车辆的控制装置以及控制方法

申请号 CN201380079984.0 申请日 2013-09-30 公开(公告)号 CN105593092B 公开(公告)日 2017-09-08
申请人 日产自动车株式会社; 发明人 池田直泰; 伊东良祐;
摘要 公开了一种具备 发动机 (1)和电动发 电机 (2)的混合动 力 车辆的控制装置。混合动力车辆利用发动机(1)来驱动 空调 装置(41)的 压缩机 (42),因此在空调装置(41)工作时为“HEV模式”。基于制冷剂压力(PPD)来估计驱动压缩机(42)所需的空调用负荷,从而设定发动机(1)等的 请求 扭矩 ,但在后退时,由于不存在针对 冷凝器 (43)的行驶 风 ,因此与前进时相比,驱动压缩机(42)所消耗的扭矩大。在本 发明 中使用后退时用对应图(55)来求出恰当的空调用负荷。
权利要求

1.一种车辆的控制装置,该车辆利用车辆驱动源来驱动空调装置用的压缩机,并且所述空调装置的冷凝器被配置在车辆前方,
所述控制装置将对车辆驱动源指示的请求扭矩确定为将驱动所述压缩机所消耗的空调用负荷与基于驾驶员的加速操作求出的由驱动轮驱动车辆所需的行驶扭矩相加所得到的扭矩,
读入表示所选择的档位的档位信号
在所述空调装置运转且档位为后退档时,进行以下处理:与档位为前进档时相比,针对空调装置的相同的制冷剂压将所述空调用负荷设为相对大的值。
2.根据权利要求1所述的车辆的控制装置,其特征在于,
根据以空调装置的冷凝器内的制冷剂压力为输入的对应图来求出所述空调用负荷,所述对应图在前进档和后退档时具有不同的特性。
3.根据权利要求1或2所述的车辆的控制装置,其特征在于,
以车速在规定车速以上为附加条件来进行所述处理。
4.一种车辆的控制方法,该车辆利用车辆驱动源来驱动空调装置用的压缩机,并且所述空调装置的冷凝器被配置在车辆前方,
在该车辆的控制方法中,
将对车辆驱动源指示的请求扭矩确定为将驱动所述压缩机所消耗的空调用负荷与基于驾驶员的加速操作求出的由驱动轮驱动车辆所需的行驶扭矩相加所得到的扭矩,读入所选择的档位,
在所述空调装置运转且档位为后退档时,与档位为前进档时相比,针对空调装置的相同的制冷剂压力将所述空调用负荷设为相对大的值。

说明书全文

车辆的控制装置以及控制方法

技术领域

[0001] 本发明涉及一种利用车辆驱动源来驱动空调装置用压缩机的车辆的控制。

背景技术

[0002] 已知一种具备发动机达来作为车辆驱动源的混合动车辆。在专利文献1中公开了一种如下结构的混合动力车辆:电动发电机位于发动机与驱动轮之间,发动机与电动发电机以能够断开的方式经由离合器进行连接,并且在电动发电机与变速机输入轴之间安装手动离合器。
[0003] 另外,在专利文献2中公开了如下一种技术:在混合动力车辆中,考虑到由发动机驱动的空调装置用压缩机的负荷,对发动机和电动发电机的扭矩进行控制。
[0004] 在此,驱动空调装置用压缩机所消耗的负荷难以直接检测,一般利用空调装置的某些参数来估计所消耗的负荷。
[0005] 在上述专利文献2中没有公开使驱动压缩机所需的负荷在车辆前进时和后退时不同的情况。
[0006] 但是,在车辆的空调装置中,以车辆前进时的行驶为前提设定了冷凝器的配置等,因此在后退时行驶风实质上不发挥作用。因而,对于相同的热负荷,与前进时相比,后退时的压缩机的驱动负荷大。因此,在利用空调装置的某些参数估计出空调装置用压缩机的负荷的情况下,与前进时相比,在后退时实际对驱动轮施加的扭矩减少。
[0007] 专利文献1:日本特开2013-159330号公报
[0008] 专利文献2:日本特开2000-23309号公报

