新硬焊概念

申请号 CN201380016844.9 申请日 2013-03-27 公开(公告)号 CN104185533B 公开(公告)日 2017-05-17
申请人 阿尔法拉瓦尔股份有限公司; 发明人 P.斯杰丁; K.瓦特;
摘要 本 发明 涉及包含基底金属和 硼 与 硅 的共混物的用于通过硬焊来连接和涂布的中间产品,所述基底金属具有高于1040℃的固相线 温度 ,且所述中间产品在所述基底金属上至少部分地具有所述共混物的表 面层 ,其中在所述共混物中的硼选自硼源,且在所述共混物中的硅选自硅源,且其中所述共混物包含以在约3:100 wt/wt‑约100:3 wt/wt范围内的硼与硅的比率的硼和硅。所述方法还涉及堆叠的中间产品、组装的中间产品、硬焊方法、硬焊产品、中间产品的用途、预硬焊产品、共混物和漆料。
权利要求

1.用于硬焊在基底金属产品中的接缝和/或用于涂布基底金属产品的共混物,所述基底金属具有高于1040℃的固相线温度,所述共混物包含,所述硼选自硼源,且所述硅选自硅源,其中所述共混物包含以在15:100 wt/wt-4:10 wt/wt范围内的硼与硅的比率的硼和硅,且其中所述共混物还包含选自溶剂、大漆、清漆、基于单体和/或聚合物粘合剂的至少一种粘合剂,其中所述硼源选自硼、B4C、B4Si、NiB和FeB,且所述硅源选自硅、FeSi、SiC和B4Si。
2.权利要求1的共混物,其中所述溶剂选自、油、凝胶。
3.权利要求1或2的共混物,其中所述至少一种粘合剂选自聚酯、聚乙烯、聚丙烯、丙烯酸类聚合物、聚乙烯醇、聚乙酸乙烯酯、聚苯乙烯。
4.权利要求3的共混物,其中所述丙烯酸类聚合物为甲基丙烯酸类聚合物。
5.权利要求1或2的共混物,其中所述共混物粒子具有小于250μm的粒度。
6.权利要求1或2的共混物,其中所述共混物还包含具有高于1040℃的固相线温度的基底金属的粉末。
7.权利要求1或2的共混物,其中所述共混物为漆料。
8.用于通过硬焊来连接和/或涂布的中间产品,其包括基底金属产品的板和/或部件和硼与硅的共混物,所述基底金属具有高于1040℃的固相线温度,且所述中间产品在所述基底金属上至少部分地具有所述共混物的表面层,其中在所述共混物中的硼选自硼源,且在所述共混物中的硅选自硅源,且其中所述共混物包含以在15:100 wt/wt-4:10 wt/wt范围内的硼与硅的比率的硼和硅,其中所述硼源选自硼、B4C、B4Si、NiB和FeB,且所述硅源选自硅、FeSi、SiC和B4Si。
9.权利要求8的中间产品,其中所述基底金属具有< 1mm的厚度且所述共混物以小于
2.9mg/mm2的平均量施用在所述基底金属上。
10.权利要求8的中间产品,其中所述基底金属具有≥ 1mm的厚度。
11.权利要求8、9或10的中间产品,其中所述共混物还包含选自溶剂、大漆、清漆、基于单体和/或聚合物的粘合剂的至少一种粘合剂。
12.权利要求11的中间产品,其中所述溶剂选自水、油、凝胶。
13.权利要求8、9或10的中间产品,其中所述共混物还包含选自聚酯、聚乙烯、聚丙烯、丙烯酸类聚合物、聚乙烯醇、聚乙酸乙烯酯、聚苯乙烯的至少一种粘合剂。
14.权利要求13的中间产品,其中所述丙烯酸类聚合物为甲基丙烯酸类聚合物。
15.权利要求8、9或10的中间产品,其中所述共混物包含具有< 250μm的粒度的粒子。
16.权利要求8、9或10的中间产品,其中所述共混物包含具有< 160μm的粒度的粒子。
17.权利要求8、9或10的中间产品,其中所述共混物包含具有< 50μm的粒度的粒子。
18.权利要求8、9或10的中间产品,其中所述表面层作为所述共混物的粉末施用或通过选自喷雾沉积、物理气相沉积化学气相沉积的方法施用。
19.权利要求8、9或10的中间产品,其中所述基底金属选自合金、镍基合金、铬基合金和基合金。
20.权利要求8、9或10的中间产品,其中所述基底金属包含15-22重量%铬、8-22重量%镍、0-3重量%锰、0-1.5重量%硅、任选1-8重量%钼和余量的铁。
21.权利要求8、9或10的中间产品,其中所述共混物的表面层提供在板的至少一侧上,或所述共混物的表面层提供在板的两侧上。
22.权利要求8、9或10的中间产品,其中所述基底金属和所述表面层已经暴露于高于所形成的硬焊合金的固相线温度且低于所述基底金属的固相线温度的温度且所述硬焊合金层已经在所述基底金属表面上形成。
23.权利要求8、9或10的中间产品,其中在施用所述表面层之前,在施用所述表面层之后或在所述基底金属的表面上形成所述硬焊合金之后,将所述板切割、成型、压制或其组合。
24.用于硬焊的堆叠的中间产品,其包括权利要求8-23中任一项的中间产品,其中所述板堆叠,使得所述板的表面层与基底金属接触或与在另一板上的另一表面层接触。
25.权利要求24的堆叠的中间产品,其中堆叠的板没有表面层、具有单表面层、具有双表面层和/或其组合,所述单表面层即在所述板的一侧上有一个层,所述双表面层即在所述板的各侧上具有一层。
26.用于硬焊的组装的中间产品,其包括一个或多个权利要求8-23中任一项的中间产品,其中至少一个中间产品具有≥ 1mm的厚度,且其中所述组装的中间产品具有与至少一个基底金属的表面接触或在硬焊之前与至少一个表面层接触,且在硬焊之后获得一个或多个硬焊接缝的至少一个表面层。
27.通过硬焊权利要求24-26中任一项的堆叠或组装的中间产品获得的堆叠的硬焊产品或组装的硬焊产品,其中所述堆叠的中间产品或所述组装的中间产品在低于1250℃的温度下在真空炉中、在惰性气体中、在还原气氛中或其组合硬焊,在所述堆叠的板之间或在所述组装的中间产品的接触表面之间形成硬焊合金的硬焊接缝,所述硬焊合金在所述基底金属和所述共混物的熔融过程中形成,且以熔融形式的所述硬焊合金通过毛细管主要从邻近区域运输到所述接缝区域。
28.获得硬焊产品的方法,所述方法包括以下步骤:
(i) 在基底金属产品的板或部件上施用共混物,所述基底金属具有高于1040℃的固相线温度,所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源,其中所述共混物包含以在15:100 wt/wt-4:10 wt/wt范围内的硼与硅的比率的硼和硅,其中所述硼源选自硼、B4C、B4Si、NiB和FeB,且所述硅源选自硅、FeSi、SiC和B4Si,
(ii) 获得权利要求8-23中任一项的中间产品;
(iii) 任选将在步骤(ii)中获得的中间产品暴露于高于所述形成硬焊合金的固相线温度且低于所述基底金属的固相线温度的温度和在所述基底金属表面上形成所述硬焊合金层;
(iv) 组装或堆叠来自步骤(ii)或步骤(iii)的产品与一个或多个根据步骤(ii)或步骤(iii)的产品,或组装或堆叠所述产品与一个或多个没有硅与硼的共混物的部件,和形成组装的产品或堆叠的产品;
(v) 在真空炉中、在惰性气体中、在还原气氛中或其组合将来自步骤(iv)的组装或堆叠的产品硬焊到低于1250℃的温度;和
(vi) 获得硬焊产品。
29.权利要求28的方法,其中在步骤(vi)中获得的硬焊产品提供有通过在所述基底金属和所述共混物的熔融过程中形成硬焊合金和通过毛细管力将以熔融形式的所述硬焊合金主要从邻近区域运输到接缝区域而获得的一个或多个接缝。
30.权利要求28-29中任一项的方法,其中步骤(iv) 将来自步骤(ii)或步骤(iii)的产品硬焊到具有≥ 1mm的厚度的基底金属,或硬焊到具有< 1mm的厚度的基底金属,或硬焊到一个或多个权利要求8-23中任一项的中间产品。
31.权利要求28-29中任一项的方法,其中所述基底金属具有< 1mm的厚度且所述共混物以基于硅和硼计算小于2.9mg/mm2的平均量施用在所述基底金属上。
