高耐蚀性烧结磁体及其制备方法

申请号 CN201010515292.4 申请日 2010-10-15 公开(公告)号 CN102456458B 公开(公告)日 2017-02-08
申请人 中国科学院宁波材料技术与工程研究所; 罗伯特·博世有限公司; 发明人 陈仁杰; 闫阿儒; 李东; 周巧英; 周龙捷; A·威尔德;
摘要 本 发明 提供了一种高耐蚀性 烧结 钕 铁 硼 磁体及其制备方法。以 质量 百分比计,所述磁体的组成为NdxRx1Fe100-(x+x1+y+y1+z)TyMy1Bz,其中24≤x≤33,0≤x1≤15,1.43≤y≤16.43,0.1≤y1≤0.6,0.91≤z≤1.07,R为选自Dy、Tb、Pr、Ce和Gd中的一种或多种,T为选自Co、Cu和Al中的一种或多种,M为选自Nb、Zr、Ti、Cr和Mo中的一种或多种,且M分布于钕铁硼磁体的 晶界 相内。
权利要求

1.高耐蚀性烧结磁体的制备方法,所述方法包括:
提供主相合金粉末,所述主相合金以质量百分比计,其成分为NdxRx1Fe100-(x+x1+y+z)TyBz,其中24≤x≤33,0≤x1≤15,1.43≤y≤16.43,0.91≤z≤1.07,R为选自Dy、Tb、Pr、Ce和Gd中的一种或多种,T为选自Co、Cu和Al中的一种或多种;
提供辅相合金粉末,所述辅相合金以质量百分比计,其成分为NdxRx1Fe100-(x+x1+y+y1+z)TyMy1Bz,其中24≤x≤63,0≤x1≤19,1.43≤y≤16.43,6≤y1≤18,0.91≤z≤1.07,Fe含量为100-(x+x1+y+y1+z),R为选自Dy、Tb、Pr、Ce和Gd中的一种或多种,T为选自Co、Cu和Al中的一种或多种,M为选自Nb、Zr、Ti、Cr和Mo中的一种或多种;
混合主相合金粉末与辅相合金粉末,其中辅相合金粉末占总重量的1-10%;
将混合后的粉末在磁场压制成型坯件,之后在200Mpa以上的压强下等静压
将型坯件放入高真空烧结炉内烧结,制得烧结磁体。
2.权利要求1的制备方法,其中主相合金粉末的平均粒径为2-5μm。
3.权利要求1的制备方法,其中辅相合金粉末的平均粒径为2-5μm。
4.权利要求1的制备方法,其中型坯件在高真空烧结炉内在1040-1120℃烧结2-5小时制得烧结磁体。
5.权利要求4的制备方法,其中型坯件还包括再在850-950℃一级回火2-3小时和/或
450-550℃二级回火2-5小时。

说明书全文

高耐蚀性烧结磁体及其制备方法

技术领域

[0001] 本发明涉及一种高耐蚀性烧结钕铁硼磁体及其制备方法。

背景技术

[0002] 1983年,日本住友特殊金属公司的Sagawa等人首先采用粉末治金工艺研制出高性能钕铁硼永磁材料,宣告了第三代稀土永磁材料的诞生。同以前的稀土永磁材料相比,钕铁硼基稀土永磁材料的优点首先在于它以价格便宜的铁为主要成分,而且在磁体中含量较少的Nd也是较为丰富的稀土金属,大大降低了永磁体的价格;其次,富含高磁矩的铁原子使材料的饱和磁极化强度达到4πMs=1.6T,磁晶各向异性场μ0Ha=7T,形成了创记录的最大磁能3
积,最大磁能积的理论值高达512kJ/m(64MGOe);另外,Nd2Fe14B具有四方结构,很容易成相。实际应用的烧结钕铁硼磁体主要由主相即硬磁相Nd2Fe14B及次要相富硼相和富钕相等组成。
[0003] 作为目前已知综合性能较好的永磁材料,钕铁硼永磁材料自发明以来一直是全世界研究者们研究的热点,并广泛地应用于社会生产生活的各个方面。进入二十一世纪后,随着全球计算机、电子、信息等高科技产业的飞速发展,钕铁硼磁体的产量更是进入高速增长时期。
[0004] 用烧结钕铁硼磁体代替铁磁铁已经成为电机行业的一个重要的发展趋势,特别是对于用于电动车辆和混合动车辆的电机。
[0005] 随着钕铁硼磁体应用领域的拓展,其工作环境也越来越趋于复杂,对材料的耐腐蚀性提出了更高的要求。尤其是当用于发电机和电动机中时,往往会要求磁体在高温下具有好的耐腐蚀性
[0006] 普通的钕铁硼磁体对空气(主要是O2)、湿气和盐的耐腐蚀性较低。这一缺点严重制约了其在发电机和电动机中的应用。
[0007] 因此,确有必要提供一种新的具有良好耐腐蚀性的钕铁硼磁体,以克服先前技术中所存在的缺陷

