立方氮化烧结体和立方氮化硼烧结体工具

申请号 CN201180017127.9 申请日 2011-10-26 公开(公告)号 CN102821898A 公开(公告)日 2012-12-12
申请人 住友电工硬质合金株式会社; 发明人 冈村克己; 阿部真知子; 久木野晓;
摘要 本 发明 的目的是提供一种cBN 烧结 体,并提供一种cBN烧结体工具,该cBN烧结体即使在加工具有难以加工的性质的离心 铸 铁 时也具有优异的 耐磨性 和耐断裂性。本发明的cBN烧结体包含20体积%以上且65体积%以下的cBN;作为结合剂的Al2O3以及选自由Zr的氮化物、 碳 化物、碳氮化物、 硼 化物和硼氮化物及其 固溶体 所构成的组中的至少一种(以下称为“X”),其中Al2O3为34体积%以上且小于80体积%;以及ZrO2,X和ZrO2的总量为1.0体积%以上且6.0体积%以下,ZrO2与Al2O3的体积比ZrO2/Al2O3为大于或等于0.010且小于0.100,其中I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.1且小于或等于3,其中,在所述cBN烧结体的 X射线 衍射峰中,I正方晶ZrO2(101)为正方晶ZrO2的(101)面的强度,IαAl2O3(110)为αAl2O3的(110)面的强度。
权利要求

1.一种cBN烧结体,包含:
占所述烧结体整体的20体积%以上且65体积%以下的cBN;
作为结合剂的Al2O3以及选自由Zr的氮化物、化物、碳氮化物、化物和硼氮化物及其固溶体所构成的组中的至少一种(以下称为“X”),其中Al2O3占所述烧结体整体的34体积%以上且小于80体积%;以及
ZrO2,
其中相对于所述烧结体整体,X和ZrO2的总量为1.0体积%以上且6.0体积%以下,ZrO2与Al2O3的体积比ZrO2/Al2O3为大于或等于0.010且小于0.100;并且其中I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.1且小于或等于3,其中,在所述cBN烧结体的X射线衍射峰中,I正方晶ZrO2(101)为正方晶ZrO2的(101)面的强度,IαAl2O3(110)为αAl2O3的(110)面的强度。
2.根据权利要求1所述的cBN烧结体,其中所述cBN烧结体含有ZrC作为所述X。
3.根据权利要求1或2所述的cBN烧结体,其中所述I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.2且小于或等于0.5。
4.一种cBN烧结体工具,至少在其刃口部包括根据权利要求1至3中任意一项所述的cBN烧结体。

说明书全文

立方氮化烧结体和立方氮化硼烧结体工具

技术领域

[0001] 本发明涉及具有优异的耐磨性和耐断裂性的立方氮化硼烧结体(cBN烧结体),以及使用该cBN烧结体的烧结体工具。更特别的是,本发明涉及这样的立方氮化硼烧结体,其具有优异的耐磨性和耐断裂性,并且充当离心的切削工具。

