VERFAHREN UND VORRICHTUNG ZUM FRÄSEN VON FREIFORMFLÄCHEN

申请号 EP04762337.6 申请日 2004-07-02 公开(公告)号 EP1592527A2 公开(公告)日 2005-11-09
申请人 MTU Aero Engines GmbH; 发明人 GLÄSSER, Arndt;
摘要 The invention relates to a method and a device for milling freeform surfaces. During milling of 5 axes, a work piece is milled by a tool and/or a miller, in order to produce a desired freeform surface. Said tool is displaced, with respect to the work piece, along at least one tool path and/or milling path defined by support points. According to the invention, a tool vector is defined for each support point of the tool path in the form of forward angles and setting angles. A normal vector is determined for each support point from the forward angles and setting angles, and from a drive vector determined for each support point. The normal vector in each support point of the tool path is used for 3D radius correction in order to compensate for measuring deviations of the miller.
权利要求
Patentansprüche
1. Verfahren zum Fräsen von Freiformflächen an Werkstücken, insbesondere zum 5- Achsfräsen, wobei ein Werkstück von einem Werkzeug bzw. einem Fräser derart gefräst wird, dass sich eine gewünschte Freiformfläche ergibt, und wobei das Werkzeug zum Fräsen entlang mindestens einer über Stützpunkte definierten Werkzeugbahn bzw. Fräsbahn relativ zum Werkstück bewegt wird, dadurch gekennzeichnet, dass a) für jeden Stützpunkt der Werkzeugbahn ein Werkzeugvektor in Form von Vorlaufwinkeln und Anstellwinkeln definiert wird, b) für jeden Stützpunkt aus den Vorlaufwinkeln und Anstellwinkeln sowie aus einem für jeden Stützpunkt ermittelten Drivevektor ein Normalenvektor bestimmt wird, c) der Normalenvektor in jedem Stützpunkt der Werkzeugbahn für eine SD- Radiuskorrektur zum Ausgleich von Abmessungsabweichungen des Fräsers verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in jedem Stützpunkt der Werkzeugbahn der entsprechende Drivevektor dadurch ermittelt wird, dass ein Vektor durch den Stützpunkt und einen benachbarten Stützpunkt gelegt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass für den ersten Stützpunkt der Werkzeugbahn der Drivevektor dadurch ermittelt wird, dass ein Vektor durch den ersten Stützpunkt und den in Bewegungsrichtung nächst vorn liegenden Stützpunkt gelegt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für jeden weiteren Stützpunkt der Werkzeugbahn der Drivevektor dadurch ermittelt wird, dass ein Vektor durch den Stützpunkt und den in Bewegungsrichtung nächst hinten liegenden Stützpunkt gelegt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in jedem Stützpunkt der Werkzeugbahn der entsprechende Drivevektor dadurch ermittelt wird, dass durch alle Stützpunkte der Werkzeugbahn ein Spline gelegt wird, wobei die erste Ableitung des Splines in einem Stützpunkt dem Drivevektor des entsprechenden Stützpunkts entspricht.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zur Ermittlung des Normalenvektors für jeden Stützpunkt in einem ersten Schritt der Werkzeugvektor des jeweiligen Stützpunkts um den entsprechenden Drivevektor um den Betrag des jeweiligen Anstellwinkels zurückgedreht wird, wobei dies einen ersten Zwischenvektor für den jeweiligen Stützpunkt ergibt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass nachfolgend in einem zweiten Schritt das Kreuzprodukt aus ersten Zwischenvektor des jeweiligen Stützpunkts und dem Drivevektor des jeweiligen Stützpunkts gebildet wird, wobei dieses Kreuzprodukt einen zweiten Zwischenvektor für den Stützpunkt ergibt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass nachfolgend in einem dritten Schritt der erste Zwischenvektor des jeweiligen Stützpunkts um den zweiten Zwischenvektor des jeweiligen Stützpunkts um den Betrag des jeweiligen Vorlaufwinkels zurückgedreht wird, wobei dies den Normalenvektor für den Stützpunkt ergibt.
9. Vorrichtung zum Fräsen von Freiformflächen an Werkstücken, insbesondere 5- Achsfräsvorrichtung, wobei ein Werkzeug bzw. ein Fräser ein Werkstück derart fräst, dass sich eine gewünschte Freiformfläche ergibt, mit einer Programmiereinrichtung (10) zur Programmierung mindestens einer Werkzeugbahn bzw. Fräserbahn durch Stützpunkte, wobei das Werkzeug zum Fräsen entlang der oder jeder Werkzeugbahn relativ zum Werkstück bewegbar ist, dadurch gekennzeichnet, dass in der Programmiereinrichtung (10) für jeden Stützpunkt der Werkzeugbahn ein Werkzeugvektor in Form von Vorlaufwinkeln und Anstellwinkeln programmierbar ist, und dass der Programmiereinrichtung (10) Mittel (14) zugeordnet sind, um für jeden Stützpunkt einen Drivevektor und einen Normalenvektor zu bestimmen, wobei der Normalenvektor jedes Stützpunkts an eine 3D-Radiuskorrektur-Einrichtung übergeben wird.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Programmiereinrichtung (10) zur Programmierung der oder jeder Werkzeugbahn als CAD/CAM-System ausgebildet ist, wobei das CAD/CAM-System mindestens ein APT-File (1 1) erzeugt, welches von mindestens einem nachgeschalteten Postprozessor (15) in mindestens ein von der Fräsvorrichtung ausführbares NC- File (16) überführbar ist.
1 1. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die der Programmiereinrichtung (10) zugeordneten Mittel (14) aus dem vom CAD/CAM- System erzeugten ATP-File (1 1) für jeden Stützpunkt der Werkzeugbahn den Drivevektor und den Normalenvektor bestimmen, wobei die Mittel (14) den Normalenvektor in Form von ATP-Daten bereitstellen, und wobei diese ATP-Daten an einen APT-Prozessor ( 12) übergeben werden, der diese ATP-Daten und in ein maschinenunabhängige Steuerungsfile (13) derart integriert, dass in einer NC- Maschine (17), welche die eine 3D-Radiuskorrektur-Einrichtung umfasst, die SD- Radiuskorrektur ausführbar ist.
说明书全文

