较低的发动机转速下产生较大的转矩。。此外,由这种系统所需求的转矩可以根据系统的具体需求而变化。实用新型内容
[0005] 在一个方面,发动机包括:包括电动马达驱动轴的电动马达(电动机);第一离合器,其布置成通过第一齿轮组将转矩施加给发动机总成的内燃机;和第二离合器,其布置成通过第二齿轮组将转矩施加给发动机总成的增压器。
[0006] 在另一个方面,双比传动组件包括:第一离合器,其布置成通过第一齿轮组将转矩从电动马达施加给内燃机;和第二离合器,其布置成通过第二齿轮组将转矩从电动马达施加给增压器。
[0007] 在又一个方面,用于驱动内燃机和增压器的方法包括:在电动马达的第一转速下接合第一离合器,该第一离合器布置成通过第一齿轮组将转矩施加给发动机总成的内燃机;和在电动马达的第二转速下接合第二离合器,该第二离合器布置成通过第二齿轮组将转矩从电动马达施加给增压器的第二离合器。
[0008] 本实用新型的上述特征和优点以及其它特征和优点易于从下文结合附图对用于实施本实用新型的最佳模式的说明显而易见。

附图说明

[0009] 图1是根据本实用新型的一方面的增压器组件和发动机总成的示意性侧视图,其中增压器组件的壳体组件被部分地移除;
[0010] 图2是壳体组件内的图1的增压器组件的示意性侧视图;;
[0011] 图3是图2中沿线3-3的增压器组件的示意性截面图;
[0012] 图4是图3中沿线4-4的增压器组件的示意性截面图;
[0013] 图5是图4所示区域的增压器的一部分的示意图;
[0014] 图6是壳体组件的齿轮盖部分的端视图;
[0015] 图7是在齿轮盖部分内的增压器组件的一部分沿在图6中的线7-7的示意性截面图;
[0016] 图8是齿轮盖部分的示意性透视图;
[0017] 图9是壳体组件的出口壳体和出口管的示意性透视图;
[0018] 图10是壳体组件的出口壳体和出口管的示意性俯视图;
[0019] 图11是壳体组件的出口壳体和出口管的示意性侧视图;
[0020] 图12是沿图11中的线12-12的出口壳体和出口管的示意性截面图;
[0021] 图13是电动马达壳体部分的示意性端视图;
[0022] 图14是电动马达壳体部分的示意性透视图;
[0023] 图15是电动马达壳体部分的示意性俯视图;
[0024] 图16是形成制动器腔室的壳体的入口盖部分的示意性端视图;
[0025] 图17是沿图16中的线17-17的入口盖部分的示意性截面图;
[0026] 图18是入口盖部分的示意性透视图;
[0027] 图19是安装到图3中的带轮轴上的甩油环的示意性透视图;
[0028] 图20是与图6所示的齿轮盖部分相比齿轮盖部分的反面端视图;
[0029] 图21是根据本实用新型的另一个方面的具有包括出口壳体和出口管的出口部件的转子壳体部分的示意性截面图;
[0030] 图22是图21中具有出口壳体和出口管的出口部件的示意性透视图;
[0031] 图23是图2的转子壳体的示意性仰视图;
[0032] 图24是具有图21和22中的出口部件的增压器组件的示意性侧视图;
[0033] 图25是用于发动机总成的示例性传动系的示意图;
[0034] 图26是用于发动机总成的另一示例性传动系的示意图;
[0035] 图27是图26的示例性传动系的简化图。

具体实施方式

[0036] 在本文描述的多个示例性实施例中,两个传动系用来将电动马达-发电机与增压器和内燃机相联接。这允许电动马达-发电机在不同的工作模式期间诸如在内燃机起动期间、发动机增压期间以及能量储存装置的再生期间给内燃机提供最优的转矩。为了实现这个目的,传动系中的每一个可具有不同的传动比,从而允许电动马达-发电机提供的转矩被最优化。