32.权利要求28-29中任一项的方法,其中将来自步骤(ii)或步骤(iii)的产品切割、成型、压制或其组合,获得板。
33.权利要求32的方法,其中所述板选自换热器板或反应器板。
34.权利要求28-29中任一项的方法,其中所述获得的硬焊产品选自换热器、板式反应器、反应器的部件、分离器的部件、滗析器的部件、的部件、的部件。
35.通过权利要求28-34中任一项的方法获得的硬焊产品,其中所述硬焊产品的一个或多个接缝通过硬焊合金获得,所述硬焊合金在所述基底金属和所述共混物的熔融过程中形成,且以熔融形式的所述硬焊合金通过毛细管力主要从邻近区域运输到所述接缝区域。
36.通过权利要求28-34中任一项的方法获得的硬焊产品,其中在所述硬焊合金中见到的除了所述基底金属元素以外的元素有Si、B和任选的C,且其中所述基底金属具有高于
1040℃的固相线温度。
37.权利要求8-23中任一项的中间产品用于硬焊用于换热器、板式反应器、反应器的部件、分离器的部件、滗析器的部件、泵的部件、阀门的部件的部件或产品的用途。
38.包括具有高于1040℃的固相线温度的基底金属产品的板和/或部件的用于硬焊的预硬焊产品,所述预硬焊产品通过在所述基底金属产品的板和/或部件上施用共混物的表面层获得,所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源,其中所述共混物包含以在15:100 wt/wt-4:10 wt/wt范围内的硼与硅的比率的硼和硅,其中所述基底金属和所述表面层已经暴露于高于所形成的硬焊合金的固相线温度且低于所述基底金属的固相线温度的温度,且所述硬焊合金的获得层在所述基底金属产品的板和/或部件的表面上,其中所述硼源选自硼、B4C、B4Si、NiB和FeB,且所述硅源选自硅、FeSi、SiC和B4Si。

说明书全文

新硬焊概念

[0001] 本发明涉及新硬焊概念、用于通过硬焊连接和/或涂布的中间产品。所述方法还涉及堆叠的中间产品、组装的中间产品、硬焊方法、通过所述方法获得的硬焊产品、中间产品的用途、预硬焊产品、共混物和漆料。
[0002] 背景
[0003] 现今存在将具有高熔融温度合金连接在一起的不同连接方法。对于高温,指的是高于900℃的熔融温度。一种常用方法是焊接(welding)。焊接是指其中在有或没有另外材料的情况下将基底材料熔融,即经由熔融和再凝固产生铸造产品的方法。另一连接方法是硬焊(brazing)。在硬焊过程期间,将硬焊填料加到基底材料中,且硬焊填料在该过程期间在高于450℃的温度下熔融,即,在低于欲连接的基底材料的液相线温度的温度下形成液体界面。在硬焊时,液体界面应当良好润湿并流动。软焊(soldering)是两种或更多种金属物品通过填料金属(即软焊剂)熔融并流动到接缝中而连接在一起的方法,该软焊剂具有比工件低的熔点。在硬焊中,填料金属在比软焊剂高的温度下熔融,而工件金属不会熔融。在软焊和硬焊之间的差别是基于填料合金的熔融温度。通常将450℃的温度用作在软焊和硬焊之间的实际界点(delineating poit)。
[0004] 在硬焊时,施用硬焊填料以与在欲连接的基底材料之间的间隙或空隙接触。在加热过程期间,硬焊填料熔融并填充欲连接的间隙。在硬焊过程中,有三个主要阶段,第一阶段被称作物理阶段。物理阶段包括硬焊填料的润湿和流动。第二阶段通常在给定的连接温度下发生。在该阶段期间,存在固-液相互作用,其伴随着明显的质量传递。在该阶段,上连接液态填料金属的基底材料体积溶解或与该填料金属反应。同时,来自液相的少量元素渗透到固态基底材料中。组分在连接区域中的该重新分配引起填料金属组成的改变,且有时引起填料金属凝固的发生。与第二阶段重叠的最后阶段的特征在于形成最终接缝微观结构并在接缝的凝固和冷却期间发展。
[0005] 与焊接和硬焊密切相关的方法有扩散硬焊(DFB),也称作瞬时液相连接(Transient Liquid-phase bonding,TLP),或活化扩散连接(Activated Diffusion Bonding,ADB)。有时提到扩散连接,但扩散连接是指扩散硬焊或扩散焊接,且现在将扩散连接视为非标准术语。
[0006] 扩散硬焊(DFB)、瞬时液相连接(TLP)或活化扩散连接(ADB)是通过将金属加热到合适硬焊温度来接合或连接金属的方法,在该硬焊温度下,预置的填料金属将熔融或通过毛细管引流动或液相将在相互接触的两个表面之间原位形成。在两种情况下,填料金属都扩散到基底材料中,直至接缝的物理和机械性质变得与基底金属的那些性质几乎相同。DFB、TLP或ADB的两个关键方面在于:
[0007] - 液体必须在接缝区域中形成且变得具有活性;和
[0008] - 必须发生填料金属元素向基底材料的深入扩散。
[0009] 获得与在使用DFB、TLP或ADB时获得的接缝接近或相同的接缝、但具有硬焊的优势,例如具有硬焊较大间隙的可能性等的方法是通过使用WO 2002/38327、WO 2008/060225和WO 2008/060226中公开的硬焊技术和硬焊填料。通过使用硬焊填料,即硬焊合金,其具有接近基底材料的组成,但具有加入的熔点抑制剂,例如和/或和/或磷。通过这样做,在硬焊之后,硬焊接缝将具有接近基底材料的组成,因为硬焊填料具有与基底材料类似的组成,硬焊填料由于基底材料的溶解而与基底材料共混且熔点抑制剂扩散到基底材料中。
[0010] 对于选择某一连接方法,存在许多理由,诸如成本、生产率、安全性、速度和所连接产品的性质。密切有关的E-模量将减小在对具有较高E-模量的材料加载荷时该材料中的高应力的危险。当热膨胀系数类似时,结果将减小热诱发的应力。当电化学电位类似时,结果将减小腐蚀的危险。
[0011] 在连接基底金属时,使用填料,即合金,是一项复杂的工艺。该填料必须以可在加热之前施用到基底金属的形式。通常填料为通过雾化合适地生成的粒子,但填料也可以通过“熔融纺丝”,即迅速凝固(RS)生成的箔片的形式。关于RS,仅有有限的组合物可以通过RS生成。可制造成粒子,即粉末的组合物的数目更大,且粉末的常规制造是通过雾化进行。当填料以粉末形式时,它们常与粘合剂组合以形成糊浆,该糊浆可以任何合适的方式施用到基底金属。制造箔片或制造合金粉末是复杂的工艺且因此成本高。当使用粉末时,粉末以如上所述的糊浆形式合适地施用,这将为该工艺增加一个额外步骤,因为必须将糊浆与粘合剂及其他组分共混,这对糊浆的性质有益。对于两种工艺,进行了大量的研究以在熔融和连接之前得到恰当形式、性质、形状和组成的填料。因此,本发明的一个目的在于减少连接基底金属时的工艺步骤。另一目的在于简化基底金属的连接且因此降低成本。
[0012] 如果可能的话,在选择硬焊填料时,接近基底材料的组成是有益的,因为基底材料是出于产品用途而选择的。如果有可能且成本没有限制的话,最好对于各种基底材料研发一种硬焊填料。因此,本发明的另一目的在于减少所需要的硬焊填料的数目。
[0013] 发明
[0014] 因此,本发明通过具有新颖性和创造性的硬焊概念提供对于这些技术问题和目的的解决方案。第一方面涉及用于硬焊在基底金属产品中的接缝和/或用于涂布基底金属产品的共混物,所述基底金属具有高于1040℃的固相线温度。所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源。所述共混物包含以在约3:100 wt/wt-约100:3 wt/wt范围内的硼与硅的比率的硼和硅,且其中所述共混物还包含选自溶剂、油、凝胶、大漆、清漆、基于单体和/或聚合物的粘合剂的至少一种粘合剂。