Verfahren und Vorrichtung zum Fräsen von Freiformfiächen

Die Erfindung betrifft ein Verfahren zum Fräsen von Freiformflächen nach dem Oberbegriff des Patentanspruchs 1. Des weiteren betrifft die Erfindung eine Vorrichtung zum Fräsen von Freiformflächen nach dem Oberbegriff des Patentanspruchs 9.

Die hier vorliegende Erfindung betrifft das Gebiet der Frästechnik, insbesondere das HSC- Fräsen (High Speed Cutting Fräsen), welches auch als HPC-Fräsen (High Performance Cutting Fräsen) bezeichnet wird.

Beim Fräsen von Freiformflächen wird ein Werkzeug, ein sogenannter Fräser, relativ zum Werkstück bewegt. Beim Fräsen unterliegt das Werkzeug, nämlich der Fräser, einem Verschleiß, wodurch in gewissen Intervallen ein Austausch des Fräsers oder ein Nachschleifen desselben erforderlich wird. Hierbei können sich Abmessungsänderungen am Werkzeug bzw. Fräser einstellen. Die Berücksichtigung bzw. den Ausgleich von Abmessungsabweichungen bzw. Abmessungsänderungen des Fräsers beim Fräsen bezeichnet man als Radiuskorrektur bzw. Fräser-Radiuskorrektur.

Aus dem Stand der Technik sind Fräsmaschinen bzw. NC-Steuerungen für Fräsmaschinen bekannt, die eine solche Fräser-Radiuskorrektur beim 3-Achsfräsen ermöglichen. Beim 3- Achsfräsen wird der Fräser in drei translatorischen Achsen relativ zum zu bearbeitenden Werkstück bewegt. Wird eine derartige Fräser-Radiuskorrektur beim 3-Achsfräsen durchgeführt, so handelt es sich um eine 2D-Radiuskorrektur.