[0037] 参照附图,其中不同附图中相似的附图标记表示相似的部件,图1示出了包括带有增压器12的增压器组件11的发动机总成10,所述增压器12与设置在发动机13的节气体16内的节流(这里也称为节气门14)串联布置。在空气流入发动机13的方向上,节气门体16位于进气歧管20内的气室18的上游。虽然增压器12被示出在空气流入发动机13的方向上位于节气门14的上游,但增压器12也可代替在空气流入发动机13的方向上位于节气门14的下游。也就是说,节气门14可以与增压器12的入口84连通,并且增压器12的出口可以直接与气室18连通。应当明白,增压器12也可以用于没有节气门的发动机,例如柴油机。
[0038] 增压器12可具有一组转子24,包括可以与第二转子28啮合的第一转子26(第二转子28在图3中可见)。转子26、28中的每一个具有多个凸。增压器12可以增加气室18上游的空气压力,推动更多空气进入发动机气缸,从而增大发动机动力用来通过变速器
22给驱动轴21提供动力。
[0039] 增压器12可以是固定排量增压器,例如罗茨式增压器,其每转输出固定体积的空气。增加的空气输出当被推入气室18时被加压。罗茨式增压器是容积式设备,因而不依赖转速来提高压力。转子26、28的每转由罗茨式增压器输送的空气体积是恒定的(例如,不会随转速而变化)。因而罗茨式增压器能够在低发动机和转子转速下来增大压力(其中增压器通过发动机提供动力),因为比起压缩机,罗茨式增压器更像一个。通过罗茨式增压器12传送的空气的压缩在增压器12的下游进行,从而增加在固定容积发动机气室18内的空气质量。可替换地,增压器12可以是压缩机,例如离心式增压器,其能够在空气通过增压器12时压缩空气,而利用压缩,因而输送到节气门体16的空气体积和在气室18中的空气压力取决于压缩机转速。
[0040] 增压器组件11包括具有太阳齿轮构件42,齿圈构件44以及支架构件46的行星齿轮传动装置41,所述支架构件可旋转地支承能够与齿圈构件44和太阳齿轮构件42两者啮合的一组小齿轮47。太阳齿轮构件42被称为第三构件,齿圈构件44被称为第一构件,且支架构件46被称为行星齿轮组41的第二构件。行星齿轮组41是一个简单的行星齿轮组。在其它实施例中,可以采用复杂的行星齿轮组。
[0041] 如图3所示,第一转子26在第一轴30上旋转并且具有多个凸角,所述多个凸角经由一组相互啮合的正时齿轮34、36与第二转子28的多个凸角相啮合。应当理解,转子26、28啮合是因为它们的凸角在转子26、28旋转时互相配合。然而,转子26、28的这些凸角彼此不接触。第二转子28在第二轴32上旋转。第二轴32通过一组相互啮合的正时齿轮34、
36由第一轴30驱动。具体地,第一齿轮34安装在第一轴30上以随第一转子26旋转。第二齿轮36安装在第二轴32上以随第二转子28旋转。第一齿轮34与第二齿轮36啮合。
[0042] 如图1所示,发动机13具有曲轴48,当电磁离合器55接合以连接安装在曲轴48上的带轮57以随曲轴48旋转时,曲轴48可以经带传动机构49与支架构件46可操作地连接。带轮57和曲轴48由此经皮带63与安装在带轮轴61上的带轮59驱动地连接以随带轮轴61旋转。带轮轴61连接到支架构件46以便以与支架构件46相同的转速随之旋转。
[0043] 离合器55是常闭式离合器,在常接合状态下,离合器组件具有与第二组片33接合的第一组片31,该第一组片31与曲轴48键连接,该第二组片33与离合器壳体35键连接,该离合器壳体35刚性地连接成随带轮57旋转。弹簧37将作用片38偏压向两组片31、33,以将离合器55维持在接合状态。线圈39被供能以产生磁力,以移动片38轴向一开离合器片31、33,从而克服弹簧37的偏压力,并由此使离合器55脱离接合。线圈39由控制系统选择性地供能,该控制系统包括可操作以向离合器55提供控制信号的系统控制器65,例如发动机控制器。控制器65也可操作地连接到马达控制器62,并连接到电磁制动器旁通阀70和节气门14,如文中所述。可以使用任何其它类型的离合器包括常开式离合器来代替离合器55。
