作业车辆

申请号 CN201380031784.8 申请日 2013-05-16 公开(公告)号 CN104395162B 公开(公告)日 2017-11-24
申请人 株式会社多田野; 发明人 栌林干夫; 寺田王彦;
摘要 本 发明 提供一种作业车辆,其可利用电 力 持续地驱动作业装置并能够进一步提高静音性。本发明的作业车辆,利用电源 电缆 (41f)供给的外部电源的电力驱动电动发 电机 (41b),并由该电动发电机(41b)的动力驱动油压 泵 (31)。由此,在具有外部电源的作业场所进行 起重机 装置(20)的作业时,由于能够持续地利用电动发电机(41b)的动力驱动油压泵(31),因此可维持起重机装置(20)的高静音性。
权利要求

1.一种作业车辆,其在移动用的行驶体上设置有进行规定作业的作业装置,其特征在于,具备:
发动机,其可输出用于使行驶体行驶以及驱动作业装置的动
电动机,其可输出用于使行驶体行驶以及驱动作业装置的动力;
油压,其产生利用发动机及电动机的一者或二者的动力来驱动作业装置的油压;
外部电力供给装置,其将外部电源的电力供给电动机;
油压泵驱动装置,其利用电动机的动力来驱动油压泵,而该电动机是由外部电力供给装置所提供的电力驱动的;
电池,其可向电动机供给电力;
电池电力附加装置,其在利用油压泵驱动装置驱动油压泵的状态下,当外部电源的电力供给量不足时,将电池的电力附加到电动机;以及
发动机动力附加装置,其在利用电动机对油压泵进行驱动时,附加发动机的动力作为油压泵的动力,
在由油压泵驱动装置驱动油压泵的状态下,当外部电源的电力供应量不足时,电池电力附加装置将电池的电力附加给电动机,在从电动机传递至油压泵的转矩不足的情况下,发动机动力附加装置附加发动机的动力作为油泵的动力。
2.根据权利要求1所述的作业车辆,其特征在于,还具备:
外部电源电力量检测装置,其检测外部电源的电力的供给量;以及
电池电力供给切换装置,其根据外部电源电力量检测装置的检测结果,在电池电力附加装置向电动机供给电池的电力和停止供给电池的电力之间进行切换。
3.根据权利要求2所述的作业车辆,其特征在于,还具备:
转矩检测装置,其检测自电动机传递至油压泵的转矩;以及
发动机动力附加切换装置,其根据转矩检测装置的检测结果,在发动机动力附加装置向油压泵附加发动机的动力和停止附加发动机的动力之间进行切换。

说明书全文

作业车辆

技术领域

[0001] 本发明涉及一种作业车辆,其具备由发动机和/或电动机的动驱动的作业装置。

背景技术

[0002] 作为一种以往的作业车辆,已知其具备:发动机、利用发动机的动力进行发电的发电机、用于蓄积发电机所产生的电力的电池、由电池的电力驱动的电动机、用于在对可由发动机和/或电动机的动力驱动的作业装置进行驱动时所使用的油压(例如,参照专利文献1)。
[0003] 在上述作业车辆中,利用由电池的电力驱动的电动机的动力来驱动油压泵,从而提高作业装置在作业中的静音性。
[0004] 现有技术文献
[0005] 专利文献
[0006] 【专利文献1】日本特开2000-226183号公报

发明内容

[0007] 发明要解决的问题
[0008] 然而,在上述作业装置中,就电池的设置空间来说,不能在行驶体上安装具备充足容量的电池。所以,在由电动机的动力驱动油压泵的情况下,由于电池的容量在短时间内被消耗而导致不充足,因此为了继续作业,必须起动发动机以利用发动机的动力驱动油压泵,但这样无法维持静音性。
[0009] 本发明的目的是提供一种可利用电力持续驱动作业车辆并能进一步提高静音性的作业车辆。
[0010] 解决问题的手段