[0015] 例如,在所述共混物中的硼与硅的比率可在约5:100 wt/wt-约1:1 wt/wt范围内。根据另一实施例,在所述共混物中的硼与硅的比率可在约1:10 wt/wt-约7:10 wt/wt范围内。根据另一实施例,所述共混物可具有在约15:100 wt/wt-约4:10 wt/wt范围内的硼与硅的比率。所述比率为重量/重量。
[0016] 根据一个实施例,所述共混物用于硬焊在基底金属产品中的接缝和/或用于涂布基底金属产品,所述基底金属具有高于1040℃的固相线温度。所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源。所述共混物包含以在1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率的硼和硅,且其中所述共混物还包含一种粘合剂,所述粘合剂为大漆或凝胶。
[0017] 作为另一实施例,可为用于硬焊在基底金属产品中的接缝和/或用于涂布基底金属产品的共混物,所述基底金属具有高于1040℃的固相线温度。所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源。所述共混物包含以在约3:100 wt/wt-约100:3 wt/wt范围内的硼与硅的比率的硼和硅,且其中所述共混物还包含选自聚酯、聚乙烯、聚丙烯、丙烯酸类聚合物、(甲基)丙烯酸类聚合物、聚乙烯醇、聚乙酸乙烯酯、聚苯乙烯的至少一种粘合剂。
[0018] 包含硼和硅的所述共混物的粒度的实例可包括具有小于250μm的粒度的粒子,其中所述硼选自硼源且其中所述硅选自硅源。粒度的另一实例可小于160μm。另一实例可为小于100μm的粒度。另一实例可为小于50μm的粒度。
[0019] 硼与硅的所述共混物可为任何类型的在硼和硅之间的共混物。硼可为硼源。硼源的实例可为硼、B4C、B4Si、NiB和FeB。硅可为硅源。硅源的实例可为硅、FeSi、SiC和B4Si。
[0020] 根据另一实施例,所述共混物用于硬焊在基底金属产品中的接缝和/或用于涂布基底金属产品,所述基底金属具有高于1040℃的固相线温度。所述共混物包含硼和硅。所述共混物包含以在1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率的硼和硅,且其中所述共混物还包含一种粘合剂,所述粘合剂为大漆或凝胶。
[0021] 作为另一实施例,所述共混物还可包含具有高于1040℃的固相线温度的基底金属的粉末。
[0022] 作为一个实施例,所述共混物可为漆料。所述漆料包含以在1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率的硼和硅,且其中所述共混物还包含一种粘合剂,所述粘合剂为大漆。
[0023] 作为另一实施例,所述共混物可为漆料。所述漆料包含以在1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率的硼和硅。所述漆料包含具有小于50μm的粒度的粒子且至少一种粘合剂可选自聚酯、聚乙烯、聚丙烯、丙烯酸类聚合物、(甲基)丙烯酸类聚合物、聚乙烯醇、聚乙酸乙烯酯、聚苯乙烯。
[0024] 第二方面涉及用于通过硬焊连接和/或涂布的中间产品。所述中间产品包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源且其中硅选自硅源。在所述共混物中的硼和硅以在约3:100 wt/wt-约100:3 wt/wt(重量/重量)范围内的硼与硅的比率。
[0025] 所述新硬焊概念例如提供通过硬焊合金获得的接缝,所述硬焊合金在所述基底金属和硼与硅的共混物的熔融过程中形成。以熔融形式的硬焊合金已经通过毛细管力主要从邻近区域运输到接缝区域。所述硬焊概念的温度高于900℃,即高于软焊和硬焊之间的界点。所形成的硬焊合金为这样的合金,其除了基底金属元素外还具有液相线温度降低元素。因此,所述硬焊合金具有低于所述基底合金的液相线温度。
[0026] 所述基底金属为包含诸如(Fe)、铬(Cr)、镍(Ni)、钼(Mo)、锰(Mn)、(Cu)等元素的合金。根据一个实施例,所述基底金属可选自铁基合金、镍基合金、铬基合金和铜基合金。所述合金的实例在表1中的列表中见到,所述基底金属不受该列表限制,而仅为可能的基底金属的实例。
[0027] 根据一个实施例,所述中间产品可包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源,且其中硅选自硅源。在所述共混物中的硼和硅以在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率。所述基底金属可选自铁基合金、镍基合金、铬基合金和铜基合金。
[0028] 根据另一实施例,所述中间产品可包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源,且其中硅选自硅源。在所述共混物中的硼和硅以在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率。所述共混物可包含一种粘合剂,所述粘合剂为大漆或凝胶。所述基底金属可选自铁基合金、镍基合金、铬基合金和铜基合金。
[0029] 表1
[0030]
[0031] 根据一个实施例,所述中间产品可包括基底金属产品的板和/或部件,即,所述基底金属具有高于1040℃的固相线温度且所述基底金属可包含约15-约22重量%铬、约8-约22重量%镍、约0-约3重量%锰、约0-约1.5重量%硅、任选约1-约8重量%钼和余量的铁,所有百分数都以重量%计。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源且其中硅选自硅源。在所述共混物中的硼和硅以在约3:100 wt/wt-约100:3 wt/wt(重量/重量)范围内的硼与硅的比率。
[0032] 根据另一实施例,所述中间产品可包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度且所述基底金属可包含约15-约22重量%铬、约8-约22重量%镍、约0.2-约3重量%锰、约0.1-约1.5重量%硅、任选约1-约8重量%钼和余量的铁,所有百分数都以重量%计。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源且其中硅选自硅源。在所述共混物中硼和硅以在1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率。
[0033] 根据另一实施例,所述基底金属可包含约15-约22重量%铬、约8-约22重量%镍、约1-约3重量%锰、约0.5-约1.5重量%硅、任选约1-约8重量%钼和余量的铁。
[0034] 根据使用的合金,即基底金属,存在具有不同固相线温度的不同基底金属,所述固相线温度为材料在其下凝固的温度点。根据一个实施例,所述基底金属的固相线温度可高于1100℃。根据本发明的一个实施例,所述基底金属的固相线温度可高于1220℃。根据另一实施例,所述基底金属的固相线温度可高于1250℃。根据本发明的另一供选例,所述基底金属的固相线温度可高于1300℃。
[0035] 根据一个实施例,根据第二方面的共混物可具有在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率。根据另一实施例,所述共混物可具有在约1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率。根据另一实施例,所述共混物可具有在约15:100 wt/wt-约4:10 wt/wt范围内的硼与硅的比率。