[0044] 电动马达-发电机/发电机50可以通过传动系向齿圈构件44传递转矩或者从齿圈构件44接收转矩,所述传动系包括与第二齿轮构件54啮合的第一齿轮构件53。马达-发电机50具有可旋转马达轴52,所述马达轴具有安装在马达轴52上的第一齿轮构件53。第一齿轮构件53可与第二齿轮构件54啮合,所述第二齿轮构件可以是与齿圈构件44啮合的阶梯齿轮。太阳齿轮构件42随轴56旋转,所述轴通过半柔性联接件58连接到第一轴30,以使得太阳齿轮构件42以与增压器12的第一转子26相同的转速旋转。联接件58挠曲以吸收在第一轴30和与太阳齿轮构件42连接的轴56之间的扭转和轴向的振动。第一转子26的旋转经由相互啮合齿轮34、36使第二转子28旋转。
[0045] 马达-发电机50具有集成的电子马达控制器62,控制马达-发电机50作为马达或者作为发电机工作。当马达-发电机50作为马达工作时,它通过电缆66接收来自能量储存装置64例如电池的储存电能。控制器62可包括功率变换器,用于当能量从能量储存装置64流向马达-发电机50时将电能从直流电转换成交流电,并且当能量从马达-发电机50流向能量储存装置64时将电能从交流电转换成直流电。系统控制器65可以是一个操作地经由CAN总线或者类似结构连接到马达控制器62的发动机控制器,并且如这里所述,还被构造成控制离合器55的接合、制动器68的接合、节气门14的位置以及旁通阀70的位置。
[0046] 带传动装置49可以被称为发动机前前端辅助传动(FEAD)。一个或者多个车辆附件78可以在离合器55接合时由发动机曲轴48经由带传动装置49的带63被驱动,或者在离合器55未接合时由马达-发电机50驱动,例如如这里所述的在发动机起动/停止模式期间,制动器68接合以停止太阳齿轮42并且关闭发动机13。车辆附件78,例如发动机冷却剂泵或者空调压缩机可操作地连接到轴79,所述轴随着被带63驱动的带轮76旋转。
[0047] 太阳齿轮构件42连接成通过轴56、30经由联接件58与第一转子26共同旋转。制动器68可以通过系统控制器65控制,从而选择地将第一轴30压靠到增压器组件11的固定壳体组件80。具体地,制动器68是封装在壳体组件80的入口盖部分82的腔室69(图4所示)内的电磁制动器,以使得入口盖部分82支承制动器68。制动器68选择性地致动使得第一轴30压靠到入口盖部件82,如针对图4进一步所述。
[0048] 空气在转子26、28之间流过增压器组件11,即从入口盖部件82中的空气入口通道85的空气入口84(如图1示意性地所示),通过转子壳体部分90的空气入口孔84A(如图
21所示)流入空气出口通道88的空气出口86(最好如图23所示),所述空气出口通道由壳体组件80的转子壳体部分90部分地限定。转子壳体部分90径向上围绕转子26、28和轴30、32。轴30延伸到转子壳体部分90的轴向端之外进入入口盖部分82。旁通通道94的一部分92由入口盖部分82限定。旁通通道94也被称为旁通路径。旁通阀70支承在旁通通道94内并且当处于图1所示的闭合位置时基本上关闭旁通通道94。旁通阀70的位置是示意性的,并且旨在表示出其中通过通道94的空气流被阀70完全阻塞的位置。旁通阀
70可以通过控制器65来控制移动到图1所示的剖视图中的打开位置70A。当旁通阀70处于打开位置70A时,空气可以从空气入口部分84经过旁通通道94绕开转子26、28流到节气门体16,例如当不希望进行发动机增压时。
[0049] 图2和4示出了安装到转子壳体部分90上以围绕并且遮蔽行星齿轮传动装置41和齿轮构件53、54的齿轮盖部分95。马达-发电机50的马达壳体部分96安装到齿轮盖部分95。齿轮盖部分95和马达壳体部分96均是固定壳体组件80的部分。壳体组件80包括入口管97,其附接到入口盖部分82以延伸入口通道85。壳体组件80还包括附接到安装到转子壳体部分90的出口壳体99以延伸出口通道88的出口管98。出口管98通过连接到出口管98的附加管延伸部(未示出)可操作地连接到如图1所示的节气门体16。