[0011] 为了达成上述目的,本发明所提供的作业车辆在移动用的行驶体上设置有进行规定作业的作业装置,具备:发动机,其可输出用于使行驶体行驶以及驱动作业装置的动力;电动机,其可输出用于使行驶体行驶以及驱动作业装置的动力;油压泵,其产生利用发动机及电动机的一者或二者的动力来驱动作业装置的油压;外部电力供给装置,其将外部电源的电力供给电动机;油压泵驱动装置,其利用电动机的动力来驱动油压泵,而该电动机是由外部电力供给装置所提供的电力驱动的;电池,其可向电动机供给电力;以及电池电力附加装置,其在利用油压泵驱动装置驱动油压泵的状态下,将电池的电力附加到电动机。
[0012] 据此,由于向电动机供给外部电源的电力,因此在具有外部电源的作业现场进行作业装置的作业时,能够利用持续的电动机的动力来驱动油压泵。
[0013] 发明效果
[0014] 采用本发明的作业装置,由于在具有外部电源的作业现场进行作业装置的作业时,能够持续地利用电动机的动力驱动油压泵,因此可维持作业装置的高静音性。附图说明
[0015] 图1是表示本发明一个实施方式的移动式起重机的侧面图。
[0016] 图2是移动式起重机的动力系统和控制系统的构造示意图。
[0017] 图3是说明超低噪音作业模式中动力控制处理的流程图
[0018] 图4是说明低噪音作业模式中动力控制处理的流程图。
[0019] 图5是说明中等噪音作业模式中动力控制处理的流程图。
[0020] 图6是表示在各模式中各动力源的输出比率的表。

具体实施方式

[0021] 图1至图6是表示本发明一实施方式的图。
[0022] 如图1所示,作为本发明作业车辆的移动式起重机1具备车辆10和起重装置20。
[0023] 车辆10具有车轮11,并以发动机41a或发动机41a及后述的电动发电机41b为动力源行驶。此外,在车辆10的前侧和后侧的左右两侧分别设置有支腿12,该些支腿12在起重机作业时可防止车辆10的颠倒,同时还能稳定地支撑车辆10。支腿12可以向宽度方向的外侧移动,而且通过油压式千斤顶油缸13(参照图2)还能向下方伸长。支腿12通过使其底端接地而相对地面能稳定地支撑车辆10。
[0024] 起重机装置20包括转台21、吊臂22、缆23、绞盘24、工作室25,转台21在平面上旋转可能地被设置于车辆10的前后方向的大致中央部,吊臂22相对转台21升降可能且伸缩可能地被设置在其上,钢缆23自吊臂22的前端侧垂下,绞盘24用于进行钢缆23的卷绕与解绕,工作室25设置在转台21的前侧,用于进行与车辆10的行驶以及与起重机装置20的作业相关的操作。
[0025] 转台21通过滚珠轴承式或滚柱轴承式的旋转轴承组21a而相对车辆10旋转自如地被设置,通过油压式旋转达21b(参照图2),能使转台21进行旋转。
[0026] 吊臂22由多个吊臂部件22a、22b、22c、22d所构成,除最前端侧的吊臂部件22d以外,各吊臂部件22a、22b、22c的内部形成为可收纳各自前端侧相邻的吊臂部件22b、22c、22d的套入式结构。最基端侧的吊臂部件22a的基端部摆动自如地被连接在转台21的支架21c上。吊臂部件22a与支架21c之间连接有油压式升降汽缸22e,吊臂22则通过升降汽缸22e的伸缩动作而进行升降。此外,在最基端侧的吊臂部件22a的内部设置有油压式升降气缸22f(参照图2),吊臂22通过伸缩气缸22f的伸缩而进行伸缩。
[0027] 钢缆23的前端侧设置有吊钩部件23a,该吊钩部件23a从吊臂22的前端部垂下。吊钩部件23a可卡住起吊货物,卡在吊钩部件23a上的起吊货物从吊臂22的前端部悬吊。
[0028] 绞盘24包含卷绕有钢缆23的卷筒24a,该卷筒24a通过油压式绞盘马达24b(参照图2)可进行正反旋转。
[0029] 操作室25设置在转台21上的支架21c的一侧,与转台21一起旋转。
[0030] 千斤顶气缸13、旋转马达21b,升降气缸22e、伸缩气缸22f以及绞盘马达24b等装置的致动器通过作业油的供给或排出而运作。使各致动器运作的作业油是由图2所示的油压供给装置30供给的。
[0031] 如图2所示,油压供给装置30包括油压泵31、控制单元32、作业油回路33,油压泵31用于产生油压,控制阀单元32用于控制油压泵31吐出的作业油的流动,作业油回路33通过控制阀单元32供给油压泵31吐出的作业油,以使各致动器运作。