[0036] 根据第二方面硼与硅的所述共混物可为任何类型的在硼和硅之间的共混物。硼可为硼源,其可选自硼、B4C、B4Si、NiB和FeB。硅可为硅源,其可选自硅、FeSi、SiC和B4Si。
[0037] 根据第二方面的共混物可包含具有小于250μm的粒度的粒子。根据一个供选例,所述粒度可小于160μm。根据另一供选例,所述粒度可小于100μm。根据另一供选例,所述粒度可小于50μm。
[0038] 作为一个实施例,根据第二方面的共混物还可包含选自溶剂、水、油、凝胶、大漆、清漆、基于例如单体或聚合物的粘合剂的至少一种粘合剂。所述粘合剂可选自聚酯、聚乙烯、聚丙烯、丙烯酸类聚合物、(甲基)丙烯酸类聚合物、聚乙烯醇、聚乙酸乙烯酯、聚苯乙烯等。
[0039] 根据一个实施例,所述中间产品可包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源,且其中硅选自硅源。在所述共混物中的硼和硅以在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率。所述共混物可包含一种粘合剂,所述粘合剂为大漆或凝胶。
[0040] 所述表面层可作为所述共混物的粉末施用或通过诸如物理气相沉积(PVD)或化学气相沉积(CVD)的方法施用。物理气相沉积(PVD)为多种真空沉积,且通常用以描述通过冷蒸发形式的所要成膜材料到各种工件表面,例如到半导体晶片上而沉积薄膜的多种方法中的任一种的通用术语。所述涂布方法包括纯粹的物理过程,诸如高温真空蒸发及随后的冷凝,或等离子体溅射轰击,而不包括如在化学气相沉积中的在欲涂布的表面上的化学反应。化学气相沉积(CVD)是用以生成高纯度高性能固体材料的化学方法。该方法例如用于半导体工业中以生成薄膜。在典型的CVD方法中,将晶片,即基材,暴露于一种或多种挥发性前体,其在基材表面上反应和/或分解以生成所要的沉积物。常常还生成挥发性副产物,其通过使气体流经反应室而除去。
[0041] 根据一个实施例,所述中间产品可包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源且其中硅选自硅源。所述表面层可作为所述共混物的粉末施用。在所述共混物中的硼和硅以在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率。所述共混物可包含一种粘合剂,所述粘合剂为大漆或凝胶。
[0042] 根据一个实施例,所述中间产品可包括基底金属产品的板和/或部件,所述基底金属具有高于1040℃的固相线温度。所述中间产品还包括具有共混物的表面层的所述基底金属的至少一部分,所述共混物包含硼(B)和硅(Si),其中硼选自硼源且其中硅选自硅源。所述表面层可作为所述共混物的粉末施用。在所述共混物中硼和硅以在1:10 wt/wt-约7:10 wt/wt范围内的硼与硅的比率。所述共混物可包含一种粘合剂,所述粘合剂为大漆或凝胶。
[0043] 本发明的基底金属可具有< 1mm的厚度,即板具有< 1mm的厚度。当所述基底金属具有< 1mm的厚度时,则所述共混物可以小于2.9mg/mm2的量、优选以小于2.8mg/mm2的量施用在所述基底金属上。施用小于2.9mg/mm2的量、优选小于2.8mg/mm2的量的优势在于其减小或降低焊穿所述板的危险。
[0044] 本发明的基底金属可具有≥ 1mm的厚度。
[0045] 第三方面涉及中间产品,其可通过将所述基底金属和所述共混物的表面层暴露于高于所形成的硬焊合金的固相线温度且低于所述基底金属的固相线温度的温度的方式来预硬焊。在预硬焊步骤中硬焊合金层形成在所述基底金属上。在所述表面层中的硬焊合金包含硼(B)与硅(Si)的所述共混物和所述基底金属。
[0046] 当所述中间产品为板时,所述共混物的表面层可在所述板的一侧上,为单表面层,或者在所述板的两侧上,为双表面层。在施用所述表面层之前,在施用所述表面层之后或在所述预硬焊步骤之后,可将所述板切割,可将其成型,可将其压制或其组合。
[0047] 当所述中间产品具有其他形式时,所述共混物的表面层可在所述产品的一侧上,即单表面层,或在所述产品的两侧上,即双表面层,或所述共混物可在所述产品的多侧上。在施用所述表面层之前,在施用所述表面层之后或在预硬焊步骤之后,可将所述产物切割,可将其成型,可将其压制或其组合。
[0048] 第四方面涉及用于硬焊的堆叠的中间产品。所述堆叠的产品包括板,所述板是堆叠的且所述板的表面层与在板上的基底金属接触或与在另一板上的另一表面层接触。所述板可能没有表面层,可具有单表面层、双表面层或其组合。这意味着堆叠的产品可具有n-1个单表面层板且最后的板没有表面层。另一实施例可在中间具有一个或多个没有表面层的板且堆叠在所述中间板的两侧上的可为单表面层板或双表面层板或两者。可将所述板预硬焊。所述板可以多种不同的方式堆叠。
[0049] 第五方面涉及包括一个或多个中间产品的用于硬焊的组装的中间产品,其中至少一个中间产品具有≥ 1mm的厚度,当板的厚度大于1mm时或当部件的厚度大于1mm时,是这种情况,且其中所述组装的中间产品具有与基底金属的部件接触或在硬焊之前与部件的至少一个表面层接触且在硬焊之后在接触区域中获得硬焊接缝的至少一个表面层。
[0050] 第六方面还涉及通过硬焊堆叠或组装的中间产品获得的堆叠的硬焊产品或组装的硬焊产品,其中所述堆叠的中间产品或所述组装的中间产品在低于1250℃的温度下在炉子中在真空中、在惰性气体中、在还原气氛中或其组合硬焊,在所述堆叠的板或所述组装的中间产品的接触表面之间形成硬焊接缝。所形成的硬焊合金在所述基底金属和所述共混物的熔融过程中形成,且以熔融形式的所述硬焊合金通过毛细管力主要从邻近区域运输到所述接缝区域。根据另一实施例,所述产品可在低于1200℃的温度下硬焊。根据另一实施例,所述产品可在高于1100℃的温度下硬焊。根据另一实施例,所述产品可在约1100℃-约1250℃范围内硬焊。
[0051] 第七方面涉及硬焊产品的方法,所述方法包括以下步骤:
[0052] (i) 将共混物施用在基底金属产品的板和/或部件上,所述基底金属具有高于1040℃的固相线温度,所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源,其中所述共混物包含以在约3:100 wt/wt-约100:3 wt/wt范围内、优选在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率的硼和硅,
[0053] (ii) 获得中间产品;
[0054] (iii) 任选将在步骤(ii)中获得的中间产品暴露于高于形成硬焊合金的固相线温度且低于所述基底金属的固相线温度的温度和在预硬焊步骤中在所述基底金属表面上形成所述硬焊合金层;
[0055] (iv) 组装或堆叠来自步骤(ii)或步骤(iii)的产品与一个或多个根据步骤(ii)或步骤(iii)的产品,或组装或堆叠所述产品与一个或多个没有硅与硼的共混物的部件或板,和形成组装的产品或堆叠的产品;
[0056] (v) 在低于1250℃的温度下在炉子中在真空中、在惰性气体中、在还原气氛中或其组合硬焊来自步骤(iv)的组装或堆叠的产品;和
[0057] (vi) 获得硬焊产品。
[0058] 根据一个实施例,在步骤(vi)中获得的硬焊产品可提供有通过在所述基底金属和所述共混物的熔融过程中形成硬焊合金和通过毛细管力将以熔融形式的所述硬焊合金主要从邻近区域运输到(一个或多个)接缝区域而获得的(一个或多个)接缝。
[0059] 根据另一实施例,所述基底金属的固相线温度可高于1220℃。根据本发明的另一供选例,所述基底金属的固相线温度可高于1250℃。根据本发明的另一供选例,所述基底金属的固相线温度可高于1300℃。