Komplexe Freiformflächen, wie sie zB bei der Fertigung von Rotoren mit integraler Beschaufelung auftreten, müssen jedoch mit Hilfe des sogenannten 5-Achsfräsens durchgeführt werden, dh neben der Bewegung des Fräsers entlang der drei translatorischen Achsen ist eine Bewegung desselben entlang von zwei rotatorichen Achsen erforderlich. Nach dem Stand der Technik ist es bislang nicht möglich, eine Radiuskσrrektur-Funktion beim 5-Achsfräsen zu nutzten. Beim 5-Achsfräsen würde es sich um eine 3D-Radiuskorrektur handeln. Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zum Fräsen von Freiformflächen sowie eine entsprechende Vorrichtung zu schaffen.

Dieses Problem wird dadurch gelöst, dass das eingangs genannte Verfahren zum Fräsen von Freiformflächen durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist.

Erfindungsgemäß wird für jeden Stützpunkt der Werkzeugbahn ein Werkzeugvektor in Form von Vorlaufwinkeln und Anstellwinkeln definiert. Weiterhin wird für jeden Stützpunkt aus den Vorlaufwinkeln und Anstellwinkeln sowie aus einem für jeden Stützpunkt ermittelten Drivevektor ein Normalenvektor bestimmt. Der Normalenvektor in jedem Stützpunkt der Werkzeugbahn wird für eine 3D-Radiuskorrektur zum Ausgleich von Abmessungsabweichungen des Fräsers verwendet. Mithilfe der hier vorgeschlagenen Erfindung ist es erstmals möglich, beim 5-Achsfräsen eine Radiuskorrektur, nämlich eine 3D-Radiuskorrektur, durchzuführen.

Nach einer vorteilhaften Weitebildung der Erfindung wird zur Ermittlung des Normalenvektors für jeden Stützpunkt in einem ersten Schritt der Werkzeugvektor des jeweiligen Stützpunkts um den entsprechenden Drivevektor um den Betrag des jeweiligen Anstellwinkels zurückgedreht wird, wobei dies einen ersten Zwischenvektor für den jeweiligen Stützpunkt ergibt. Nachfolgend wird in einem zweiten Schritt das Kreuzprodukt aus ersten Zwischenvektor des jeweiligen Stützpunkts und dem Drivevektor des jeweiligen Stützpunkts gebildet, wobei dieses Kreuzprodukt einen zweiten Zwischenvektor für den Stützpunkt ergibt. Anschließend wird in einem dritten Schritt der erste Zwischenvektor des jeweiligen Stützpunkts um den zweiten Zwischenvektor des jeweiligen Stützpunkts um den Betrag des jeweiligen Vorlaufwinkels zurückgedreht, wobei dies den Normalenvektor für den Stützpunkt ergibt.

Die erfindungsgemäße Vorrichtung ist durch die Merkmale des Patentanspruchs 9 gekennzeichnet. Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Unteransprüchen und der nachfolgenden Beschreibung.

Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. In der Zeichnung zeigt:

Fig. 1 : ein stark schematisiertes Blockschaltbild einer erfindungsgemäßen Vorrichtung zum Fräsen von Freiformflächen.

Nachfolgend wird die hier vorliegende Erfindung unter Bezugnahme auf die Figuren in größerem Detail erläutert. Bevor jedoch die Details des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen Vorrichtung dargestellt werden, sollen nachfolgend einige Begriffe definiert werden, auf die später Bezug genommen wird.

Bei der Fräsbearbeitung eines zu bearbeitenden Werkstücks soll sich an der Oberfläche des Werkstücks eine gewünschte dreidimensionale Geometrie einstellen. Diese gewünschte dreidimensionale Geometrie an der Oberfläche des Werkstücks wird auch als Freiformfläche bezeichnet.