[0032] 如图2所示,利用从动力装置40获取的动力来驱动油压泵31,该动力装置40用于提供使车辆10行驶的动力和驱动起重机装置20的动力。
[0033] 控制阀单元32具有对应各致动器的多个控制阀。各控制阀通过操作杆和操作踏板等操作部32a而被操作。各控制阀根据操作部32a的操作方向切换作业油的流路,并可根据操作部32a的操作量调整作业油的流量。此外,各控制阀具有螺线管等切换装置。根据来自后述的过负荷防止装置(AML:Automatic Moment Limiter)的信号能够操作各控制阀。
[0034] 动力装置40包括:动力源单元41,其用于产生动力;变矩器42,其用作增大动力源单元41输出的动力的转矩并将动力传递到车轮11侧的驱动机构;变速器43,其用作改变变矩器42输出的动力的旋转速度和转矩的驱动机构;以及电动式的缓速器45,其设置在将变速器43输出的动力传递给车轮11的作为驱动机构的传动轴44上。
[0035] 动力源单元41包括:发动机41a,其主要为车辆行驶用的动力源;电动发电机41b,其利用所供给的电力可作为电动马达执行功能,并利用发动机41a的动力或在行驶中减速时等可作为发电机执行动能;电池41c,其蓄积电动发电机41b所产生的电力,并在电动发电机41b用作电动马达执行功能时可供给电力;电动发电机驱动控制部41d,其用于控制电池41c的输出,或是控制电动发电机41b的运作;以及离合器41e,其能够切换发动机41a的输出轴与电动发电机41b的输入输出轴的连接以及连接的解除。
[0036] 电动发电机41b设置在发动机41a和变矩器42之间。通过离合器41e连接发动机41a的输出轴与电动发电机41b的输入输出轴,发动机41a的动力将经由电动发电机41b的输入输出轴传递到变矩器42上。与发动机41a的输出相比,电动发电机41b是一种具有较小额定输出的电动机输出的装置。电动发电机41b的最大输出是发动机41a的最大输出的大约30%。
[0037] 电动发电机驱动控制部41d具有变流器(Inverter)、升压变换器(Boost Converter)、马达控制部、发电机控制部等。电动发电机驱动控制部41d控制电池41c的输出使其向电动发电机41b供给电力,或是根据后述的过负荷防止装置发出的信号将电动发电机41b的功能切换为发电机功能或电动马达功能。此外,电动发电机驱动控制部41d上可以连接电源电缆41f,该电源电缆41f可与外部电源连接。在电动发电机41b用作电动马达时,电动发电机驱动控制部41d可在电池41c与外部电源之间进行切换而作为电源。
[0038] 变矩器42具有设置在变矩器42的输入轴上的泵叶轮、设置在变矩器42的输出轴上的涡轮内衬(Turbine Liner)、固定于泵叶轮与涡轮内衬之间的定子。在变矩器42中,利用油使输入到输入轴的动力的转矩增大并从输出轴输出。变矩器42的输出侧设有PTO机构46(powertake-off,动力输出装置),该PTO机构46可获取传递至变速器43的动力,油压泵31可通过PTO机构46连接于变矩器42的输出侧。只要可切换油压泵31与发动机41a的输出轴的连接和连接的解除、以及油压泵31与电动发电机41b的输入输出轴的连接和连接的解除,PTO机构46也可以不必设置在变矩器42的输出侧。
[0039] 此外,移动式起重机1具备过负荷防止装置50。过负荷防止装置50是一种防止过负载状态的装置。所谓的过负载状态,是指作用在吊臂22的前端部的载荷超过了与支腿12的伸出幅度、转台21的旋转度、吊臂22的升降角度及伸缩长度等工作条件相对应的额定载荷的状态。
[0040] 过负荷防止装置50包括由CPU、ROM、RAM等构成的控制器。控制器接收到连接于其输入侧的装置所送出的输入信号时,CPU会根据输入信号读出存储在ROM中的程序,并在RAM中存储根据输入信号检测出的状态,或是将输出信号传送到与控制器的输出侧连接的装置。