背景技术

[0002] 近年来,为了减轻发动机的重量,用于形成汽缸体的材料有从铸铁转换的趋势,并且由离心铸造工艺制造的铸铁被越来越多地用作汽缸体的汽缸套
[0003] 与使用砂模制造的普通铸铁相比,离心铸铁的可加工性较差,并且存在用于切削离心铸铁的工具的寿命明显较短的问题。由于离心铸铁具有在常规的砂模铸铁中也能够观察到的细密的A型结构,因此其与工件间的热反应会使切削工具的磨损显著增加,从而导致离心铸铁的可加工性显著降低。
[0004] 已知的是,为了对这种具有难加工性质的离心铸铁进行加工,将其中添加有Al2O3的cBN烧结体有效地用作了切削工具,其中Al2O3具有优异的抗化性和化学稳定性。但是,添加有Al2O3的cBN烧结体的韧性和可烧结性低。为了克服此问题,专利文献1和2分别公开了这样的cBN烧结体,该cBN烧结体的耐断裂性通过向Al2O3中添加ZrO2而得到改善。
[0005] 例如,专利文献1公开了包含Al2O3、TiC或TiCN、以及ZrO2的cBN烧结体,其中该cBN烧结体是由这样的起始材料制得的,该起始材料包含:50体积%以上至80体积%以下的cBN成分;1体积%以上至20体积%以下的TiC、或者0.5体积%以上至15体积%以下的TiCN;以及15体积%以上至50体积%以下的Al2O3和ZrO2,ZrO2/Al2O3的重量比为0.1以上且4以下。当将ZrO2/Al2O3的重量比转化为体积比时,则为0.065≤ZrO2/Al2O3≤2.62。
[0006] 此外,专利文献2公开了一种烧结体的材料,其组成包括:40体积%至70体积%的cBN粉末颗粒;15体积%至45体积%的氮化,其作为结合相的主要成分;以及15体积%至35体积%的由Al2O3、ZrO2、AlN和SiC的针状晶体构成的混合粉末颗粒,该混合粉末颗粒作为结合相的副成分,其中结合相的副成分由50体积%至65体积%的Al2O3、1体积%至5体积%的ZrO2、20体积%至40体积%的AlN以及5体积%至15体积%的SiC针状晶体组成。
[0007] 在离心铸造工艺中,有利的是,通过将熔融的铸铁浇注到旋转的圆柱形模具中,能够制造薄的衬套。但是,由于衬套与模具接触的部分以及衬套位于内径表面的部分被快速冷却,因此铸铁结构被微细化,产生树枝状结构和玫瑰状结构等异常结构。这些树枝状结构和玫瑰状结构等异常结构的可加工性非常差。在最近由离心铸铁制作的衬套中,为了缩短缸内径之间的距离而降低了厚度,并且除了作为常规离心铸铁的待切削区域的细密的A型结构区域以外,还有必要切削玫瑰状结构和树枝状结构所存在的区域,而玫瑰状结构和树枝状结构的存在区域并不是常规离心铸铁的待切削区域。当对玫瑰状结构和树枝状结构的存在区域进行切削时,具有这样的问题:与常规的离心铸铁相比,需要在严格的热条件下进行加工,于是可加工性显著降低。
[0008] 当使用任一上述专利文献中所记载的烧结体对这种离心铸铁进行加工时,由于含有大量的、与Al2O3相比热传导率极低的ZrO2,因此,烧结体的热传导率降低,加工时与工件间的反应进展明显,从而导致耐磨性显著降低。
[0009] 引用列表
[0010] 专利文献
[0011] 专利文献1:国际公开No.2008/087940
[0012] 专利文献2:日本专利No.2971203

发明内容

[0013] 技术问题
[0014] 本发明的目的是提供一种cBN烧结体,并提供一种cBN烧结体工具,该cBN烧结体即使在加工具有难加工性质、且除了细密的A型结构之外还具有玫瑰状结构和树枝状结构的离心铸铁时也具有优异的耐磨性和耐断裂性。
[0015] 解决问题的手段
[0016] 本发明人经过深入研究后发现,通过在cBN烧结体中添加Al2O3、ZrO2、以及选自由Zr的氮化物、化物、碳氮化物、硼化物和硼氮化物及其固溶体所构成的组中的至少一种以作为结合剂,ZrO2的X射线衍射强度会发生变化。此外发现了I正方晶ZrO2(101)/IαAl2O3(110)的比值与切削性能和可烧结性有关。此外还发现,通过将cBN烧结体中的ZrO2与Al2O3的体积比以及I正方晶ZrO2(101)/IαAl2O3(110)的比值设定在指定范围内,可以使耐磨性和耐断裂性均得到显著提高。由此完成了本发明。
[0017] 即,本发明如下所述。
[0018] (1)一种cBN烧结体,包含:占所述烧结体整体的20体积%以上且65体积%以下的cBN;作为结合剂的Al2O3以及选自由Zr的氮化物、碳化物、碳氮化物、硼化物和硼氮化物及其固溶体所构成的组中的至少一种(以下称为“X”),其中Al2O3占所述烧结体整体的34体积%以上且小于80体积%;以及ZrO2,其中相对于所述烧结体整体,X和ZrO2的总量为1.0体积%以上且6.0体积%以下,ZrO2与Al2O3的体积比ZrO2/Al2O3为大于或等于0.010且小于0.100;该cBN烧结体的特征在于:I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.1且小于或等于3,其中,在所述cBN烧结体的X射线衍射峰中,I正方晶ZrO2(101)为正方晶ZrO2的(101)面的强度,IαAl2O3(110)为αAl2O3的(110)面的强度。
[0019] (2)根据上述(1)所述的cBN烧结体,特征在于含有ZrC作为所述X。
[0020] (3)根据上述(1)或(2)所述的cBN烧结体,特征在于所述I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.2且小于或等于0.5。
[0021] (4)一种cBN烧结体工具,特征在于至少在其刃口部包括根据上述(1)至(3)中任意一项所述的cBN烧结体。
[0022] 本发明的有益效果
[0023] 根据本发明,可以获得具有优异的耐磨性和耐断裂性的cBN烧结体,其可用作用于加工诸如离心铸铁等难加工工件的切削工具,所述离心铸铁除了具有细密的A型结构之外,还具有玫瑰状结构和树枝状结构。