发明内容

[0008] 为了克服现有钕铁硼磁体存在的缺陷,本发明提供了一种具有高耐蚀性的烧结钕铁硼磁体。
[0009] 具体而言,本发明提供了一种高耐蚀性烧结钕铁硼磁体,其特征在于以质量百分比计磁体组成为NdxRx1Fe100-(x+x1+y+y1+z)TyMy1Bz,其中24≤x≤33,0≤x1≤15,1.43≤y≤16.43,0.1≤y1≤0.6,0.91≤z≤1.07,R为选自Dy、Tb、Pr、Ce和Gd中的一种或多种,T为选自Co、Cu和Al中的一种或多种,M为选自Nb、Zr、Ti、Cr和Mo中的一种或多种,且M分布于钕铁硼磁体的晶界相内。
[0010] 本发明还提供了所述钕铁硼磁体的制备方法,所述方法包括:
[0011] 提供主相合金粉末,所述主相合金以质量百分比计,其成分为NdxRx1Fe100-(x+x1+y+z)TyBz,其中24≤x≤33,0≤x1≤15,1.43≤y≤16.43,0.91≤z≤1.07,R为选自Dy、Tb、Pr、Ce和Gd中的一种或多种,T为选自Co、Cu和Al中的一种或多种;
[0012] 提供辅相合金粉末 ,所 述辅相合金以质量百分比计 ,其成分 为NdxRx1Fe100-(x+x1+y+y1+z)TyMy1Bz,其中24≤x≤63,0≤x1≤19,1.43≤y≤16.43,6≤y1≤18,
0.91≤z≤1.07,R为选自Dy、Tb、Pr、Ce和Gd中的一种或多种,T为选自Co、Cu和Al中的一种或多种,M为选自Nb、Zr、Ti、Cr和Mo中的一种或多种;
[0013] 混合主相合金粉末与辅相合金粉末,其中辅相合金粉末占总重量的1-10%;
[0014] 将混合后的粉末在磁场压制成型坯件,并在200Mpa以上的压强下等静压
[0015] 将型坯件放入高真空烧结炉内烧结,制得烧结磁体。
[0016] 与现有技术的钕铁硼磁体制备方法相比,本发明的钕铁硼磁体制备方法,只需向烧结钕铁硼磁体中加入少量甚至微量的难熔金属就能大大改善钕铁硼磁体的高温耐腐蚀性。同时,难熔金属的加入并不会损害钕铁硼磁体的磁性能。