[0050] 活塞在发动机气缸内的移动产生了真空,它推动空气通过气室18。当节气门14处于图1所示的相对闭合的位置时,由发动机13所产生的真空产生呈跨节气门14的压降形式的压力差。当节气门14移动到相对打开位置14A时,跨节气门14的压降被释放。然而,通过控制马达-发电机50,压力差可以被传递给转子26、28,从而在转子26、28上产生转矩,所述转矩可作为电能俘获在能量储存装置64中。
[0051] 也就是说,当节气门14处于相对打开位置14A时,从空气入口84到沿空气流方向位于节气门14上游的空气出口86形成跨增压器12的压力差。如下所述,节气门14和旁通阀70可以结合发动机13被选择地控制以提供多种不同的工作模式,例如向发动机气缸提供期望的进气压力,同时允许增压器12和马达-发电机50被用于给能量储存装置64提供再生的电能。被储存的电能可代替交流发电机用于给车辆电力系统和装置提供电力,和/或当马达-发电机50被控制用作马达时,给曲轴48提供转矩。
[0052] 具有增压器组件11的发动机总成10能够实现多种不同工作模式,这些工作模式可以基于车辆运行条件,例如发动机转矩需求和能量储存装置64的充电状态,通过控制器65选择和命令。发动机停机工作模式可用于当发动机13停机时,给轴61提供转矩从而给车辆辅助部件78提供动力。在本文中,当不给发动机13的燃烧提供燃料和/或点火时,发动机13停机。在发动机停机工作模式中,控制器65控制马达-发电机50用作马达,接合制动器68并使离合器55脱开。转矩从马达-发电机50通过行星齿轮组41传递给辅助部件78。
[0053] 如果车辆运行条件指示发动机13应当被起动,发动机总成10可以简单地通过接合离合器55同时在仍然控制马达-发电机50用作马达并且保持制动器68接合的情况下从发动机停机工作模式转变为发动机起动工作模式。从而,来自马达-发电机50的转矩施加到曲轴48以起动发动机13。一旦发动机13起动,马达-发电机50可以靠惯性运行,这时控制器65既不会将电能从能量储存装置64导入马达-发电机50,也不会将电能从马达-发电机50导入能量储存装置64。马达-发电机50的起动/停机的能力允许发动机13关闭而不是怠速,例如在红绿灯时,在燃料的经济性和二排放物的减少方面具有预期的提升。因此,在发动机13关闭期间可实现燃料的节省,并且再起动发动机13可以通过储存在电池中的再俘获能量产生的电能来完成。
[0054] 或者,一旦发电机13启动,马达-发电机50可以用作马达或者发电机。在发动机13运行时,可以使用本文所述的发动机增压、制动再生和节气门损失再生模式。例如为了车辆加速而在驱动轴21上需要附加转矩时,发动机增压运行模式可通过控制器65建立。为了在发动机13运行时建立增压工作模式,离合器55接合并且制动器68脱离接合。马达-发电机50控制成用作马达并且旁通阀70处于如图1所示的闭合位置。发动机13提供转矩以通过带传动系统49和支架构件46驱动第一轴30。马达-发电机50提供转矩以经由到齿圈构件44的相互啮合的齿轮53、54驱动第一轴30。因此,采用马达-发电机50第一轴
30的转速因此相对轴61的转速增加,以调节齿圈构件44的转速,且通过行星齿轮传动装置
41,设定轴56和30的期望转速,提供期望的增压压力
[0055] 响应于变化的转矩需求,因此在发动机气室18中提供的增压压力的量在发动机增压工作模式期间可以变化。首先,在发动机增压工作模式期间,控制器65可以改变马达-发电机50的转速,来控制在气室18中产生的增压压力的量。可替代地或附加地,控制器65可控制旁通阀70的位置,例如通过将旁通阀70从图1所示的闭合位置移动到打开位置70A。来自空气入口84的空气可因此流过旁通通道94,减小了经过转子26、28流过转子壳体90的空气的体积,从而相比于空气流过转子26、28时产生的压力,气室18中的空气压力降低。相比于通过改变马达-发电机50的转速实现的更平缓的调节,通过将旁通阀70打开到全开位置70A的旁通阀70的操作可以允许对气室18内的空气压力进行相对快速的调节。对增压压力更适中的调节可以通过将旁通阀70放在位于全开位置70A和全关位置之间的中间位置来实现。马达-发电机50的转速和旁通阀70的位置这两者的控制允许针对发动机转矩需求进行特定的发动机增压。由于在气室18内由增压器12提供的增压压力不依赖于发动机转速,在发动机13的整个工作转速范围内在曲轴48上可以得到相对恒定的转矩。或者,在曲轴48上的转矩可以如期望地在发电机工作转速的范围内被定制。