具体实施方式

[0024] 本发明的cBN烧结体包含:占所述烧结体整体的20体积%以上且65体积%以下的cBN;作为结合剂的Al2O3以及选自由Zr的氮化物、碳化物、碳氮化物、硼化物和硼氮化物及其固溶体所构成的组中的至少一种(以下称为“X”),其中Al2O3占所述烧结体整体的34体积%以上且小于80体积%;以及ZrO2,其中X和ZrO2的总量为1.0体积%以上且6.0体积%以下,ZrO2与Al2O3的体积比ZrO2/Al2O3为大于或等于0.010且小于0.100。该cBN烧结体的特征在于:I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.1且小于或等于3,其中,在所述cBN烧结体的X射线衍射峰中,I正方晶ZrO2(101)为正方晶ZrO2的(101)面的强度,IαAl2O3(110)为αAl2O3的(110)面的强度。在此情况下,烧结体中的cBN含量占所述烧结体整体的20体积%以上且65体积%以下,优选为40体积%以上且50体积%以下。当cBN成分的含量低于20体积%时,其强度不足以切削难加工的离心铸铁,并且耐断裂性降低,从而会导致刃口断裂。另一方面,当cBN含量超过65体积%时,由于Al2O3含量相对降低,因此耐热性降低。由此,切削时所产生的热易于导致反应的发生,并且磨损也易于增加。
[0025] 此外,在本发明中,各成分相对于烧结体整体的组成与所使用的起始材料相同,各成分组成并未发生改变,其中各成分相对于烧结体整体的组成可以按照(例如)下述方式进行测量。
[0026] 关于各成分的组成,首先,对cBN烧结体进行镜面抛光,以10,000倍的放大倍率,拍摄给定区域中的结构作为扫描电子显微镜的背散射电子像。在拍摄的相片中,观察到与组成相对应的3个层次的明暗对比。同时在同一视野中,利用能量色散型X射线分析仪(EDX)进行的分析表明,观察区域中最暗的部分对应于cBN颗粒,中间色调部分对应于Al2O3颗粒,最亮部分对应于Zr的化合物(氧化物、碳化物、氮化物、硼化物和硼氮化物)。通过对背散射电子像进行图像分析,确定各成分的体积含量。
[0027] 此外,通过化学分析对Zr化合物的组成进行测定,所述化学分析为(例如)等离子体发射光谱分析(ICP)或气体分析。
[0028] 现在对结合剂进行说明。
[0029] 本发明的cBN烧结体所含的Al2O3的含量占所述烧结体整体的34体积%以上且小于80体积%,优选为50体积%以上且60体积%以下。当Al2O3含量低于34体积%时,耐磨性降低。当Al2O3含量为80体积%以上时,耐断裂性降低。
[0030] 通过掺入Al2O3,可利用Al2O3的抗氧化性和化学稳定性等性质,从而防止因铸铁和刃口成分之间的反应而导致的磨损增加。然而,在含有大量Al2O3的体系中,cBN的表面易于形成气孔,从而导致可烧结性和耐断裂性降低。
[0031] 此外,Al2O3具有高耐热性,但是缺乏韧性。因此,仅掺入Al2O3会导致刃口易于发生崩裂。通过掺入选自由Zr的氮化物、碳化物、碳氮化物、硼化物和硼氮化物及其固溶体所构成的组中的至少一种(以下称为“X”)以及ZrO2,可以同时显著提高耐断裂性和耐磨性,其中X易于与cBN反应并显著提高结合剂中的热传导率,ZrO2可有效提高Al2O3的韧性。
