动压轴承制造方法

申请号 CN200610064613.7 申请日 2006-12-29 公开(公告)号 CN101210586B 公开(公告)日 2010-11-10
申请人 富准精密工业(深圳)有限公司; 鸿准精密工业股份有限公司; 发明人 侯春树;
摘要 一种动压 轴承 ,该动压轴承内周面开设有若干动压沟槽,每一沟槽具有一弧形内壁,该弧形内壁沿圆周方向呈梯度分布。一种 转轴 ,该转轴外周面开设有若干动压沟槽,每一沟槽具有一弧形内壁,该弧形内壁沿圆周方向呈梯度分布。本 发明 还提供了一种动压轴承的制造方法。该动压轴承或转轴上动压沟槽的弧形内壁可有效缓和 流体 产生动压效果时的压 力 变化,从而避免压力暴冲问题,增加装置的 稳定性 。通过填充体和射出成型制程一体成型该动压沟槽和动压轴承,有利于提高产品的量产性及稳定性。
权利要求

1.一种动压轴承的制造方法,包括如下步骤:
提供一实心圆柱形填充体,该填充体采用聚缩树脂作为成型材料,该填充体外周面突出设有若干凸起,这些凸起沿周向制成梯度弧面或圆状;
将该填充体置于一中空轴承模具的中心位置,并以射出成型方式将金属或陶瓷粉末与熔融黏结剂的混合物注射入轴承模具中空腔体以形成动压轴承胚体;
通过催化脱脂方式将填充体从动压轴承胚体中移除,其中,该催化脱脂过程包括:将经射出成型后的动压轴承胚体置于一脱脂炉内,在110℃~140℃温度下对该脱脂炉内的动压轴承胚体施以硝酸蒸汽,该动压轴承胚体内的填充体与硝酸蒸汽反应分解生成甲醛而被脱除;
去除该动压轴承胚体中黏结剂;
烧结动压轴承胚体。
2.如权利要求1所述的动压轴承的制造方法,其特征在于:所述黏结剂是通过热脱脂的方法脱除。

说明书全文

动压轴承制造方法

技术领域

[0001] 本发明涉及轴承装置,特别涉及一种动压轴承制造方法。

背景技术

[0002] 目前,轴承广泛应用于各种设备中,尤其是动压轴承在电子装置中使用得更加普遍,如硬盘驱动器(HDD)、光盘驱动器(CD-ROM)、数字化视频光盘机(DVD)、微型光盘机(MiniDisc)、磁光盘机(MO)及散热扇等领域,这些装置中达的轴承尺寸小,对轴承的回转精度及寿命的要求高。
[0003] 动压轴承是在转轴与轴承之间的微小间隙内形成一层流体(可为气体或液体)润滑油膜,润滑流体通过流经不同断面积的剪作用而产生一动压效果,使得该动压轴承以高刚性对转轴进行支承及润滑,从而转轴与轴承不直接接触,可减少磨损,延长转轴及轴承的使用寿命。而在动压轴承中,其承载油膜的形成方式有几何形状楔效应、挤压效应、表面伸缩效应、密度楔效应、黏度楔效应及膨胀效应,目前最主要以几何形状楔效应为主。所谓“楔效应”指的是定量粘性的流体由大断面积至小断面积时所产生的动压力效应,以此动压力来支撑转轴运转的稳定性。如图1所示,现有技术中的动压轴承通过在转轴(图未示)外周面或轴承100内周面成型“人”字形动压沟槽110来实现“楔效应”,这些动压槽110沿转轴旋转方向均匀间隔排列并与转轴外周面相对。工作时,润滑流体流经的动压槽110横截面变化将直接影响此压力效应的稳定性。如图2所示,该动压轴承100的采用直边的阶梯状动压沟槽110,润滑流体流经沟槽110界面时,压力变化过快,易造成压力遽增现象而导致转轴200偏摆,导致转轴200运转不稳定。
[0004] 在制造该动压轴承100时,一般是先制造中空的轴承,再利用化学蚀刻或电解放电加工机械加工或转印等方法,在中空轴承内壁表面刻划出所需的动压沟槽110。同样也可在转轴上刻划出所需的动压沟槽以实现动压效果。然而由于轴承100的微型化趋势使得轴承100内径相对地缩小,使得在成型此动压沟槽110时非常困难,难以提高产品的量产性及稳定性。