[0041] 过负荷防止装置50上连接有控制阀单元32、动力源单元41、用于使用者进行与起重机作业相关的各种设定的操作输入部51、用于检测油压泵31吐出的作业油流量的流量检测器52、用于检测油压泵31的吐出侧压力的压力检测器53。
[0042] 过负荷防止装置50中会输入与发动机41a的转速相关的信号、与油压泵31的作业油的吐出量相关的信号、与油压泵31的吐出侧压力相关的信号。
[0043] 此外,过负荷防止装置50会输出控制信号,该控制信号根据输入至过负荷防止装置50的与发动机41a的旋转速度相关的信号、与油压泵31的作业油的吐出量相关的信号以及与油压泵31的吐出侧压力相关的信号,可以控制电动发电机41b的运作。
[0044] 对于具有以上结构的、作为作业车辆的移动式起重机1来说,在其处于借助车辆10进行行驶的行驶模式时,主要为发动机41a的动力(最大输出为0%-100%)传递至传动轴44。此外,在借助车辆10进行行驶的过程中,提高车速或行驶于上坡等需要较大输出的情况下,通过驱动电动发电机41b而使电动发电机41b的动力(发动机41a最大输出的20%)作为辅助输出而传递至传动轴44,或是由传动轴44驱动电动发电机41b而发电。此时,PTO机构46解除油压泵31与发动机41a的输出轴的连接、以及油压泵31与电动发电机41b的输入输出轴的连接。另外,发动机41a利用电动发电机41b的动力而起动。并且,车辆在行驶中要减速时,在缓速器45中所产生的电力用于对电池41c进行充电。
[0045] 此外,在起重机装置20进行的起重作业中,作为驱动油压泵31的模式,按照静音性高到低的顺序,有超低噪音作业模式、低噪音作业模式、中等噪音作业模式,通过过负荷防止装置50的操作输入部51的操作可选择上述任何一种模式。
[0046] <超低噪音作业模式>
[0047] 超低噪音作业模式是将电源电缆41f连接到外部电源,主要利用外部电源的电力来驱动电动发电机41b,并由电动发电机41b的动力(发动机41a最大输出的30%)驱动油压泵31的模式。在超低噪音作业模式中,变速器43处于空挡状态,在离合器41e解除了发动机41a与电动发电机41b的连接的状态下,PTO机构46解除油压泵31与发动机41a的输出轴的连接状态、以及油压泵31与电动发电机41b的输入输出轴的连接状态。由此,可使发动机41a处于停止状态。在超低噪音模式中,仅利用电动发电机41b的动力即可进行要求最佳静音性的作业。
[0048] 超低噪音作业模式中,在外部电源的电压下降等外部电源的电力供应量不足的情况下,过负荷防止装置50的控制器向电动发电机41b供给电池41c的电力,而在传递至油压泵31的转矩不足的情况下,过负荷防止装置50的控制器进行将发动机41a的动力(最大输出的20%)附加至油压泵31的动力控制处理。在这样的情况下,与仅利用电动发电机41b的动力进行超低噪音的起重作业相比更优先考虑作业性时,将驱动发动机41a,但由于发动机41a的转速相当于怠速转速,因此能够维持低噪音。这种情况下的起重作业能够提供起重作业中最大输出为止的输出范围。下面,利用图3的流程图来说明此时过负荷防止装置50的控制器的运作。
[0049] (步骤S1)
[0050] 在步骤S1中,CPU判定所选择的作业模式是否为超低噪音作业模式。若判定出所选择的作业模式是超低噪音作业模式,则将处理移至步骤S2;若判定出所选择的作业模式不是超低噪音作业模式,则结束动力控制处理。
[0051] (步骤S2)
[0052] 步骤S1中判定出所选择的作业模式是超低噪音作业模式时,在步骤S2中,CPU判定外部电源的电力供给量是否不足。若判定为外部电源的电力供给量不足,则将处理移至步骤S3,若判定为外部电源的电力供给量非不足,则将处理移至步骤S4。
[0053] (步骤S3)
[0054] 步骤S2中判定为外部电源的电力供给量不足时,在步骤S3中,CPU向电动发电机41b供给电池41c的电力(即将电池的电力供给设定为开启(ON))并将处理移至步骤S5。