发明内容

[0009] 本发明提供一种车辆的控制装置,该车辆利用车辆驱动源来驱动空调装置用的压缩机,并且所述空调装置的冷凝器被配置在车辆前方,
[0010] 所述控制装置将对车辆驱动源指示的请求扭矩确定为将驱动所述压缩机所消耗的空调用负荷与基于驾驶员的加速操作求出的由驱动轮驱动车辆所需的行驶扭矩相加所得到的扭矩,
[0011] 读入表示所选择的档位的档位信号
[0012] 在所述空调装置运转且档位为后退档时,与档位为前进档时相比,针对空调装置的相同的制冷剂压力将所述空调用负荷设为相对大的值。
[0013] 这样,在后退时对请求扭矩进行增加校正,由此抵消与基于上述行驶方向的行驶风有关的空调用负荷的影响。因而,即使在后退时也能够由驱动轮高精度地获得期望的扭矩。附图说明
[0014] 图1是表示应用本发明的混合动力车辆的系统结构的结构说明图。
[0015] 图2是表示混合动力车辆的模式切换的特性的特性图。
[0016] 图3是进行空调用负荷的估计的主要部分的功能框图

具体实施方式

[0017] 下面,基于附图来详细地说明本发明的一个实施例
[0018] 图1是示出FF(前置发动机/前置驱动)型混合动力车辆的系统结构来作为应用本发明的混合动力车辆的一例的结构说明图。
[0019] 该混合动力车辆具备发动机1和电动发电机2来作为车辆的驱动源,并且具备皮带式无级变速机3来作为变速机构。在发动机1与电动发电机2之间安装有第一离合器4,在电动发电机2与皮带式无级变速机3之间安装有第二离合器5。
[0020] 发动机1例如由汽油发动机构成,基于来自发动机控制器20的控制指令来进行启动控制以及停止控制,并且控制节气的开度并进行燃油切断控制等。
[0021] 上述发动机1的输出轴与电动发电机2的转子之间设置的第一离合器4根据所选择的行驶模式,将发动机1与电动发电机2结合,或者将发动机1从电动发电机2分离,该第一离合器4基于来自CVT控制器21的控制指令利用由图外的液压单元生成的第一离合器液压来控制接合/断开。在本实施例中,第一离合器4是常开型的结构。
[0022] 电动发电机2例如由三相交流的同步型电动发电机构成,与包括高电压电池12、逆变器13以及强电系继电器14的强电电路11连接。电动发电机2基于来自马达控制器22的控制指令进行马达动作(所谓的动力运转)和再生动作这两个动作,其中,在该马达动作中,经由逆变器13接收来自高电压电池12的电力供给并输出正扭矩,在该再生动作中,吸收扭矩来发电,经由逆变器13进行高电压电池12的充电。
[0023] 在电动发电机2的转子与无级变速机3的输入轴之间设置的第二离合器5进行包括发动机1和电动发电机2的车辆驱动源与驱动轮6(前轮)之间的动力的传递和切断该动力的传递,该第二离合器5基于来自CVT控制器21的控制指令利用由图外的液压单元生成的第二离合器液压来控制接合/断开。特别是,第二离合器5能够通过传递扭矩容量的可变控制而成为伴随滑动来进行动力传递的滑动接合状态,在不具备液力变矩器的结构中,能够进行平滑的起步并且实现缓慢行驶。
[0024] 在此,上述第二离合器5实际上并非单一的摩擦元件,设置于无级变速机3的输入部的前进后退切换机构中的前进离合器或后退制动器被用作第二离合器5。将向无级变速机3输入的输入旋转方向在前进行驶时的正转方向和后退行驶时的反转方向之间切换的前进后退切换机构虽然没有详细地图示,但包括行星齿轮机构、在前进行驶时接合的前进离合器以及在后退行驶时接合的后退制动器,在前进行驶时前进离合器作为第二离合器5而发挥功能,在后退行驶时后退制动器作为第二离合器5而发挥功能。在成为第二离合器5的前进离合器和后退制动器二者断开的状态下,不进行扭矩传递,电动发电机2的转子实质上与无级变速机3分离。此外,在本实施例中,前进离合器和后退制动器均为常开型的结构。
[0025] 皮带式无级变速机3具有输入侧的主皮带轮、输出侧的副皮带轮以及卷绕在二者之间的金属制的皮带,基于来自CVT控制器21的控制指令利用由图外的液压单元生成的主液压和副液压来连续地控制各皮带轮的皮带接触半径甚至变速比。该无级变速机3的输出轴经由未图示的终减速机构与驱动轮6连接。