[0032] 在cBN烧结体中,选自由Zr的氮化物、碳化物、碳氮化物、硼化物和硼氮化物及其固溶体所构成的组中的至少一种(以下称为“X”)和ZrO2的总含量占烧结体整体的1.0体积%以上且6.0体积%以下,并且ZrO2与Al2O3的体积比ZrO2/Al2O3为大于或等于0.010且小于0.100。
[0033] 通过掺入总含量为1.0体积%以上且6.0体积%以下的X和ZrO2,提高了耐断裂性。X和ZrO2的总含量更加优选为大于2.5体积%且小于或等于4.0体积%,此时耐断裂性得以进一步提高。
[0034] 此外,通过将ZrO2与Al2O3的体积比ZrO2/Al2O3设置为大于或等于0.010以上且小于0.100,可以提高耐磨性和耐断裂性。当ZrO2/Al2O3的比值小于0.010时,无法通过ZrO2获得改善Al2O3的韧性的效果,从而导致耐断裂性下降。当ZrO2/Al2O3的比值大于或等于0.100时,耐磨性降低。ZrO2与Al2O3的体积比ZrO2/Al2O3更加优选为大于或等于0.02且小于0.06。
[0035] 此外,当I正方晶ZrO2(101)/IαAl2O3(110)的比值为大于或等于0.1且小于或等于3时,可烧结性提高,并可获得致密的烧结体,其中在通过X射线衍射仪(Cu用于X射线管)所测得的cBN烧结体的X射线衍射峰中,I正方晶ZrO2(101)为正方晶ZrO2的(101)面的强度,IαAl2O3(110)为αAl2O3的(110)面的强度。因此,烧结体具有优异的耐断裂性和耐磨性,并且烧结体的产量也显著增加,从而有助于降低成本。当I正方晶ZrO2(101)/IαAl2O3(110)的比值小于0.1时,不能获得提高可烧结性的效果。当I正方晶ZrO2(101)/IαAl2O3(110)的比值超过3时,耐磨性降低。I正方晶ZrO2(101)/IαAl2O3(110)的比值更加优选为0.2以上且0.5以下。
[0036] 尤其是,通过掺入ZrC作为X,可选择性地提高正方晶ZrO2(101)的峰强度。即使当ZrC含量较低从而使Al2O3含量相对增加时,I正方晶ZrO2(101)/IαAl2O3(110)的比值也可为0.2以上且0.5以下,从而使可烧结性、耐断裂性和产率均得以提高。优选的是,cBN烧结体中的ZrC含量为0.1体积%以上且3.0体积%以下。
[0037] 本发明的烧结体可通过对烧结体的初始材料进行烧结而获得。
[0038] 例如,首先,预先将Al2O3、ZrO2和X粉碎并混合,以制得结合剂。然后,将cBN颗粒与结合剂均匀混合,并将所得到的混合粉末在超高压条件(5.5GPa至7GPa,1,300℃至1,800℃)下进行烧结。从而能够制得本发明的cBN烧结体。
[0039] 用作结合剂的Al2O3的体积平均粒径优选为1μm以下,更加优选为50nm至500nm。另外,用作结合剂的X和ZrO2的体积平均粒径均优选为1μm以下,更加优选为10nm至
100nm。
[0040] 作为本发明的cBN烧结体工具,可以列举的有:至少在由硬质合金制成的基材的刃口部包括cBN烧结体的cBN烧结体工具,或者仅由cBN烧结体构成的cBN烧结体工具。这些cBN烧结体工具可以通过已知的方法制造。此外,cBN烧结体的表面上可具有硬质陶瓷覆层。
[0041] 实施例
[0042] 下面将基于实施例对本发明的实施方案的实例进行说明。应当理解的是,以下实施例仅是示例性的,并不对并发明进行限定。
[0043] [实施例1]