[0060] 根据一个实施例,所获得的产品可在低于1250℃的温度下硬焊。根据另一实施例,所述产品可在低于1200℃的温度下硬焊。根据另一实施例,所述产品可在高于1100℃的温度下硬焊。根据另一实施例,所述产品可在约1100℃-约1250℃范围内硬焊。
[0061] 所述方法还可包括:在所述步骤(iv)中,将所述产品硬焊到具有≥ 1mm的厚度的基底金属,或硬焊到具有< 1mm的厚度的基底金属,或硬焊到一个或多个根据本发明的中间产品。
[0062] 所述方法还可包括,在步骤(ii)或步骤(iii)中,将所述产品切割、成型、压制或其组合,获得板,优选换热器板或反应器板。
[0063] 所述方法还可包括在步骤(ii)或步骤(iii)中获得的产品为板且在步骤(iv)中,将所述板堆叠以生成换热器或板式反应器。
[0064] 所述方法还可包括,所述获得的硬焊产品选自换热器、板式反应器、反应器的部件、分离器的部件、滗析器的部件、的部件、的部件等。
[0065] 第八方面涉及通过根据第七方面的方法获得的硬焊产品。所述硬焊产品的接缝通过所形成的硬焊合金获得,所述硬焊合金在熔融过程中由所述基底金属和所述共混物形成,且从邻近区域流动到所述接缝,在所述硬焊合金中见到的除了所述基底金属元素之外的元素有Si、B和任选的C,和其中所述基底金属具有高于1100℃的固相线温度。
[0066] 在通过所述方法获得的硬焊产物中,形成的硬焊合金的体积由下式计算,也参见图2:
[0067] 体积 = 总面积A x 接缝的长度
[0068] 总面积A = ((X-B)/2) x ((X-B)/2) x tanα
[0069] 其中A为这两个三形的总面积,X为所形成接缝的总宽度,B为所形成接缝的部分,其中在接缝中心所形成硬焊合金的量可以忽略,且高度通过测量角度α来计算,该角度为在压梁的切线到基底之间的角度。
[0070] 第九方面涉及中间产品用于硬焊换热器、板式反应器、反应器的部件、分离器的部件、滗析器的部件、泵的部件、阀门的部件等的用途。
[0071] 第十方面涉及用于硬焊的预硬焊产品,其包括具有高于1040℃的固相线温度的基底金属产品的板和/或部件,所述预硬焊产品通过在所述基底金属产品的板和/或部件上施用共混物的表面层来获得,所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源,其中所述共混物包含以在约3:100 wt/wt-约100:3 wt/wt范围内、优选在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率的硼和硅,其中将所述基底金属和所述表面层暴露于高于所形成的硬焊合金的固相线温度且低于所述基底金属的固相线温度的温度,且所述硬焊合金层在所述基底金属产品的板和/或部件的表面上获得。
[0072] 本发明还涉及用于硬焊基底金属的接缝且用于涂布基底金属的共混物,所述基底金属具有高于1040℃的固相线温度,且所述共混物包含硼和硅,所述硼选自硼源,且所述硅选自硅源。所述共混物包含以在约3:100 wt/wt-约100:3 wt/wt范围内、优选在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率的硼和硅。根据一个供选例,所述共混物还可包含具有高于1040℃的固相线温度的基底金属的粉末。在所述漆料中的共混物可包含具有≤ 50μm的粒度的粒子。
[0073] 本发明的基底金属为包含诸如铁(Fe)、铬(Cr)、镍(Ni)、钼(Mo)、锰(Mn)、铜(Cu)等元素的合金。根据一个供选例,所述基底金属可选自铁基合金、镍基合金、铬基合金和铜基合金。
[0074] 本发明还涉及包含硼与硅的共混物的漆料,所述硼选自硼源,且所述硅选自硅源,其中所述共混物包含以在约3:100 wt/wt-约100:3 wt/wt范围内、优选在约5:100 wt/wt-约1:1 wt/wt范围内的硼与硅的比率的硼和硅,和任选的具有高于1040℃的固相线温度的基底金属的粉末,且所述漆料还包含选自溶剂、水、油、凝胶、大漆、清漆、基于单体和/或聚合物的粘合剂的至少一种粘合剂。
[0075] 根据一个供选例,所述粘合剂可选自聚酯、聚乙烯、聚丙烯、丙烯酸类聚合物、(甲基)丙烯酸类聚合物、聚乙烯醇、聚乙酸乙烯酯、聚苯乙烯。
[0076] 其他实施概念和供选例由权利要求书限定。
[0077] 在下文中,将通过使用图1-6解释本发明。这些图用于证明本发明,而不是想要限制其范围。
[0078] 附图简述
[0079] 图1显示在实施例中使用的圆形压板
[0080] 图2显示“近似”的图形;
[0081] 图3显示测量宽度作为施用量(g/3500mm2)的函数的图形,具有趋势线;
[0082] 图4显示基于测定宽度计算的硬焊接缝的填充面积作为施用量(g/3500mm2)的函数的另一图形,具有趋势线;
[0083] 图5显示拉伸试验样品(其中接缝比板材料坚固或与板材料一样坚固)的百分比作为共混物的施用量(g/3500mm2)的函数的另一图形;
[0084] 图6显示在连接之后样品之一的图片。
[0085] 发明详述
[0086] 图1显示圆形压板,其直径为42mm且厚度为0.4mm,用316L型不锈制成。该压板具有各自约20mm长的两个压梁V和H。梁V或v代表左梁,且梁H或h代表右梁,且v和h在实施例5和9中使用。
[0087] 图2显示近似1(approximation 1),其基于硬焊的试验样品的横截面。在图2中的横截面显示在图2的顶部的压梁。在图2的底部为平坦、较早施用的板。在梁与平坦表面之间的毛细管中,产生接缝。为了估计在该接缝中产生的硬焊合金的量,进行以下近似和计算。据估计在该接缝的中心处的体积可以忽略。因此,对于具有1.21mm或更小的宽度,即宽度B的接缝,将所产生的硬焊合金的体积设定为零。在该梁的外侧,即((X-B)/2),形成的硬焊合金已经聚积。因此,以熔融形式的硬焊合金已经通过毛细管力主要从邻近区域运输到接缝区域,形成三角形的硬焊合金体积。
[0088] 根据图2,可以通过估计在接缝的中心的各侧上形成两个三角形来计算面积。在该三角形中的角度测量为约28°。总测量宽度称作X且中心宽度称作B。这两个三角形的总面积(A)因此为A = 2 x (((X-B)/2) x ((X-B)/2) x tan (α)))/2,即,对于图2,A = 2 x (((X-1.21)/2) x ((X-1.21)/2) x tan (28)))/2。流到缝隙的硬焊合金的总产生体积将是该面积乘以两个梁的长度。所形成的硬焊合金中的一些没有流向缝隙,而是留在表面上。图3显示其中测量宽度作为施用量(g/3500mm2)的函数的图形,具有趋势线。角焊缝试验(fillet test)的结果示于实施例5的表8和表9中且示于图3中。图3的趋势线基于Y = K x X + L。测量宽度和估计面积的结果图示在图3的图形中。施用量(参见表8和表9)为0.06g/
3500mm2-0.96g/3500mm2,其对应于约0.017mg/mm2-0.274mg/mm2,将与在实施例2中使用的约1.3-5.1mg共混物/mm2相比较。
[0089] 测量共混物的趋势线Y = K x X + L,Y为接缝宽度,K为线的斜率,X为共混物的施用量且L为常数,参见图3。因此,硬焊接缝的宽度:
[0090] Y (对于A3.3的宽度) = 1 .554 + 9.922 x (共混物A3.3的施用量)
[0091] Y (对于B2的宽度) = 0.626 + 10.807 x (共混物B2的施用量)
[0092] Y (对于C1的宽度) = 0.537 + 8.342 x (共混物C1的施用量)