[0026] 上述发动机1具备启动用的起动马达25。该起动马达25由与电动发电机2相比额定电压低的直流马达构成,与包括DC/DC转换器16和低电压电池17的弱电电路15连接。起动马达25基于来自发动机控制器20的控制指令而被驱动,来转动发动机1的动力输出轴。
[0027] 另外,该车辆具备包括压缩机42、冷凝器43以及未图示的鼓风风扇等的空调装置41。该空调装置41的压缩机42构成为经由未图示的电磁离合器被发动机1的输出机械性地驱动。
[0028] 利用来自包括高电压电池12的强电电路11的电力经由DC/DC转换器16对上述低电压电池17进行充电。此外,包括发动机控制器20等的车辆的控制系统、车辆的空调装置41、音频装置以及照明等接收弱电电路15的电力供给。
[0029] 上述混合动力车辆的控制系统除了具备上述发动机控制器20、CVT控制器21以及马达控制器22以外,还具备进行车辆整体的综合控制的综合控制器23,这些各控制器20、21、22、23经由能够互相进行信息交换的CAN通信线24进行连接。另外,具备加速踏板开度传感器31、发动机转速传感器32、车速传感器33以及马达转速传感器34等各种传感器,这些传感器的检测信号被独立地或者经由CAN通信线24输入到综合控制器23等各控制器。
[0030] 并且,请求空调装置41运转的来自空调开关44的信号ACSW被输入到综合控制器23。另外,具备检测冷凝器43内的制冷剂压力PPD来作为表示空调装置41的运转状态的参数的制冷剂压力传感器45,将其检测信号输入到综合控制器23。
[0031] 另外,上述皮带式无级变速机3具备由驾驶员操作的选档杆46,将表示通过该选档杆46选择的档位的档位信号从选档开关47输入到综合控制器23和CVT控制器21。作为档位,具有在后退时选择的R档(倒档)、在正常前进时选择的D档(驱动档)、N档(手动档)、进行限制了变速比的前进行驶的L档(低档)等。CVT控制器21根据所选择的档位进行上述前进后退切换机构的切换、目标变速比的设定。
[0032] 如上所述那样构成的混合动力车辆具有电动汽车行驶模式(以下称为“EV模式”)、混合动力行驶模式(以下称为“HEV模式”)以及驱动扭矩控制起步模式(以下称为“WSC模式”)等行驶模式,根据车辆的运转状态、驾驶员的加速操作等来选择最佳的行驶模式。
[0033] “EV模式”是使第一离合器4为断开状态、仅将电动发电机2作为驱动源来行驶的模式,具有马达行驶模式和再生行驶模式。在驾驶员的请求驱动力比较低时选择该“EV模式”。
[0034] “HEV模式”是使第一离合器4为接合状态、将发动机1和电动发电机2作为驱动源来行驶的模式,具有马达辅助行驶模式、行驶发电模式以及发动机行驶模式。在驾驶员的请求驱动力比较大时以及存在基于高电压电池12的充电状态(SOC)、车辆的运转状态等的来自系统的请求时,选择该“HEV模式”。在来自空调开关44的信号ACSW为开的情况下,为了驱动压缩机42而选择“HEV模式”。
[0035] “WSC模式”是在车辆起步时等车速比较低的区域选择的模式,通过对电动发电机2进行转速控制并且对第二离合器5的传递扭矩容量进行可变控制,来使第二离合器5为滑动接合状态。
[0036] 图2示出了基于车速VSP和加速踏板开度APO的所述“EV模式”、“HEV模式”以及“WSC模式”的基本的切换特性。如图示那样,从“HEV模式”向“EV模式”转变的“HEV→EV切换线”和相反地从“EV模式”向“HEV模式”转变的“EV→HEV切换线”被设定为具有适当的迟滞。另外,在规定的车速VSP1以下的区域成为“WSC模式”。