具体实施方式

[0017] 为了改善烧结钕铁硼磁体的高温耐腐蚀性,可以采取两条技术路线。其一是提高钕铁硼磁体本身的耐腐蚀性,其二是在磁体表面上涂布涂层。但是耐腐蚀涂层的耐久性往往难以满足实际使用要求。
[0018] 本发明采用了提高钕铁硼磁体本身的耐腐蚀性的技术路线。
[0019] 在本发明中,通过采用双相合金烧结法向烧结钕铁硼磁体中加入难熔金属,将难熔金属加入到钕铁硼磁体的晶界相内,来提高钕铁硼磁体的高温耐腐蚀性。所添加的难熔金属可以是Nb、Zr、Ti、Cr或Mo,优选是Nb、Zr或Ti。本发明最终制得的烧结钕铁硼磁体的化学组成可以通过现有的分析方法容易地确定。
[0020] 与Nd相比,Ce在地壳中的丰度较高,成本较低,因此经常被用于钕铁硼磁体中替代Nd,以降低产品成本。
[0021] Gd属于重稀土元素,其有助于在高温下稳定磁体材料的磁性能。
[0022] 双相合金烧结法是近年来发展起来的一种新的制造烧结钕铁硼磁体材料的方法。该方法是通过使用两种成分的合金,经过粗破碎到一定程度后,然后按一定的比例混合、取向、压型,然后经过烧结、回火、检测等步骤制备磁体。
[0023] 在本发明中,借助双相合金烧结法,只需向烧结钕铁硼磁体中加入少量甚至微量的难熔金属就能大大改善钕铁硼磁体的高温耐腐蚀性。
[0024] 这是因为在双相合金烧结法中,主相合金基本不熔化,包含在辅相合金中的难熔金属将主要分布于磁体中的晶界相内。这样一来只需少量难熔金属,就可以大大改善磁体的高温耐腐蚀性。同时,由于难熔金属主要分布在晶界相内,因此也不会损害钕铁硼磁体的磁性能。
[0025] 从而,在磁体磁性能基本不受影响的前提下,仅仅加入微量的难熔金属,就大大改善了钕铁硼磁体的高温耐腐蚀性。
[0026] 现有技术中虽然也存在将难熔金属加入钕铁硼磁体中的尝试,但是这些尝试往往是将难熔金属加在了主相合金中。结果不但难熔金属的用量大,高温耐腐蚀性改善不明显,还不利地损害了磁体的磁性。
[0027] 本发明中提出的通过晶界相改性的发明构思是基于烧结钕铁硼磁体材料的制备经验,因为在本发明设计的晶界相合金(辅相合金)中稀土含量比较高,其熔点低于烧结磁体的主相熔点,在烧结温度晶界相为液相而主相仍为固态,所以晶界相合金中的元素很难或很少渗透进主相。这一点是烧结钕铁硼烧结和双合金工艺特点所决定的。
[0028] 作为借助双相合金烧结法制备本发明的钕铁硼磁体的一个示例实施方案。本发明的烧结钕铁硼磁体可以通过如下步骤制备:
[0029] -提供主相合金,主相合金采用铸造工艺制成钕铁硼铸锭合金或用速凝薄片工艺制成钕铁硼速凝薄片,采用氢破碎法或机械破碎法将主相合金破碎,再经气流磨或球磨制粉,获得平均粒径为2-5μm的主相合金粉末;
[0030] -提供辅相合金,辅相合金采用电弧炉熔炼合金锭或采用铸造工艺制成铸锭合金或用速凝薄片工艺制成速凝薄片或采用快淬工艺制成快淬带,通过氢破碎法或机械破碎法破碎,再经气流磨或球磨制粉,获得平均粒径为2-5μm的辅相合金粉末;
[0031] -将主相合金粉末与辅相合金粉末混合,其中辅相合金粉末占总重量的1-10%,然后在混料机中混合均匀。
[0032] -将混合后的粉末在磁场中压制成型坯件,并在200Mpa以上压强下等静压;
[0033] -将型坯件放入高真空烧结炉内在1040-1120℃烧结2-5小时,制得烧结磁体。
[0034] 在上述的等静压处理中,压强越高对材料性能越有利,但是过高的压强势必会提高对安全设施的要求,同时也导致设备体积增大,从而导致生产成本的增加。
[0035] 至于烧结处理,举例来说,在本发明的钕铁硼磁体制备方法中,高真空烧结炉内烧结可以采取以下的方式进行:在1040-1120℃烧结2-5小时,制得烧结磁体。
[0036] 视具体情况,可再在850-950℃一级回火2-3小时,也可再在450-550℃二级回火2-5小时,制得烧结磁体。
[0037] 回火处理是可选择性的,可以只进行一级回火,或只进行二级回火,或既进行一级回火又进行二级回火,或不进行任何回火处理。
[0038] 下面将结合实施例进一步阐释本发明。下面的实施例仅仅是用于说明目的而不构成对本发明的任何限制。
[0039] 实施例1
[0040] 利用速凝薄片技术将主合金成分为Pr6Nd24Fe67.45Dy0.5Co0.6Cu0.04Al0.25Zr0.2B0.96(质量百分含量)的合金制成薄片,然后采用氢破碎和气流磨工艺将其制成平均粒径为3.6微米的粉末。将粉末在2T的磁场中取向并压制成型。在300MPa压力下,等静压20秒。随后将压坯置于真空炉内,在1080℃烧结2小时,之后进行两级热处理,其中一级热处理温度为875℃,时间为2小时;二级热处理温度为560℃,时间为2小时。即获得母合金烧结磁体。所制备主合金磁体的各项磁性能指标见表1。