[0055] 此时,输入到电动发电机41b的电力是从外部电源供给的电力(发动机41a最大输出的20%)和从电池41c供给的电力(发动机41a最大输出的10%)。
[0056] (步骤S4)
[0057] 步骤S2中判定为外部电源的电力供给量非不足时,在步骤S4中,CPU停止向电动发电机41b供给电池41c的电力(即将电池的电力供给设定为关闭(OFF))并将处理移至步骤S5。
[0058] (步骤S5)
[0059] 在步骤S5中,CPU判定传递到油压泵31的转矩相对于起重作业所需的转矩是否不足。若判定为传递到油压泵31的转矩不足,则将处理移至步骤S6;若判定为传递到油压泵31的转矩非不足,则将处理移至步骤S8。
[0060] 在此,传递到油压泵31的转矩相对于起重作业所需的转矩是否不足的判定,是通过分别获取并比较起重作业所需油压泵31的转矩和从电动发电机41b传递到油压泵31的转矩而进行的。
[0061] 起重作业所需的油压泵31的转矩,是通过一直监视流量检测器52的检测流量和压力检测器53的检测压力,并根据流量检测器52的检测流量和压力检测器53的检测压力而计算出的。例如,在可变容量型的油压泵31中,起重作业的负载向增大的方向变化时,油压泵31的吐出压力将变大,吐出流量将变小。另一方面,起重作业的负载向减少的方向变化时,油压泵31的吐出压力将变小,吐出流量将变大。从该油压泵31的吐出流量和吐出压力的关系,计算出所需的油压泵31的转矩。
[0062] 此外,从电动发电机41b传递至油压泵31的转矩是通过一直监视电动发电机41b的电流值而得到的。
[0063] (步骤S6)
[0064] 步骤S5中判定为传递到油压泵31的转矩不足时,在步骤S6中,CPU通过离合器41e使发动机41a和电动发电机41b连接(即将连接状态设定为开启(ON)),并将处理移至步骤S7。
[0065] (步骤S7)
[0066] 在步骤S7中,CPU起动发动机41a并结束动力控制处理。
[0067] 此时,发动机41a以最大输出的约20%的输出被驱动。
[0068] (步骤S8)
[0069] 步骤S5中判定为传递到油压泵31的转矩非不足时,在步骤S8中,CPU通过离合器41e解除发动机41a和电动发电机41b的连接(即将连接状态设定为关闭(OFF)),并将处理移至步骤S9。
[0070] (步骤S9)
[0071] 在步骤S9中,CPU使发动机41a停止运作并结束动力控制处理。
[0072] <低噪音作业模式>
[0073] 低噪音作业模式是一种例如发动机41a的怠速运行等主要利用规定转速的发动机41a的动力(最大输出的20%)来驱动油压泵31的模式。低噪音作业模式中,变速器43处于空挡状态,在通过离合器41e使发动机41a与电动发电机41b处于连接的状态下,PTO机构46连接油压泵31与变矩器42。
[0074] 在低噪音作业模式中,在传递到油压泵31的转矩不足时,过负荷防止装置50的控制器利用外部电源或电池41c的电力驱动电动发电机41b,进行将电动发电机41b的动力(利用外部电源的情况下,该动力为发动机41a最大输出的30%,利用电池51c的情况下,该动力为发动机41a最大输出的10%)附加到油压泵31的动力控制处理。下面,利用图4的流程图来说明此时过负荷防止装置50的控制器的运作。
[0075] (步骤S11)
[0076] 在步骤S11中,CPU判定所选择的作业模式是否为低噪音作业模式。若判定出所选择的作业模式是低噪音作业模式,则将处理移至步骤S12;若判定出所选择的作业模式不是低噪音作业模式,则结束动力控制处理。
[0077] (步骤S12)
[0078] 步骤S11中判定出所选择的作业模式是低噪音作业模式时,在步骤S12中,CPU判定传递到油压泵31的转矩相对于起重作业所需的转矩是否不足。若判定为传递到油压泵31的转矩不足,则将处理移至步骤S13;若判定为传递到油压泵31的转矩非不足,则将处理移至步骤S16。