[0093] Y (对于F0的宽度) = 0.632 + 7.456 x (共混物F0的施用量)。
[0094] 如从图3中观察到,在共混物A3.3、B2、C1、D0.5、E0.3和F0当中的共混物A3.3在接缝中给出作为共混物的施用量的函数的最高硬焊合金量。在低于0.20g/3500mm2时,样品F0没有给出的任何实质性接缝。
[0095] 图4显示基于测量宽度计算的硬焊接缝的填充面积作为施用量(g/3500mm2)的函数的另一图形,具有趋势线。测量共混物的趋势线Y = K x X-L,Y为面积,K为线的斜率,X为共混物的施用量且L为常数,参见图4。
[0096] Y (对于A3.3的面积) = 4.361 x (共混物A3.3的施用量)-0.161
[0097] Y (对于B2的面积) = 3.372 x (共混物B2的施用量)-0.318
[0098] Y (对于C1的面积) = 2.549 x (共混物C1的施用量)-0.321
[0099] Y (对于F0的面积) = 0.569 x (共混物F0的施用量)-0.093。
[0100] 基于在图4中的图形,例如对于0.18g/3500mm2的量,排除样品F0(由于“没有”硬焊接缝)和样品D0.5(由于数据太少),对于所产生体积的粗略估计对于样品给出在两个梁之间的接缝中产生的硬焊合金的体积的值,参见下文。
[0101] 体积(A3.3) = 0.63 x 长度40 (20 x 2) = 25.2mm3
[0102] 体积(B2) = 0.30 x 长度40 (20 x 2) = 12.0mm3
[0103] 体积(C1) = 0.12 x 长度40 (20 x 2) = 4.8mm3
[0104] 体积(E0.3) = 0.10 x 长度40 (20 x 2) = 4.0mm3。
[0105] 图5显示拉伸试验样品(其中接缝比板材料坚固或与板材料一样坚固)的成功率%2
(百分比)作为共混物的施用量(即,g/3500mm)的函数的另一图形。当板比接缝坚固时,引起接缝破裂,将结果设定为零。对于接缝比板材料坚固的样品,结果的差别没有统计显著性。
[0106] 在图6的图片中,显示在连接之后的样品之一。该图片显示在这两试件之间存在形成的接缝。该连接的样品来自实施例10。
[0107] 通过以下实施例更详细地解释本发明且这些实施例是用于说明本发明,而不是想要限制本发明的范围。实施例
[0108] 进行在这些实施例中的试验以研究在将硅施用在基底金属的试验样品的表面上时硅Si是否能够产生硬焊合金。并且,因为硼可降低硬焊合金的熔点,所以加入不同量的硼B。硼还可改变硬焊合金的润湿状态。还研究了所试验共混物的性质。在这些实施例中,重量%为重量百分比且原子%为原子百分比。
[0109] 如果没有陈述其他情况,则对于所有试验,在将硅和硼的共混物的样品加到试验样品中之前,基底金属的试验样品都通过盘洗且用丙来清洁。
[0110] 实施例1:制备欲试验的硅与硼的共混物:
[0111] C1号试验样品通过在来自Busch & Holm的Varimixer BEAR中共混118.0g结晶硅粉(粒径325目,99.5%(基于金属),7440-21-3,来自Alfa Aesar-Johnsson Matthey Company)与13.06g结晶硼粉(粒径325目,98%(基于金属),7440-42-8,来自Alfa Aesar-Johnsson Matthey Company)和77.0g Nicrobraz S-30粘合剂(来自Wall Colmonoy)以生成208g糊浆来制备,参见样品C1。所有试验样品都遵循与试验样品C1相同的程序生成。样品汇总于表2中。
[0112] 表2
[0113]
[0114] 样品G15、H100、I66和J以与样品F0、E0.3、D0.5、C1、B2和A3.3相同的方式制备,例外之处在于使用另一粘合剂,该粘合剂为来自Wall Colmonoy的Nicrobraz S-20。试验样品汇总于表3中。
[0115] 表3
[0116]
[0117] 还对样品进行计算以显示比率、重量%和原子%,这些示于表4中。
[0118] 表4
[0119]
[0120] 测量在S-20和S-30粘合剂中的粘合剂(聚合物和溶剂)含量
[0121] 还试验了在凝胶内“干”材料的含量。将S-20和S-30的样品称重且此后将其放置在处于98℃的烘箱中历时18小时。在将样品从烘箱中取出之后,将它们再次称重。结果可在表5中见到。
[0122] 表5
[0123]
[0124] 实施例2:硬焊试验
[0125] 当试验现有技术的硬焊填料时,所施用的硬焊填料的重量为2.0g,其对应于0.2g硅。因为将试验硅和硼的共混物,所以在试验组合物中使用类似量的硅和硼。该硬焊填料含有10重量%硅,因此在试验样品上施用0.2g硅和硼的共混物。试验样品为具有83mm的直径和0.8mm的厚度的圆形试件且这些试件用316L型不锈钢制成。因为预期0.2g的硬焊共混物并不对应于2g的硬焊合金,因为“形成的硬焊合金”可首先由基底金属和硬焊共混物产生,在流动之前,硅和硼仅可扩散到基底金属中或甚至不熔融基底金属,所以还试验了更高的量
0.4g。所有样品在真空炉中在1210℃下硬焊1小时。使用双重试验。意味着,两种重量、双重试验样品及六种不同的共混物,2 x 2 x 6 = 24个样品,即F0、E0.3、D0.5、C1、B2和A3.3。将
2
共混物施用在具有约10-14mm的直径的圆形区域上,即78-154mm的表面或约1.3-5.1mg共混物/mm2。
[0126] 结果:
[0127] 明显观察到,基底金属的试件已经熔融且产生某一类型的熔体。还观察到熔体在一些方面表现为具有流动性的硬焊合金。在没有测量润湿的尺寸的情况下,很明显在共混物中的增加量的硼产生较好的润湿。然而,还看出,对于大多数样品,全部厚度已经熔融且在试件的中间产生孔。对于“0.2g样品”,12个试件中的5个试件具有孔,且对于“0.4g试件”,12个试件中的10个试件具有孔。
[0128] 因此一个结论是,不可能自硬焊填料糊浆等改变且用“比较相等量”的硅和硼的共混物施用点或线,因为如果试验样品较薄,在这种情况下,0.8mm,则硅和硼的共混物将在基底金属中熔融出孔。如果使用较厚的试验样品,则看来没有孔,但在基底金属中可能产生“沟槽”。这可通过将作为例如粉末的基底金属加在硅和硼的共混物中来预防或改善。如果仅施用硅,即样品F0,结果看来比其中施用硅和硼两者的其他样品具有较小的流动和润湿性质。
[0129] 实施例3:新施用程序
[0130] 在该实施例中,准备试验板以同时用于所有角焊缝试验、腐蚀试验和拉伸试验。根据实施例2,得到的结论是,对于硅和硼的共混物,在薄壁板上以点或线施用该共混物会是危险的。因此,使用新试验样品,即试验板来对于角焊缝试验、腐蚀试验和拉伸试验施用不同的Si和B的共混物。
[0131] 因此,这些新试验样品为用316L型不锈钢制成的板。板的尺寸为宽100mm、长180-200mm且厚度为0.4mm。所有板在施用Si和B的共混物样品之前都通过盘洗并用丙酮来清洁。
测量重量。在各板上,掩蔽测量为距短侧35mm的部分。
[0132] 使用不同的试验共混物A3.3、B2、C1、D0.5、E0.3、F0、G15、H100和I66。将试验板用共混物在未掩蔽的表面区域上“涂漆”,该表面区域具有100mm x 35mm的尺寸。该粘合剂为S-30。在室温下干燥大于12小时之后,除去掩蔽带并测量各板的板重量。在下表6中提供的重量为在100mm x 35mm = 3500mm2 = 35cm2的面积上共混物的总量的重量。
[0133] 表6
[0134]
[0135] 实施例4:样品的腐蚀-弯曲试验