[0037] 在此,在空调开关44接通而使空调装置41运转时,如上所述那样成为“HEV模式”,利用发动机1驱动压缩机42,并且将发动机1和电动发电机2作为驱动源来使车辆行驶。向包括发动机1和电动发电机2的驱动源请求的请求扭矩基本上是以下扭矩,即,将由驱动轮6驱动车辆所需的行驶扭矩加上驱动空调装置41的压缩机42所消耗的空调用负荷和电动发电机2的发电所消耗的发电用负荷而得到的扭矩。综合控制器23在决定了向包括发动机1和电动发电机2的驱动源整体请求的请求扭矩之后,决定各自的份额、即发动机1和电动发电机2各自的请求扭矩,对发动机控制器20和马达控制器22提供控制指令。例如基于由驾驶员的加速操作产生的请求来求出所述行驶扭矩。基于作为表示空调装置41的运转状态的参数而由制冷剂压力传感器45检测出的冷凝器43内的制冷剂压力PPD,来估计所述空调用负荷。另外,基于根据高电压电池12的充电状态(SOC)、各种电气组件的消耗电力等确定的目标发电量来求出发电用负荷。
[0038] 在本实施例中,所述空调用负荷在车辆前进时和后退时被设定为不同的值。也就是说,考虑到在前进时空调装置41的冷凝器43遭受行驶风而在后退时得不到行驶风的作用,对于相同的制冷剂压力PPD的值,在后退时提供更大的空调用负荷。
[0039] 图3是将该空调用负荷的估计的处理表示为功能框图而得到的图。向比较部51输入车速信号VSP,并且输入规定的车速阈值VSPsh,在车速VSP为阈值VSPsh以上的情况下,作为向AND电路部52输入的标志FL1而输出“1”。所述阈值VSPsh相当于能够视为车辆正在行驶的最低限度的速度,换句话说相当于行驶风对空调装置41造成影响的最低限度的速度,例如被设定为5km/h左右。
[0040] 将在后退时(选择了R档位时)从选档开关47输出的倒档信号与上述标志FL1一起输入到AND电路部52。在标志FL1为“1”且倒档信号为开(或者“1”)时,AND电路部52输出“1”,来作为要被输入到切换部53的标志FL2。
[0041] 切换部53切换前进时用对应图54和后退时用对应图55来作为用于估计空调用负荷的对应图,在标志FL2为“0”的情况下选择前进时用对应图54,在标志FL2为“1”的情况下选择后退时用对应图55。
[0042] 在前进时用对应图54和后退时用对应图55中均分配了与冷凝器43内的制冷剂压力PPD相对应的空调用负荷的特性,并输出与由制冷剂压力传感器45检测出的制冷剂压力PPD的值相对应的空调用负荷。在此,考虑到行驶风的影响,与前进时用对应图54相比,在后退时用对应图55中,对于同一制冷剂压力PPD,分配了更大的空调用负荷的值。此外,在由于制冷剂压力传感器45的故障等导致制冷剂压力PPD的值为异常值的情况下,对对应图54、55所输出的空调用负荷的值设置规定的临界值,以避免空调用负荷变得过大。
[0043] 因而,作为最终的空调用负荷(AC负荷),在车辆前进时输出基于前进时用对应图54的相对小的值,在车辆后退时输出基于后退时用对应图55的相对大的值。
[0044] 在综合控制器23中,考虑这样估计的空调用负荷,来计算向包括发动机1和电动发电机2的驱动源请求的请求扭矩。因而,在驾驶员所请求的行驶扭矩、发电用负荷相同的情况下,与前进时相比,后退时的向驱动源请求的请求扭矩相对大。因此,能够抵消由与行驶方向有关的对冷凝器43施加的行驶风的有无导致的实际的压缩机驱动扭矩的差异,从而能够在前进时和后退时均等地获得驱动轮6的行驶扭矩。
[0045] 另外,在上述实施例中,车速VSP作为附加条件,在车速VSP小于可视为车辆实质上停止的车速阈值VSPsh时,即使是R档也直接使用前进时用对应图54。也就是说,在车辆停止时乃至极低车速区域,实质上不存在与行驶方向有关的行驶风的影响,因此与选档杆46的位置无关地使用前进时用对应图54。由此,能够避免不必要的请求扭矩的增加。
[0046] 此外,在上述实施例中,通过对应图54、55的切换实现了后退时的空调用负荷的校正,但例如也可以在后退时对基于制冷剂压力PPD通过对应图或者运算式求出的空调用负荷的值进行增加校正。
[0047] 或者,也可以是,作为空调用负荷,在前进时和后退时使用同一空调用负荷,仅在后退时沿增加方向对基于该空调用负荷决定的向驱动源请求的请求扭矩的值施加某些校正,由此抵消与行驶方向有关的压缩机驱动扭矩的差异。
QQ群二维码
意见反馈