[0056] 当发动机13运行并且不需要发动机增压时,例如在车辆以相对稳定的车辆转速巡航期间,控制器65可以减慢增压器12的转速并且控制节气门14,以使得在旁通阀70关闭时可跨节气门14和增压器12两者施加节流损失(即,与移动的发动机气缸产生的真空有关的压降)。节气门14的位置可通过跨增压器12的期望的压降来平衡,并且空气流过增压器12并且经过至少部分地关闭的节气门14从而到达发动机气缸。当需要快速的改变进入发动机13的空气流时,旁通阀70还可以在这个模式期间控制成以允许空气绕过增压器12。由跨增压器12的压降产生的转矩将通过由行星齿轮传动装置41提供的转矩分配,施加给太阳齿轮构件42,和因此施加给发动机曲轴48以及还施加给马达-发电机50(当被控制成作为发电机工作时)。该工作模式可以被称为节流损失再生模式。通过控制马达-发电机50用作发电机,由跨增压器12的压降产生的所有的或者一部分转矩可以转化为电能储存在能量储存装置64中。由压降导致的转矩所产生的被储存的电能被认为是来自“再俘获节流损失”。
[0057] 在延长的巡航期间,当不需要发动机增压时,可以维持节流损失再生模式,直到能量储存装置64达到预定的最大充电状态。然后,可作用制动器68,将旁通阀70打开到位置70A,并控制马达-发电机50作为马达工作以将转矩施加给发动机曲轴48,直到能量储存装置64达到预定的最小充电状态。能量储存装置64充电或者放电的循环可以持续整个巡航时间段。
[0058] 在一个实施例中,跨增压器12压降增加一增量。对于所有的发动机转速来说导致跨增压器12较大压降的这个增量,可确保压降不会减小到压力差基本上为零的这个点。在一个例子中,增量被至少适用于低发动机转速的情况。在另一个例子中,增量被用于所有发动机转速的情况。在这种模式下,连续的能量可以通过节流损失再生被俘获,仅对燃料的经济性有微小的影响。
[0059] 在这样的例子中,控制系统配置成控制马达-发电机用作发电机并且节流阀被控制移动到相对打开位置,从而使跨增压器上的压降等于或者大于原始节气门压降,以使得电动马达-发电机通过行星齿轮传动装置将节流作为电能俘获。
[0060] 增压器组件11也可以控制成在车辆制动期间以再生制动模式俘获能量。当车辆制动减缓驱动轴21时,控制器65配置成接合制动器68并且控制电动马达-发电机50作为发电机,并且在反方向上给电动马达-发电机50施加转矩,所述反方向是指当电动马达-发电机用作马达时,与由电动马达-发电机50提供转矩的方向相反的方向。反向转矩因此经由行星齿轮传动装置41施加给曲轴48,并且由电动马达-发电机50产生的电能被储存在能量储存装置64中。
[0061] 图1示出了安装在带轮轴61上随带轮轴61一起旋转的甩油环100。图19是从带轮轴61拆下的甩油环100的透视图。甩油环100是具有第一端102的环形构件,所述第一端具有构造成与带轮轴61的外表面相配合的第一内径104。第二端106具有较大的直径以使得甩油环100从带轮轴61朝第二端106散开。甩油环100布置在带轮轴61上以使得第二端106面向行星齿轮传动装置41,最好如图3所示。图19示出可甩油环100绕大致位于端部102和106中间的甩油环100的圆周形成有一系列勺状部分108。每个勺状部分108具有开口110,其中每个开口110面对同样的旋转方向。每个勺状部分108沿轴向方向在较大端106和较小端102之间渐缩。当带轮轴61沿顺时针方向旋转时,甩油环100也沿顺时针方向旋转并且在齿轮盖部分95内的油雾将通过开口110进入并且被勺状部分108俘获。油雾将接触勺状部分108的内表面112。甩油环100的旋转将导致油雾沿着甩油环100的内表面114朝所述端106移动,并且沿箭头的方向从甩油环100中甩出。油通常朝着行星齿轮组41散播以润滑行星齿轮组41。