[0041] 利 用 速 凝 薄 片 技 术 将 辅 合 金 成 分 为Pr6Nd24Fe47.45Dy0.5Nb20Co0.6Cu0.04Al0.25Zr0.2B0.96(质量百分含量)制成薄片,然后采用氢破碎和气流磨工艺将其制成平均粒径为3.6微米的粉末。将占总质量百分比为1%的辅合金粉末加 入 到 上 述 主 合 金 粉 末 中 ,并 混 合 均 匀 ,得 最 终 合 金 成 分 为 :
Pr6Nd24Fe67.25Dy0.5Nb0.2Co0.6Cu0.04Al0.25Zr0.2B0.96(质量百分含量)。随后,采用与母合金相同的取向压型工艺、等静压、真空烧结和热处理技术,得到最终磁体。所制备含辅合金母的最终磁体磁体的各项磁性能指标(20℃)见表1。
[0042] 将主合金磁体和含辅合金的最终磁体制成Φ10mm×10mm和Φ15mm×3mm两种规格的磁体,每种规格5个,共20个。随后进行HAST实验,实验条件是:130℃,0.26MPa,168小时。主合金磁体和含辅合金的最终磁体的失重情况见表1。
[0043] 耐腐蚀性测试:
[0044] 在130℃和95%的相对湿度下持续168小时进行高压炉测试,检验制备磁体的高温耐腐蚀性。
[0045] 测试结果如表1所示,数据表明实施例1制备的钕铁硼磁体表面腐蚀大大改善。具体而言,在130℃和95%的相对湿度下持续168小时的高压炉测试中,平均失重从1.71mg/cm2降到了0.19mg/cm2。
[0046] 而相同测试条件下,市售的烧结钕铁硼磁体的典型的表面腐蚀通常则高达2mg/2
cm。
[0047] 高温老化后的磁通量损失:
[0048] 在150℃下老化1000小时后,测量磁体的磁通量损失。
[0049] 而在同样老化条件下,本发明的烧结钕铁硼磁体的磁通量损失仅为0.77%。
[0050] 通常,对于市售磁体的磁通量损失的要求是在工作温度下在3小时内的磁通量损失低于5%。可见,本发明磁体远高于这一要求。
[0051] 表1
[0052] 添加总质量百分含量为1%的辅合金烧结磁体的磁性能和平均失重对比
[0053]
[0054] 实施例2
[0055] 利用速凝薄片技术将成分为Nd24Fe67.48Tb0.8Dy5Co1.0Zr0.2Cu0.23Al0.3B0.99(质量百分含量)的主合金和成分为Nd40Fe31.48Tb0.8Dy5Co1.0Zr0.2Nb20Cu0.23Al0.3B0.99(质量百分含量)辅合金分别制成薄片,然后采用氢破碎和气流磨工艺将其分别制成平均粒径为3.5微米的粉末。将占总质量百分比为1%的辅合金粉末加入到上述主合金粉末中,并混合均匀,得到的成分为:Nd24.16Fe67.12Tb0.8Dy5Co1.0Nb0.2Zr0.2Cu0.23Al0.3B0.99的最终合金粉末。随后,将主合金粉末和最终合金粉末分别经2T磁场取向压型、300MPa等静压20秒。将所制得的压坯分别置于真空炉内,在1090℃烧结2小时,之后进行两级热处理,其中一级热处理温度为900℃,时间为2小时;二级热处理温度为500℃,时间为2小时。即分别获得主合金烧结磁体和最终成分合金烧结磁体。所制备主合金磁体和最终成分烧结磁体的各项磁性能指标(20℃)见表2。
[0056] 将主合金磁体和含辅合金的最终磁体制成Φ10mm×10mm和Φ15mm×3mm两种规格的磁体,每种规格5个,共20个。随后进行HAST实验,实验条件是:130℃,0.26MPa,168小时。主合金磁体和含辅合金的最终磁体的失重情况见表。
[0057] 耐腐蚀性测试:
[0058] 在130℃和95%的相对湿度下持续168小时进行高压炉测试,检验制备磁体的高温耐腐蚀性。
[0059] 测试结果如表2所示,数据表明实施例2制备的钕铁硼磁体表面腐蚀大大改善。具体而言,在130℃和95%的相对湿度下持续168小时的高压炉测试中,平均失重从1.6mg/cm2降到了0.13mg/cm2。
[0060] 表2
[0061] 添加总质量百分含量为1%的辅合金烧结磁体的磁性能和平均失重对比
[0062]
[0063] 从上述实施例可知,本发明通过以独特的方法添加微量的难熔金属,大大改善了磁体的高温稳定性、耐腐蚀性,而磁体的磁性能只是略微有所下降。
[0064] 这样的技术效果是现有技术中所不曾取得的,也是本领域一般技术人员难以轻易推测出来的。
[0065] 基于前面描述的原理和具体实施方案,本领域技术人员可以容易地做出修改或设计出其他等同实施方案。本领域技术人员应当理解这样的等同实施方案仍在本申请权利要求的范围之内。
QQ群二维码
意见反馈