Die Fräsbearbeitung des zu bearbeitenden Werkstücks erfolgt mithilfe eines Werkzeugs, einem sogenannten Fräser. Zur Bearbeitung des Werkstücks wird das Werkzeug bzw. der Fräser relativ zum Werkstück bewegt. Die Bewegung des Werkzeugs bzw. Fräsers relativ zum Werkstück wird durch sogenannte Werkzeugkoordinaten beschrieben, wobei die Werkzeugkoordinaten die Position einer Werkzeugspitze bzw. eines Werkzeugbezugspunkt definieren. Die Bewegung der Werkzeugspitze bzw. des Werkzeugbezugspunkts bei der Fräsbearbeitung des Werkstücks bezeichnet man als Werkzeugbahn bzw. Fräsbahn. Die Werkzeugbahnen werden in einem CAD/CAM-System in Form von Stützpunkten definiert.

Ausgehend von der Werkzeugspitze bzw. dem Werkzeugbezugspunkt erstreckt sich ein Vektor entlang einer Werkzeugachse bzw. eines Werkzeugschaftes des Werkzeugs bzw. Fräsers. Dieser Vektor entlang der Werkzeugachse ausgehend von der Werkzeugspitze in Richtung des Werkzeugschaftes bezeichnet man als Werkzeugvektor. Die Fräsbearbeitung eines Werkstücks zur Ausbildung einer definierten dreidimensionalen Freiformfläche erfolgt mithilfe eines sogenannten 5-Achsfräsens. Beim 5-Achsfräsen kann das Werkzeug in fünf Achsen relativ zum zu bearbeitenden Werkstück bewegt werden. Drei Achsen dienen der linearen Relativbewegung des Werkzeugs relativ zum Werkstück, so dass jeder Punkt im Raum angefahren werden kann. Zusätzlich zu dieser linearen Bewegung entlang der sogenannten Linearachsen ist das Werkzeug zur Realisierung von Hinterschneidungen auch um eine Schwenkachse sowie eine Kippachse bewegbar. Entlang der Schwenkachse sowie der Kippachse werden rotatorische Bewegungen des Werkzeugs ermöglicht. Hierdurch ist es möglich, dass alle Punkte im Raum ohne Kollision angefahren werden können. Die Schwenkachse sowie die Kippachse werden häufig auch allgemein mit Rundachsen bezeichnet.

Es liegt nun im Sinne der hier vorliegenden Erfindung, ein Verfahren sowie eine Vorrichtung zum 5-Achsfräsen von Freiformflächen vorzuschlagen, wobei in jedem Stützpunkt der oder jeder Werkzeugbahn eine 3D-Radiuskorrektur zum Ausgleich von Abmessungsabweichungen bzw. Abmessungsänderungen des Fräsers durchgeführt wird. Hierzu wird für jeden Stützpunkt jeder Werkzeugbahn ein Werkzeugvektor in Form von Vorlaufwinkeln und Anstellwinkeln definiert. Weiterhin wird für jeden Stützpunkt einer jeden Werkzeugbahn ein Drivevektor des Fräsers ermittelt. Aus den obigen Größen, nämlich den Vorlaufwinkeln, den Anstellwinkeln und den Drivevektoren, wird für jeden Stützpunkt jeder Werkzeugbahn ein Normalenvektor ermittelt. Auf Grundlage dieses Normalenvektors, der für jeden Stützpunkt vorliegt, kann eine 3D-Radiuskorrketur durchgeführt werden.

Im Sinne des hier vorliegenden, erfindungsgemäßen Verfahrens wird demnach eine spezielle Form gewählt, um die Werkzeugvektoren zu definieren. Diese Form zur Definition der Werkzeugvektoren nutzt Vorlaufwinkel und Anstellwinkel aus. Weiterhin wird im Sinne der Erfindung aus diesen Winkeln und Drivevektoren, die unter Ausnutzung der Stützpunkte der Werkzeugbahnen ermittelt werden, eine Größe abgeleitet, nämlich der Normalenvektor, die einer 3D-Radiuskorrektur-Funktion als Eingangsgröße bereitgestellt wird, und die von einer 3D-Radiuskorrektur-Funktion verarbeitet werden kann. Aufgrund der Erfindung wird es erstmals möglich 3D-Radiuskorrekturen beim 5-Achsfräsen auszuführen. Wie bereits erwähnt, wird für jeden Stützpunkt der oder jeder Werkzeugbahn der Werkzeugvektor in Form von Vorlaufwinkeln und Anstellwinkeln definiert. Des weiteren wird für jeden Stützpunkt ein Drivevektor ermittelt.