[0062] 图2示出了具有彼此连接的壳体组件80的多个部分的增压器组件11。入口管97具有与入口盖部分82的孔113(如图18所示)对准的孔,以使得固件115可用开将将入口管97附接到覆盖空气入口84的入口盖部分82。在本文中,紧固件可以是用于连接两个相邻部件的任何合适的部件,例如螺栓、螺钉或者其它合适的紧固件。
[0063] 图3示出了具有带齿端部118的第一轴30的延伸部分116。具有凸缘122的旋转构件120键连接到带齿端部118并且通过轴承124支承在入口盖部分82处以可相对入口盖部分82旋转。延伸部分116、带齿端部118、旋转构件120和凸缘122设置在腔室69中。电磁制动器68可通过控制器65通过电线(未示出)选择性地致动,所述电线延伸通过如图18所示的线接入口126,以提供用于启动位于制动器68内的线圈128的电能,从而通过电磁引力使凸缘122相对于入口盖部分82保持静止。线圈128在图3中示出而未在图18示出。制动器盖130通过紧固件132附接到入口盖部分82,所述紧固件延伸通过在入口盖部分82中的孔134。如关于图1所述,入口盖部分82还限定出旁通通道94的一部分92。
所述部分92与入口84流体连通并且延伸通过入口盖部分82。在图18中,部分92被示出位于制动器腔室69的上方并且延伸出入口盖部分82的底部。出于示例性目的,在图1中仅示出部分92位于制动器68的上方。部分92在入口盖部分82中的任何合适的取向都可以被采用。旁通通路94连接到入口盖部分82以与部分92连通,或者旁通通路94可以通过三通管或者类似部件在入口盖82和入口管97的上游附接。
[0064] 图2示出了紧固件135,其用来将入口盖部分82附接到转子壳体部分90。虽然只有一个紧固件135被示出,多个其它紧固件135可放置在绕转子壳体90和入口盖部分82的界面的多个不同位置处。图3示出了当入口盖部分82附接到转子壳体部分90时,第一轴30从转子壳体部分90延伸进入该入口盖部分82。
[0065] 图5是增压器组件11的一部分的放大图,其示出了行星齿轮传动装置41和其可操作地连接到第一轴30。具体地,联接件58布置在发动机壳体部分96的孔140中。联接件58包括第一构件142,该第一构件与第一轴30相配合并通过周向布置的销146固定到轴56的凸缘144上。联接件58吸收扭转振动,该扭转振动由轴30上的增压器组件11发出的压力脉动或者来自轴61的发动机脉动导致。密封件148将第一轴30与转子壳体90密封从而防止空气从转子壳体90中泄漏
[0066] 图6-8示出了齿轮盖部分95,所述齿轮盖部分包括与在马达盖部分96上的紧固件孔152图案相匹配的紧固件孔150图案,如图13所示。紧固件157(图4示出了两个)穿过对准孔150、152用于将齿轮盖部分95附接到马达壳体部分96。在图6中,一些紧固件孔150被齿轮盖部分95的安装凸缘154遮住。安装凸缘154具有紧固件孔156,紧固件穿过这些紧固件孔布置用于将齿轮盖部分95进而整个增压器组件11安装到图1的发动机13上。
[0067] 带轮59被示出具有延伸穿过带轮59中的孔的六角螺钉158,从而将带轮59安装到带轮轴61上(图4所示)。带轮轴61延伸穿过齿轮盖部分95中的孔。垫圈161设置在六角螺钉158和带轮轴61之间。如图4所示的轴承160A、160B允许带轮轴61和带轮59相对齿轮盖部分95旋转。穿过齿轮盖部分95的至少一条通道162引导润滑流体穿过齿轮盖部分95到达轴承160A、160B。密封件164在轴61延伸穿过的齿轮盖部分95中的孔处设置在齿轮盖部分95和带轮59之间。最好如图7所示,波形盘簧166A设置在带轮59和轴承160A之间以防止轴承160A的轴承内圈相对轴61旋转,并且控制叠加公差。另一个波形盘簧166B设置在轴承160B和齿轮盖部分95的凸台之间以防止轴承160B的外圈在齿轮盖部分95中旋转。盘簧166C、166D还被用在齿轮盖部分95和马达齿轮53轴以及惰轮54轴的轴端之间,所述轴端跨置在容纳于齿轮盖部分95的凹部169内的滚针轴承168A和168B上。这些盘簧提供磨损表面并且控制叠加公差。滚针轴承168A允许齿轮53相对马达壳体部分96旋转并且延伸穿过马达壳体部分96。齿轮53键连接到马达轴52(如图4所示)。滚针轴承168B和188允许齿轮54相对齿轮盖部分95和马达壳体部分96旋转。