[0079] 在此,传递到油压泵31的转矩相对于起重作业所需的转矩是否不足的判定,是通过分别获取并比较起重作业所需油压泵31的转矩和从发动机41a传递到油压泵31的转矩而进行的。
[0080] 起重作业所需的油压泵31的转矩,是采用与上述超低噪音作业模式中的步骤S5相同的方法计算出的。
[0081] 此外,从发动机41a传递到油压泵31的转矩是通过一直监视发动机41a的转速,由发动机41a的转速与转矩的关系而得到的。另外,除了监视发动机41a的转速之外,通过一直监视发动机41a的燃料喷射量,也能够得到自发动机41a传递到油压泵31的更准确的转矩。
[0082] (步骤S13)
[0083] 步骤S12中判定为传递到油压泵31的转矩不足时,在步骤S13中,CPU判定是否能够由外部电源供给电力。若判定为能够由外部电源供给电力,则将处理移至步骤S14,若判定为不能由外部电源供给电力,则将处理移至步骤S15。
[0084] (步骤S14)
[0085] 步骤S13中判定为能够由外部电源供给电力时,在步骤S14中,CPU利用外部电源的电力驱动电动发电机41b并结束动力控制处理。
[0086] (步骤S15)
[0087] 步骤S13中判定为不能由外部电源供给电力时,在步骤S15中,CPU利用电池41c的电力驱动电动发电机41b并结束动力控制处理。
[0088] (步骤S16)
[0089] 步骤S12中判定为传递到油压泵31的转矩非不足时,在步骤S16中,CPU使电动发电机41b停止运转并结束动力控制处理。
[0090] <中等噪音作业模式>
[0091] 中等噪音作业模式是一种使用者进行加速器操作等、主要利用任意转速的发动机41a的动力来驱动油压泵31的模式。中等噪音作业模式中,变速器43处于空挡状态,在离合器41e使发动机41a与电动发电机41b处于连接的状态下,PTO机构46解除了油压泵31与发动机41a的输出轴的连接、以及油压泵31与电动发电机41b的输入输出轴的连接。在中等噪音作业模式中,发动机41a以最大输出的0-50%的范围内的输出被驱动。中等噪音作业模式是主要在驱动发动机41a的状态下,通过将作为辅助输出的电动发电机41b的动力附加到油压泵31来降低噪音的模式。
[0092] 在中等噪音模式中,传递到油压泵31的转矩不足时,过负荷防止装置50的控制器利用外部电源或电池的电力驱动电动发电机41b,进行将电动发电机41b的动力附加到油压泵31的动力控制处理。下面,利用图5的流程图来说明此时过负荷防止装置50的控制器的运作。
[0093] (步骤S21)
[0094] 步骤S21中,CPU判定所选择的作业模式是否为中等噪音作业模式。若判定出所选择的作业模式是中等噪音作业模式,则将处理移至步骤S22;若判定出所选择的作业模式不是中等噪音作业模式,则结束动力控制处理。
[0095] (步骤S22)
[0096] 步骤S21中判定出所选择的作业模式是中等噪音作业模式时,在步骤S22中,CPU判定传递到油压泵31的转矩相对于起重作业所需的转矩是否不足。若判定为传递到油压泵31的转矩不足,则将处理移至步骤S23;若判定为传递到油压泵31的转矩非不足,则将处理移至步骤S26。
[0097] 在此,传递到油压泵31的转矩相对于起重作业所需的转矩是否不足的判定,是通过分别获取并比较起重作业所需油压泵31的转矩和从发动机41a传递到油压泵31的转矩而进行的。
[0098] 起重作业所需的油压泵31的转矩,是采用与上述超低噪音作业模式中的步骤S5相同的方法计算出的。
[0099] 此外,从发动机41a传递到油压泵31的转矩,是采用与上述低噪音作业模式中的步骤S12相同的方法计算出的。
[0100] (步骤S23)
[0101] 步骤S22中判定出传递到油压泵31的转矩不足时,在步骤S23中,CPU判定是否能够由外部电源供给电力。若判定为能够由外部电源供给电力,则将处理移至步骤S24,若判定为不能由外部电源供给电力,则将处理移至步骤S25。