[0136] 将试验板切割成宽度为35mm的切片,意味着35mm x 35mm的施用表面积。向该表面区域上放置圆形压板,参见图1,该压板具有直径42mm和厚度0.4mm的尺寸,其用316L型不锈钢制成。将试验样品在1210℃下硬焊1小时。用于腐蚀试验的试验板具有施用的共混物样品A3.3、B2、C1、D0.5、E0.3、H100、I66和J,参见表4。
[0137] 样品根据腐蚀试验方法ASTM A262“检测在奥氏体不锈钢中对颗粒间攻击的敏感度的标准操作规程(Standard Practices for Detecting Susceptibility to inter-granular Attack in Austenitic Stainless Steels)”试验。从该试验方法中选择“操作规程E-铜-硫酸铜-硫酸。用于检测对在奥氏体不锈钢中的颗粒间攻击的敏感度的试验(Practice E-Copper-Copper Sulfate-Sulfuric Acid. Test for Detecting Susceptibility to Inter-granular Attack in Austenitic Stainless Steel)”。选择该腐蚀试验的原因在于存在硼可与在钢铁中的铬、主要在晶界中反应,产生硼化铬,且随后增加颗粒间腐蚀攻击的危险,使用在该标准中的“操作规程”,煮沸16%硫酸以及硫酸铜20小时,且此后根据在该标准中的第30章进行弯曲试验。
[0138] 腐蚀试验的结果和试验样品的截面(sectioning)
[0139] 根据在第30.1章中的腐蚀试验方法将试件弯曲试验。在弯曲表面的视觉研究下样品中没有一个给出颗粒间攻击的迹象。在ASTM研究之后,将弯曲的试样切割、打磨并抛光且将横截面在光学显微镜下进行EDS即能量散射光谱学研究。结果汇总于表7中。
[0140] 表7
[0141]
[0142] 评述:
[0143] 显然,当加入大量的硼时,对于样品H100、J、I66,随着硼量增加,在表面上形成脆性相,最可能是硼化铬相。在H100样品中没有看到脆性相,最可能归因于在表面上的腐蚀。硼化物的量也随着硼量而增加,这意味着必须考虑到当加入大量的硼,腐蚀性质可能减小,例如在腐蚀试验中受到攻击的样品H100。硼的该“负面”作用可通过使用较厚的基底金属和/或较久的扩散时间来减小。其随后可能“稀释”在基底金属中的硼。同样,对于正常量的硼,例如A3.3和B2,形成较薄的脆性表面层。可以看到,对于在样品,样品E0.3中少量的硼,形成相当厚的脆性表面层,其具有通常大于5重量%的硅的高硅含量,该表面层具有与A3.3、B2、H100、I66和J的脆性表面不同的特性。硅的该“负面”作用可通过使用较厚的基底金属和/或较久的扩散时间来减小。其随后可能“稀释”在基底金属中的硅。
[0144] 实施例5:样品的角焊缝试验
[0145] 从根据实施例3制得的试验样品上切下具有35mm宽度的板的切片,这意味着35mm x 35mm的施用表面。向该表面上放置圆形压板,参见图1,直径42mm且厚度0.4mm,其用316L型不锈钢制成。该压板具有各自约20mm长的两个压梁。将样品在约1200℃下硬焊约1小时。
[0146] 该角焊缝试验的结果表明,存在在施用了共混物的平坦表面区域之间产生的接缝区域中见到的硬焊合金量,该平坦表面区域与在图1中见到的试验样品中的压梁接触。通过近似,参见图2,通过经由估计在接缝中心的各侧上形成两个三角形来计算面积而计算硬焊合金的量。在中部,没有或仅有非常少量的另外形成的“硬焊合金”。这两个三角形可通过测量高度(h)和底(b)来测量,这两个三角形的总面积总计为(h) x (b),因为存在两个三角形。该计算的问题在于高度难以测量。因此,我们使用以下方程式来计算这两个三角形面积:
[0147] A = ((X-B)/2) x ((X-B)/2) x tanα
[0148] A为这两个三角形的总面积,X为所形成接缝的总宽度,B为所形成接缝的部分,其中在接缝中心所形成硬焊合金的体积可以忽略。因此,各三角形的底为(X-B)/2。高度通过测量角度α来计算,该角度为在压梁的切线至基底之间的角度。
[0149] 为了计算已经流到缝隙的所形成硬焊合金的总产生体积的体积,将测量这两个梁的长度,即各个梁为20mm,且将该长度与总面积相乘。
[0150] 两个三角形的面积为在硬焊之后在表8和表9中的估计面积。该体积为在一个梁上形成的硬焊合金的体积。来自角焊缝试验的结果示于表8和表9中且示于图3中。在表8中和在表9中,v和h代表v = 左梁且h = 右梁。
[0151] 表8
[0152]
[0153] 表9
[0154]
[0155] 所测量的宽度和估计面积的结果提供在表8和表9中并图示在图3的图形中。施用量(参见表8和表9)为0.06g/3500mm2 - 0.96g/3500mm2,其对应于约0.017mg/m2-0.274mg/m2,将与在实施例2中使用的约1.3-5.1mg共混物/mm2相比较。
[0156] 测量共混物的趋势线Y = K x X + L,Y为接缝宽度,K为线的斜率,X为共混物的施用量且L为常数,参见图3。因此,硬焊接缝的宽度:
[0157] Y (对于A3.3的宽度) = 1.554 + 9.922 x (共混物A3.3的施用量)
[0158] Y (对于B2的宽度) = 0.626 + 10.807 x (共混物B2的施用量)
[0159] Y (对于C1的宽度) = 0.537 + 8.342 x (共混物C1的施用量)
[0160] Y (对于F0的宽度) = 0.632 + 7.456 x (共混物F0的施用量)。
[0161] 如从该图形中观察到,在共混物A3.3、B2、C1、D0.5、E0.3和F0当中共混物A3.3给出作为共混物的施用量的函数的在接缝中的硬焊合金的最高量。在低于0.20g/3500mm2时样品F0没有给出任何实质性接缝。
[0162] 测量共混物的趋势线Y = K x X-L,Y为面积,K为线的斜率,X为共混物的施用量且L为常数,参见图4。
[0163] Y (对于A3.3的面积) = 4.361 x (共混物A3.3的施用量)-0.161
[0164] Y (对于B2的面积) = 3.372 x (共混物B2的施用量)-0.318
[0165] Y (对于C1的面积) = 2.549 x (共混物C1的施用量)-0.321
[0166] Y (对于F0的面积) = 0.569 x (共混物F0的施用量)-0.093。
[0167] 基于在图4中的图形,例如对于0.18g/3500mm2的量,排除样品F0(由于“没有”硬焊接缝)和样品D0.5(由于数据太少),对于所产生体积的粗略估计对于样品给出在两个梁之间的接缝中产生的硬焊合金的体积的值,参见下文。
[0168] 体积(A3.3) = 0.63 x 长度40 (20 x 2) = 25.2mm3
[0169] 体积(B2) = 0.30 x 长度40 (20 x 2) = 12.0mm3
[0170] 体积(C1) = 0.12 x 长度40 (20 x 2) = 4.8mm3
[0171] 体积(E0.3) = 0.10 x 长度40 (20 x 2) = 4.0mm3
[0172] 并且,对具有高比例的硼的共混物进行试验,例如样品G15、H100、I66和J。关于所产生的硬焊合金体积,所有试验样品都非常类似于共混物A3.3和B2。然而,硬焊样品的冶金横截面显示硼化物的量更大且对于样品H100,即纯硼,在其上较早施用了共混物的表面上还见到脆性高铬相。硬相最可能是硼化铬,其减小在周围材料中的铬含量,减小耐腐蚀性。这在希望良好的耐腐蚀性时可能是一个问题,但对于无腐蚀环境,则不是问题。硼的作用可通过改变热处理和/或通过使用可“吸收”更大量的硼的较厚的基底金属来减小。对于≥ 