[0068] 图20示出了齿轮盖部分95具有肋167A、167B、167C,这些肋关键性地收集并且引导齿轮盖部分95内的油。肋167A和167B在容纳滚针轴承168A、168B的凹部169上方大体形成v形。在齿轮盖部分95内的油滴在肋167A和167B上聚集并且排入凹部169用于润滑轴承168A、168B。肋167C形成v形,其将在齿轮盖部分95内的油关键性地引导至通道162。油经通道162排入轴承160A、160B之间的孔151内的空间用于润滑轴承160A、160B。
[0069] 图9-12示出了具有从出口壳体99延伸出的出口管98的出口壳体99。在这个实施例中,出口管98和出口壳体99焊接在一起。在图21-22的实施例中,出口壳体99A和出口管98A为一体式单件出口部件101。图9的出口壳体99具有与转子壳体部件90处绕空气出口86的紧固件孔177(参见图23)图案匹配的紧固件孔170图案。在图2中,一个紧固件172被示出将出口壳体99连接到转子壳体90。图9示出了带有孔174的凸缘173,其可以用于将出口壳体99安装到发动机13。出口壳体99的孔103与转子壳体部分90的空气出口86流体连通。出口管98的出口176进入图1的节气门体16中。
[0070] 图13-15示出了具有带孔182的安装凸缘180的马达壳体96,马达壳体96可以通过所述凸缘安装到图1中的发动机13上。安装凸缘180沿与齿轮盖部分95的凸缘154相同的方向延伸。密封件185设置在马达壳体96的孔186中,在所述孔处马达轴52键连接到第一齿轮构件53,如图4所示。滚针轴承188设置在马达壳体96的另一个孔190中,在所述孔处第二齿轮构件54被支承以便旋转。转子壳体90可以绕孔140通过延伸穿过阶梯孔192的紧固件固定到马达壳体96。图14示出了马达壳体96具有围绕凸缘的孔193,在凸缘处图4的马达控制器壳体194通过延伸通过孔193的紧固件安装。马达盖部分96包括用于冷却马达-发电机50的集成散热片196。
[0071] 图16-18示出了入口盖部分82,所述入口盖部分具有延伸入腔室69的延伸部116的带齿端部118。图17示出了支承端部116以便相对入口盖部分82旋转的轴承198。卡环200将轴承保持在入口盖部分82的孔口中。波形盘簧202吸收在轴承198和入口盖部分82之间的轴向推力,以防止轴承198的外圈在孔口中旋转。阶梯孔204延伸穿过入口盖部分82以允许入口盖部分82通过紧固件(未示出)安装在转子壳体部分90上。
[0072] 图21和22示出了包括出口壳体99A和出口管98A的一体式单件出口部件101。出口部件101可以用于代替出口壳体99和出口管98,如图24中的增压器组件11A中所示,其不同于增压器组件11。延伸管105可以焊接到出口管98A以连接到节气门体16。出口壳体99A具有通常形状像五边形的孔103A。孔103A具有与较宽的端部相反的渐缩的v形端部。图23示出了转子壳体部分90的空气出口86还通常做成类似五边形的形状并且通常与孔103A具有相同的形状。出口管98A从出口壳体99A以45度的角度延伸。孔103A的大体五边形形状以及出口管从出口壳体99A延伸出的角度提供有益的空气流动特性。图
24示出了类似图2增压器组件11的增压器组件11A,除了壳体组件80A包括代替出口壳体
99和出口管98的出口部件101。