Nach einer ersten Ausführungsform des Verfahrens wird in jedem Stützpunkt der Werkzeugbahn der entsprechende Drivevektor dadurch ermittelt, dass ein Vektor durch den entsprechenden Stützpunkt und einen benachbarten Stützpunkt gelegt wird. Für den ersten Stützpunkt einer jeden Werkzeugbahn wird der Drivevektor dadurch ermittelt, dass ein Vektor durch den ersten Stützpunkt und den in Bewegungsrichtung nächst vorn liegenden Stützpunkt, also den zweiten Stützpunkt der Werkzeugbahn, gelegt wird. Für jeden weiteren Stützpunkt der Werkzeugbahn wird der Drivevektor dadurch ermittelt, dass ein Vektor durch den Stützpunkt und den in Bewegungsrichtung nächst hinten liegenden Stützpunkt gelegt wird.

Würde man mit DV die Drivevektoren und mit SP die Stützpunkte der Werkzeugbahn bezeichnen, wobei die Werkzeugbahn n Stützpunkte aufweist, so würde demnach gelten:

DVs P i = f(SP i , SP i+1 ), für i=1; DVs P i = f(SP,, SPH), für i=2, 3, ... ,n.

Alternativ können die Drivevektoren für die Stützpunkte auch dadurch ermittelt werden, dass durch alle Stützpunkte einer Werkzeugbahn ein Spline gelegt wird. Die erste Ableitung des Splines in jedem der Stützpunkte entspricht dann dem Drivevektor des entsprechenden Stützpunkts.

Nach der Ermittlung der Drivevektoren liegt also für jeden Stützpunkt einer Werkzeugbahn ein Werkzeugvektor definiert in Vorlaufwinkel und Anstellwinkel sowie ein Drivevektor vor. Dann kann aus den Vorlaufwinkeln, Anstellwinkeln und Drivevektoren für jeden Stützpunkt ein Normalenvektor bestimmt werden.

Die Bestimmung des Normalenvektors für jeden Stützpunkt erfolgt dadurch, dass in einem ersten Schritt der Werkzeugvektor des jeweiligen Stützpunkts um den entsprechenden Drivevektor um den Betrag des jeweiligen Anstellwinkels zurückgedreht wird, wobei dies einen ersten Zwischenvektor für den jeweiligen Stützpunkt ergibt. Nachfolgend wird in einem zweiten Schritt das Kreuzprodukt aus ersten Zwischenvektor des jeweiligen Stützpunkts und dem Drivevektor des jeweiligen Stützpunkts gebildet, wobei dieses Kreuzprodukt einen zweiten Zwischenvektor für den Stützpunkt ergibt. Anschließend wird in einem dritten Schritt der erste Zwischenvektor des jeweiligen Stützpunkts um den zweiten Zwischenvektor des jeweiligen Stützpunkts um den Betrag des jeweiligen Vorlaufwinkels zurückgedreht, wobei dies den Normalenvektor für den Stützpunkt ergibt. Als Resultat ergibt sich dann der Normalenvektor für den entsprechenden Stützpunkt. Dieser Normalenvektor wird als Eingangsgröße für die 3D-Radiuskorrektur verwendet.

An dieser Stelle sei darauf hingewiesen, dass bei der Definition der Werkzeugvektoren über die Vorlaufwinkel und Anstellwinkel ebenfalls die Lage des Fräser bezogen auf das zu bearbeitende bzw. zu fräsende Bauteil definiert wird. Abhängig davon, ob der Fräser links oder rechts am zu fräsenden Bauteil anliegt, bestimmt sich das Vorzeichen für Vorlaufwinkel und Anstellwinkel.