1mm的较厚材料,在该表面中的该作用也将更严重,因为对于小于1mm或小于0.5mm的薄材料,与基底金属体积相比,表面体积的比例小得多。如果希望更好的耐磨性,则硼化铬会是一个优点。冶金研究还显示,对于样品F0,即纯硅,发现厚的脆性含硅相,对于在所研究样品中的一些区域,其厚度大于板厚度的50%。在接缝中还发现了类似的相。在该相中发现裂缝,长度大于板厚度的30%。所述裂缝将减小连接产品的机械性能且可为腐蚀和/或疲劳裂缝的引发点。该相的平均测量硬度超过400HV (Vickers)。与硼化物相相比较,该脆性相可能硬得多,而难以通过使用较厚的基底金属或改变热处理来减小。然而,对于较厚的基底金属,该作用可能不太严重。
[0173] 实施例6 硬焊接缝的拉伸试验
[0174] 将原始施用的试验板切成切片。切片样品的尺寸为宽约100mm、长180-200mm且厚度为0.4mm。各切片的施用面积则为10mm×35mm = 350mm2。在该施用面积上,放置4mm 316L型不锈钢的较厚部件,覆盖总35mm施用表面的30mm。该较厚部件放置在切片的末端,留下5mm的施用表面未被厚板覆盖。通过这样做,在拉伸试验时,如果接缝比板坚固,则将检测到由于施用的共混物引起的板材料强度的减小。该厚板比10mm切片还宽。将所有试验样品在约1200℃下硬焊约1小时。
[0175] 在硬焊之后,将厚部件水平安装在拉伸试验机中。将硬焊切片向垂直方向稳固地弯曲90°。安装样品,使得它们可在水平方向上移动。随后装载样品并使硬焊接缝破裂。
[0176] 结果
[0177] 当板比接缝坚固时,使得接缝破裂,结果设定为零。对于接缝比板材料坚固的样品,结果的差别没有统计显著性。结果显示为作为施用量的函数的所试验样品的百分比(%),其中接缝比板坚固或与板一样坚固,这意味着当试验时接缝没有破裂。结果汇总于表10中和图5的图形中。
[0178] 表10
[0179]
[0180] 实施例7
[0181] 为了确立在施用量和焊穿板的危险之间的关系,进行新试验。对于所有试验,使用共混物B2,参见表6。向共混物B2中加入粘合剂S-30。所试验的试件为具有0.8mm的厚度且具有83mm的直径的圆形。在试验板中的基底金属为316型不锈钢。对于所有样品,在试验样品的中心施用共混物。施用面积为28mm2,即具有6mm的直径的圆形斑。在施用前后称量所有试验样品,且结果汇总于表11中。此后,将试验样品置于处于室温下的炉子中历时12小时。将样品再次称重。
[0182] 将试验样品全部置于炉子中并在1210℃下硬焊约1小时。在硬焊期间,仅使各样品的外缘与紧固材料接触,在硬焊期间保持板中心底部表面不与任何材料接触。保持板中心底部表面不接触的原因在于如果中心材料通过紧固材料从下面支撑,则可防止崩塌或焊穿。
[0183] 0.8mm样品的施用量和焊穿结果汇总于表11中。
[0184] 表11
[0185]
[0186] 试验表明,对于具有0.8mm厚度的板在样品10和样品11之间存在焊穿。样品10具有2.264mg/mm2的共混物施用量且样品11具有2.491mg/mm2的共混物施用量。对于具有小于1mm
2 2
的厚度的连接板,用约2.830mg/mm -约3.114mg/mm范围内的量存在焊穿板的危险,在该范围的中间的量为2.972mg/mm2。因此,对于具有小于1mm的厚度的板,为了避免焊穿板,小于
2.9mg/mm2的量将是合适的。
[0187] 实施例8
[0188] 在实施例8中,在两个换热器压板之间的硬焊接缝以三种不同的方式制得。换热器板的厚度为0.4mm。
[0189] 在第一试验样品和第二试验样品中,使用具有接近316型不锈钢的组成的铁基硬焊填料,参见WO 2002/38327。该硬焊填料具有约10重量%的增加量的硅、约0.5重量%的硼量和约10.5重量%的减小量的铁。在第一试验样品中,将硬焊填料以线施用,且在第二试验样品中,将硬焊填料均匀地施用在表面上。在两种情况下,填料都在压制之后施用。
[0190] 在硬焊之后,试验样品1显示以线施用的硬焊填料逼近硬焊接缝。一些硬焊填料不流向硬焊接缝,且因此局部地增加在施用线处的厚度。对于试验样品2,硬焊填料流向硬焊接缝,然而,在硬焊填料上的一些保留在表面上且增加厚度。在试验样品1和2中,硬焊填料的量对应于约15重量%的板材料量。
[0191] 在试验样品3中,使用A3.3共混物,参见表6。在均匀地压制在板上之前施用共混物。该共混物以将产生具有与试验样品1和2类似的尺寸的硬焊接缝的量施用。
[0192] 试验样品3用具有相当于约1.5重量%的板材料的重量的厚度的层施用。通过施用共混物A3.3,硬焊合金由基底金属形成,且所形成的硬焊合金流向硬焊接缝。因此,板的厚度减小,因为与加在表面上的共混物相比,更多的材料逼近硬焊接缝。
[0193] 实施例9 用不同Si-源和B-源的试验
[0194] 在实施例9中进行试验来研究供选的硼源和硅源。将共混物B2,参见表6,选为试验的参考物。试验供选源的产生接缝的能力。对于各实验,试验供选的硼源或供选的硅源。当使用供选的来源时,假设其他元素影响为零,这意味着其仅为“测量的”供选组分中的硼或硅的重量,参见表12。对于参考共混物B2,在硅和硼之间的重量比为10g:2g,总计为12g。将各共混物与S-30粘合剂一起混合且将共混物根据实施例1施用在钢板上。将所有样品在真空炉中在1210℃下硬焊1小时。
[0195] 表12
[0196]
[0197] 测量共混物B2的趋势线Y = K x X + L,Y为接缝宽度,K为对于B2的线的斜率,X为共混物的施用量且L为在没有共混物B2的施用量的情况下的常数,参见图3。因此,硬焊接缝的宽度Y = 0.626 + 10.807 x (共混物的施用量)。
[0198] 在表13中,如在实施例5中,v和h代表v = 左梁且h = 右梁。
[0199] 表13
[0200]
[0201] 在表13中的结果显示可以使用B4C、NiB和FeB作为硼的供选来源。在使用NiB时,产生量小于使用纯硼的情况,然而,如果希望Ni合金化作用,则可使用NiB。
[0202] 实施例10 基底金属的试验
[0203] 在实施例10中,试验许多不同的基底金属。除了软钢和Ni-Cu合金外的所有试验都根据试验Y试验。
[0204] 对于试验Y,将具有约0.8mm的厚度的两个圆形压制试件放置在彼此上面。各样品具有压制的圆梁。将梁的顶面相对于彼此放置,在试件之间产生圆形缝隙。对于各样品,具有粘合剂S-20的B2共混物用漆刷施用。因为当用漆刷施用时,施用是不均匀的,所以没有测量共混物加入量的重量。在连接之后样品之一的图片提供在图6中。
[0205] 以同样方式施用软钢样品和Ni-Cu样品,但对于软钢,根据在实施例5“角焊缝试验”中进行试验,而对于Ni-Cu试验,用两个平坦的试件进行。将除Ni-Cu以外的样品在炉子中在约1200℃,即1210℃下在真空气氛炉中“硬焊”1小时。将Ni-Cu样品在约1130℃下在相同的真空炉中硬焊约1小时。对于所有进行的试验,在“硬焊”之后,在试件之间形成接缝,且对于所有试验样品,还观察到由基底金属制成的所产生的“硬焊合金”流到接缝。结果示于表14中。
[0206] 表14
[0207]
[0208] 表14中的结果显示,对于各个样品1-20,在共混物和基底金属之间形成硬焊合金。结果还显示对于各试验样品产生接缝。
[0209] 各实施例表明,需要硼来产生实质量的硬焊合金,其可填充接缝以及在接缝中产生强度。各实施例还表明,对于微观结构需要硼,因为对于没有硼的样品,发现厚的脆性相。
QQ群二维码
意见反馈