[0102] (步骤S24)
[0103] 步骤S23中判定为能够由外部电源供给电力时,在步骤S24中,CPU利用外部电源的电力驱动电动发电机41b并结束动力控制处理。
[0104] (步骤S25)
[0105] 步骤S23中判定为不能由外部电源供给电力时,在步骤S25中,CPU利用电池41c的电力驱动电动发电机41b并结束动力控制处理。
[0106] (步骤S26)
[0107] 步骤S22中判定为传递到油压泵31的转矩非不足时,在步骤S26中,CPU使电动发电机41b停止运转并结束动力控制处理。
[0108] 在图6中,示出了上述行驶模式、超低噪音作业模式、低噪音作业模式以及中等噪音作业模式的各模式中各动力源的输出比率。
[0109] 如此一来,采用本实施方式的作业车辆,可以用电源电缆41f供给的外部电源的电力驱动电动发电机41b,并利用电动发电机41b的动力来驱动油压泵31。由此,在具有外部电源的作业场所进行起重机装置20作业时,由于能够持续地利用发动电动机41b的动力驱动油压泵31,因此可维持起重机装置20的高静音性。
[0110] 此外,在外部电源的电力和电池41c的电力之间进行切换并作为供给电动发电机41b的电力。由此,即使在不能稳定地供给外部电源的电力的情况下,也能够利用电动发电机41b的动力进行起重机装置20的作业。
[0111] 另外,在利用电动发电机41b的动力驱动油压泵31时,可将发动机41a的动力作为油压泵31的动力而附加给油压泵31。由此,在利用电动发电机41b的动力驱动油压泵31时,作用于起重机装置20的负载超过电动发电机41b的最大输出的情况下,由于可以附加发动机41a的动力作为油压泵31的动力,因此能够可靠地进行起重机装置20的作业。在这种情况下,由于能够将低速旋转驱动的发动机41a的动力附加作为油压泵31的动力,以进行起重作业,因此既能够维持静音性,也能够防止能量消耗的增加。
[0112] 此外,在利用以规定转速驱动的发动机41a的动力驱动油压泵31时,可将电动发电机41b的动力附加作为油压泵31的动力。由此,在利用以规定转速驱动的发动机41a的动力驱动油压泵31时,作用于起重机装置20的负载超过以规定转速驱动的发动机41a的输出的情况下,由于能够将电动发电机41b的动力附加作为油压泵31的动力,因此能够在维持低噪音的状态下进行起重机装置20的作业。
[0113] 另外,通常,相对于移动式起重机1的重量,发动机41a的输出较小,因此移动式起重机1在加速等情形下的行驶性能较低。然而,采用本实施方式的移动式起重机1的话,在其行驶中,由于能将电动发电机41b的动力作为辅助输出传递至传动轴44,或是由传动轴44驱动电动发电机41b使之发电,因此可提高行驶性能,并能防止能量消耗的增加。
[0114] 此外,作为行驶及起重作业用的动力,由于具备小型电动发电机41b,因此能够由发动机及电动机驱动现有的发动机驱动型移动式起重机。由此,能够提高移动式起重机1的行驶性能和节能效果。
[0115] 另外,对于为提供行驶用的辅助动力而设置有电动机的现有移动式起重机,在其进行起重作业时能够附加电动发电机41b的动力。由此,能够提高起重作业时的节能效果和静音性。
[0116] 此外,在上述实施方式中,虽然记载了一种作为作业车辆的、具备利用油压泵31吐出的作业油驱动的起重机装置20的移动式起重机1,但并不限定于此。只要是利用油压泵吐出的作业油驱动的装置,例如,高处作业车及挖掘机等油压式作业车辆也可应用本发明。
[0117] 另外,在上述实施方式中,虽然记载了一种将PTO机构46设置在变矩器42上的装置,但只要是能够获取发动机41a和电动发电机41b的动力的装置,例如,在变速器43和其它齿轮箱上也可设置PTO机构。此外,作为驱动机构,也可以采用不具备变矩器42的变矩方式。