Es sei nochmals darauf hingewiesen, dass im Sinne der Erfindung die Werkzeugvektoren unter Verwendung von Vorlaufwinkeln und Anstellwinkeln definiert werden. Es ist eine Erkenntnis der hier vorliegenden Erfindung, dass ausschließlich bei einer Definition der Werkzeugvektoren in Form von Vorlaufwinkeln und Anstellwinkeln eine geeignete Eingangsgröße, nämlich der Normalenvektor, für die 3D-Radiuskorrektur-Funktion ermittelt werden kann. Andere Methoden zur Definition von Werkzeugvektoren, nämlich konstante Werkzeugvektoren bzw. interpolierte Werkzeugvektoren, sind nicht geeignet.

Fig. 1 zeigt ein stark schematisiertes Blockschaltbild einer erfindungsgemäßen Vorrichtung zum Fräsen von Freiformflächen. Die erfindungsgemäße Vorrichtung umfasst im gezeigten Ausführungsbeispiel eine Programmiereinrichtung 10 zur Programmierung mindestens einer Werkzeugbahn bzw. Fräsbahn eines Fräswerkzeugs über Stützpunkte. Das Werkzeug bzw. der Fräser ist entlang dieser in der Programmiereinrichtung 10 definierten Werkzeugbahnen relativ zum Werkstück bewegbar. Bei der ersten Programmiereinrichtung 10 handelt es sich um ein CAD/CAM-System. In diesem CAD/CAM-System sind die Werkzeugbahnen bzw. Fräsbahnen des Werkzeugs bzw. die Werkzeugvektoren über Vorlaufwinkel und Anstellwinkel programmierbar. Das CAD/CAM-System erzeugt ein sogenanntes APT (Automatic Programming Tool)-File 1 1 , wobei ein APT-Prozessor 12 aus dem APT-File 1 1 ein maschinenunabhängiges Steuerungsfile 13 für die Fräsbearbeitung des Werkstücks erzeugt.

Der Programmiereinrichtung 10 sind Mittel 14 zugeordnet, um für jeden Stützpunkt einen Drivevektor und einen Normalenvektor zu bestimmen. Dies erfolgt auf die oben beschrieben Art und Weise. Die Mittel 14 bestimmen aus dem ATP-File 1 1 für jeden Stützpunkt der Werkzeugbahn den Drivevektor und den Normalenvektor, wobei die Mittel 14 den Normalenvektor in Form von ATP-Daten bereitstellen. Diese ATP-Daten werden an den APT-Prozessor 12 übergeben und in das maschinenunabhängige Steuerungsfile 13 integriert.

Aus dem Steuerungsfile 13 werden mithilfe sogenannter Postprozessoren 15 sogenannten NC-Daten 16 erzeugt, die maschinenabhängig sind und der Steuerung der einzelnen Bewegungsachsen der NC-Maschine 17, also der Fräsmaschine, dienen. Die im Steuerungsfile 13 enthaltenen Daten der Normalenvektoren liegen auch in den NC-Daten 16, wobei diese Daten der Normalenvektoren einer in die NC-Maschine 17 integrierten SD- Radiuskorrektur-Einrichtung übergeben werden, welche die 3D-Radiuskorrektur ausführt.

Mithilfe des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen Vorrichtung lässt sich das Fräsen von Freiformflächen erheblich verbessern. So ist es mithilfe der Erfindung erstmals möglich, bei einer fünfachsigen Fräsbewegung eine 3D-Radiuskorrektur zu verwenden.

Die erfindungsgemäße Vorrichtung sowie das erfindungsgemäße Verfahren eigenen sich besonders für die Fräsbearbeitung von rotationssymmetrischen Turbinenbauteilen mit integraler Beschaufelung, dh von sogenannten Blisks (Bladed Disks) oder Blings (BJaded Rings).

QQ群二维码
意见反馈