[0073] 如图1和2显而易见的,壳体组件80构造成以使电动马达-发电机50和转子壳体部分90相对于带轮59位于齿轮盖部分95的相反侧。此外,空气入口通道85和入口管97邻近电动马达-发电机50,而空气出口通道88和出口管98相对于马达-发电机50位于转子壳体部分90的相反侧。壳体组件80A以类似的方式布置。应当理解,节气门体16和节气门14在空气流进入发动机13的方向上可以设置在入口管97的上游,在这种情况下,增压器12将推动空气穿过节气门14并且可操作地允许按本文所述的相同的操作模式运行。
[0074] 关于发动机总成10的其它细节可以参照2012年3月29日提交的美国专利申请号No.61/617,152,其全部内容通过引用纳入本文。
[0075] 现在参照附图25,示出了示例性的发动机总成300。在这个实施例中,电动马达-发电机302联接到内燃机308和增压器310。
[0076] 在这个实施例中,提供两个传动系304、306。传动系304将传递给内燃机308的转矩最优化。相反地,传动系306将电动马达-发电机302必须旋转以使用增压器310提供增压和/或再生的转速最优化。
[0077] 例如,在多个实施例中,需要70-80Nm大小的转矩来起动内燃机308。在这个例子中,传动系304用齿轮传动以提供来自电动马达-发电机302的所需转矩以起动内燃机308。
[0078] 类似地,在增压器310增压或者增压器310再生期间,需要小得多的转矩。然而,马达-发电机302必须旋转的转速增加。在这些情况下,在增压和再生期间传动系306被最优化以降低电动马达-发电机302的转矩和转数。
[0079] 例如,现在参照图26-27,示出了双比传动组件400的一个例子。在这个例子中,电动马达-发电机402联接到内燃机422和增压器420。离合器1和2提供给双比传动。
[0080] 具体地,在内燃机422起动期间,太阳齿轮412被停住(制动),从而停止(grounding)增压器420。致动离合器2以将来自朝方向434(顺时针)旋转的马达-发电机402的转矩传递给齿轮414。齿轮414将动力依次传递给惰轮416,而所述惰轮朝方向432(逆时针)旋转以将动力通过小齿轮406、环形齿轮(ring)408和包括行星齿轮410的行星齿轮组405传递给支架418。朝方向434(顺时针)旋转的支架418(通过带轮或其它机构)联接到内燃机422的曲轴以将转矩施加到该曲轴。这在第一传动比例如5∶1的传动比下驱动。该第一传动比配置成在内燃机422起动期间将由电动马达-发电机402提供的转矩量最优化。
[0081] 相反地,在增压器420的增压和再生期间,增压器420被释放并且开始随着环形齿轮408旋转。在这个时候,增压器420更快地旋转,并且齿轮414超过离合器2以使离合器不再接合。在这种情况下,电动马达-发电机402的转速接近零,并且存在“死区”,其中离合器2脱离接合而离合器1还未接合啮合。在该死区,没有转矩从电动马达-发电机传递给齿圈408。
[0082] 随着电动马达-发电机402持续减速,环形齿轮408也减速,这时离合器1接合。环形齿轮408的转速降低导致增压器420的转速增加。该第二传动比较低,使得电动马达-发电机不需要像增压器420旋转那么快,例如在2∶1或者3∶1传动比下。
[0083] 如果增压器420需要较快的转速用于增压,电动马达-发电机402最后达到零转速并且反转(即,朝逆时针方向432移动)。这时,离合器1脱离接合而离合器2再次接合,从而允许将转矩再一次以较高的传动比(例如,5∶1)从电动马达-发电机402传递给增压器420。
[0084] 两个传动系的操作可以根据车辆的工作模式进行操控从而将电动马达-发电机旋转的转速最优化。需要高转矩时,离合器2以5∶1的传动比接合。对于较低转矩需求,例如在再生期间,离合器1以2∶1的传动比接合。双比传动的结果是将在不同车辆工作条件下的电动马达-发电机402的转矩和转速最优化。
[0085] 虽然对结合了本实用新型的多个方面的最佳模式进行了详细描述,但本领域技术人员将认识到用于实施本实用新型的落在所附的权利要求的范围内的多种替代的方面。
QQ群二维码
意见反馈