[0044] 使用了体积平均粒径为1μm以下的Al2O3,体积平均粒径为0.5μm以下的ZrO2,以及体积平均粒径为1μm以下的Zr化合物,其组成如表中所示。预先使用直径为0.6mm的ZrO2球介质,在流速为0.6L/分钟的乙醇溶剂中对化合物进行混合和粉碎150分钟。然后除去介质,从而制得特殊的结合剂,其中Zr化合物的超细颗粒均匀分散于Al2O3中。混合并粉碎后的Al2O3的体积平均粒径为250nm,X和ZrO2的体积平均粒径为50nm。
[0045] 利用直径为3mm的ZrO2球介质,通过球磨混合法将组成如表中所示的cBN颗粒(体积平均粒径:2μm)与结合剂均匀混合,并将由此获得的混合粉末堆叠在由硬质合金制成的支持板上,并填充到由Mo制成的胶囊中。然后,使用超高压装置,在6.5GPa的压和1,700℃的温度条件下烧结30分钟,从而制得烧结体。利用X射线衍射测量对化合物进行鉴定,计算I正方晶ZrO2(101)/IαAl2O3(110)的比值。
[0046] [实施例2至10和对比例1至5]
[0047] 按照与实施例1相同的方式制造cBN烧结体,不同之处在于,烧结体初始材料的组成和化合物如表中所示发生了改变。
[0048] [评价]
[0049] 将所得烧结体加工为符合ISO标准SNGN090312的切削刀片,并进行连续切削测试(内径)。
[0050] 在下列条件下对内径为85mm的离心铸铁衬套进行车削:切削速度为700m/分钟,切削深度为0.3mm,进给量为0.05mm/转,并采用湿法切削[冷却剂:乳液(由Japan Fluid System株式会社制造,商品名为System Cut 96),稀释20倍]。对切削达1km后的后刀面磨损量以及切削达2km后的刀口状态(是否存在后刀面磨损和崩裂)进行检查。
[0051] 其结果如表中所示。
[0052] 在实施例的全部cBN烧结体中,均获得了正常的抛光面。相反,在不含X的对比例1和2中,观察到非常小的烧结体脱落,这是由烧结不充分而造成的。
[0053] 当将实施例1至4进行比较时,在其中cBN含量在40体积%至50体积%的范围内的实施例3中,其磨损量最小,得到了好的结果。
[0054] 在实施例1至10中,X+ZrO2的值在1.0体积%至6.0体积%的范围内,与X+ZrO2的值为10.0体积%的对比例3相比,实施例1至10的磨损量明显较小,获得了好的结果。另外,在实施例3中,X+ZrO2的值在2.5体积%至4.0体积%的范围内,ZrO2/Al2O3的比值在0.02至0.06的范围内,I正方晶ZrO2(101)/IαAl2O3(110)的比值在0.2至0.5的范围内,其磨损量最小,未发生断裂和崩裂,得到了最佳结果。
[0055] 在对比例4中,ZrO2/Al2O3的比值为0.125,并且I正方晶ZrO2(101)/IαAl2O3(110)的比值为5.8,与实施例1至10相比,对比例4的磨损量明显较大,这是因为ZrO2的耐磨性明显低于Al2O3,据推断在切削达到2km时,由于磨损量较大,使得切削力增加,从而导致断裂。
[0056] 在对比例5中,I正方晶ZrO2(101)/IαAl2O3(110)的比值为0.05,据推断其耐磨性和耐断裂性因烧结不充分而降低。
[0057] [表1]
[0058]
[0059] 工业上的可利用性
[0060] 本发明的cBN烧结体具有优异的耐磨性和耐断裂性,并且可用作对难加工工件进
QQ群二维码
意见反馈