[0118] 另外,在上述实施方式中,虽然记载了在中等噪音作业模式中,利用任意转速的发动机41a的动力驱动油压泵31的装置,然而也可设定中等噪音作业模式中发动机41a的最大输出,自动设定最大输出。例如,按照静音性能的高低顺序,也可从发动机41a最大输出的30%、40%、50%进行选择,根据车辆导航系统位置信息和时间带,自动选择发动机41a的最大输出,在所选择的最大输出范围内,进行中等噪音作业模式的作业。
[0119] 此外,在上述实施方式中,虽然记载了主要利用外部电源的电力驱动电动发电机41b并利用电动发电机41b的动力进行起重作业、发动机41a的动力或电池41c的电力附加作为油压泵31的动力,以及主要利用发动机41a的动力进行起重作业、将电动发电机41b的动力附加作为油压泵31的动力的装置,然而并不限定于此。例如,也可主要利用电池41c的电力驱动电动发电机41b并利用电动发电机41b的动力进行起重作业,将发动机41a的动力和外部电源的电力附加作为油压泵31的动力。
[0120] 另外,在上述实施方式中,虽然记载了具备最大输出为发动机41a最大输出的约30%的输出的电动发电机41b的装置,但并不限定于此。例如,也可使用最大输出为发动机
41a最大输出的约50%的输出的电动发电机。在这种情况下,由于利用电动发电机的动力可使起重作业时操作的负载变大,因此能够进一步提高起重作业时的静音性。此外,除了电动发电机41b,例如,即使另外具备最大输出为发动机41a最大输出的50%的、由外部电源驱动的电动马达,由于电动驱动可对应的起重作业时的负载变大,因此能够进一步提高起重作业时的静音性。
[0121] 此外,在上述实施方式中,虽然记载了可利用电池41c的电力和外部电源的电力驱动电动发电机41b的装置,但并不限定于此。例如,也可分别具备由电池41c的电力驱动的电动发电机和可由外部电源的电力驱动的电动马达。
[0122] 另外,在上述实施方式中,虽然记载了在低噪音作业模式中,利用输出为最大输出的20%的、以规定转速的发动机41a的动力驱动油压泵31的装置,但并不限定于此。例如,在输出为最大输出的10%的、低转速的怠速运行进行低噪音作业模式的情况下,将电动发电机41b的动力附加到油压泵31,从而防止由于驱动油压泵31的转矩的不足而导致发动机41a意外地停止,即所谓的发动机停机。
[0123] 此外,在上述实施方式中,虽然记载了相对于发动机41a的最大输出的、发动机41a以及电动发电机41b的具体的输出比率,然而发动机41a以及电动发电机41b的输出比率随着应用本发明的作业车辆的种类不同而不同,因此不限定于本发明所记载的输出比率。
[0124] 另外,在上述实施方式中,虽然记载了在行驶模式和各作业模式中,用相对于发动机41a的最大输出的比率来表示发动机41a及电动发电机41b的驱动状态,然而并不限定于此。例如,也可用相对于发动机41a的最高转速的比率来表示发动机41a及电动发电机41b的驱动状态。
[0125] 此外,在上述实施方式中,虽然具体记载了过负荷防止装置50的控制器进行行驶时的控制和起重作业时的控制,然而并不限定于此。例如,也可与过负荷防止装置50分开设置进行行驶时控制的专用的行驶用控制器和进行作业时控制的专用的作业用控制器。
[0126] 符号说明
[0127] 1    移动式起重机
[0128] 10   车辆
[0129] 20   起重装置
[0130] 30   油压供给装置
[0131] 31   油压泵
[0132] 40   动力装置
[0133] 41   动力源单元
[0134] 41a  发动机
[0135] 41b  电动发电机
[0136] 41c  电池
[0137] 41d  电动发电机驱动控制部
[0138] 41e  离合器
[0139] 42   变矩器
[0140] 43   变速器
[0141] 44   传动轴
[0142] 50   过负荷防止装置
QQ群二维码
意见反馈