发明内容

[0005] 有鉴于此,有必要提供一种具有好的量产性及稳定性的动压轴承制造方法。
[0006] 一种动压轴承的制造方法,包括如下步骤:提供一实心圆柱形填充体,该填充体采用聚缩树脂作为成型材料,该填充体外周面突出设有若干凸起,这些凸起沿周向制成梯度弧面或圆角状;将该填充体置于一中空轴承模具的中心位置,并以射出成型方式将金属或陶瓷粉末与熔融黏结剂的混合物注射入轴承模具中空腔体以形成动压轴承胚体;通过催化脱脂方式将填充体从动压轴承胚体中移除,该催化脱脂过程包括:将经射出成型后的动压轴承胚体置于一脱脂炉内,在110℃~140℃温度下对该脱脂炉内的动压轴承胚体施以硝酸蒸汽,该动压轴承胚体内的填充体与硝酸蒸汽反应分解生成甲醛而被脱除;去除该动压轴承胚体中黏结剂;烧结动压轴承胚体。
[0007] 该动压轴承或转轴上动压沟槽的弧形内壁可有效缓和流体产生动压效果时的压力变化,从而避免压力暴冲问题,增加装置的稳定性。通过填充体和射出成型制程一体成型该动压沟槽和动压轴承,有利于提高产品的量产性及稳定性。附图说明
[0008] 图1是现有技术中一动压轴承沿圆周方向展开图。
[0009] 图2是现有技术中一轴承和一转轴接触面的局部示意图。
[0010] 图3是本发明实施例一的动压沟槽沿圆周方向展开图。
[0011] 图4是图3中一动压沟槽沿圆周方向展开的局部示意图。
[0012] 图5是另一种动压沟槽沿圆周方向展开的局部示意图。
[0013] 图6是另一种动压沟槽沿圆周方向展开的局部示意图。
[0014] 图7是本发明动压轴承制造方法的流程图
[0015] 图8是图7中填充体的立体图。
[0016] 图9是图7中动压轴承胚体和填充体的组合图。
[0017] 图10是图7中动压轴承的一剖视图。

具体实施方式

[0018] 如图3及图4所示,为本发明实施例一动压轴承300内周面排布的若干“人”字形动压沟槽34,这些动压沟槽34沿圆周方向相互均匀间隔。每一动压沟槽34包括二分叉流道342,每一分叉流道342延伸方向(即OY方向)与圆周方向(即OX方向)成一定倾斜角度。同时,每一分叉流道342由二相互连接的内壁3420、3421构成,其中,该内壁3420为一竖直平面,该内壁3421沿圆周方向为内凹弧面而呈梯度变化,由该分叉流道342形成的动压沟槽34产生动压效果时,润滑流体在该具梯度的内壁3421的过渡下产生的压力逐渐增加,从而可避免压力暴冲问题,增加动压轴承稳定性。
[0019] 另外,该二分叉流道342也可为如图5及图6所示的分叉流道342b、342c所示形状。该分叉流道342b由二相互连接的内壁3420b、3421b构成,该二内壁3420b、3421b与所述内壁3420、3421构造相同,不同之处在于,平直内壁3420b与相邻的动压轴承内周面的交界为圆弧倒角;该分叉流道342c由二相互连接的内壁3420c、3421c构成,该内壁3421c与所述内壁3421b构造相同,内壁3420c与相邻的动压轴承内周面的交界为圆弧倒角,不同之处在于,该内壁3420c为一弧面。由该二分叉流道342b、342c形成的动压沟槽产生动压效果时,这些内壁3421b、3421c使得润滑流体从流道342b、342c流出时,产生的压力逐渐增加,而该内壁3420b、3420c使得流体流入流道342b、342c时的压力逐渐减缓,从而可避免压力暴冲问题,进一步增加动压轴承稳定性。
[0020] 以上所述分叉流道342、342b或342c构成的动压沟槽同样可开设在转轴上,用以产生稳定的动压效应。
[0021] 请参阅图7至图10,由所述分叉流道342、342b、342c形成动压沟槽的动压轴承制造方法相同,以下以分叉流道342形成动压沟槽34的动压轴承300的制造方法为例,该动压轴承300包括以下步骤:首先,提供一填充体10,该填充体10表面突出设有若干凸起14;其次,将该填充体10置于一中空轴承模具(图未示)的中心位置,并以注射成型方式将金属粉体或陶瓷粉体材料充填入该轴承模具的中空腔体,以形成该动压轴承胚体20;再次,通过催化脱脂方式将该填充体10从该动压轴承胚体20中移除,从而该动压轴承胚体20的内壁表面便形成了动压沟槽34的纹路;接着,通过脱脂或萃取方法将该动压轴承胚体20的黏结剂去除;然后,高温烧结该动压轴承胚体20;最后,以机械加工方式修整该动压轴承胚体20的孔径以得到所需要的动压轴承300。
[0022] 在该填充体10的结构设计中:该填充体10的结构形状需根据该动压轴承300内壁表面的动压沟槽34的形状来设计,即该填充体10的表面结构形状和该动压轴承300的内壁及动压沟槽34能够对应互补,该填充体10包括一圆柱形本体12和若干间隔分布在该本体12圆周表面上的“人”字形凸起14,该本体12的外表面可与欲成型的动压轴承300的内表面对应,每一凸起14由二分叉部141组成,每一分叉部141周向边界根据该动压轴承300的流道342、342b或342c的内壁形状,制成梯度弧面或圆角状,从而使制得的动压轴承
300具有稳定的动压效果。
[0023] 在选择该填充体10的材料时,除了需要考虑到成型工艺、成本及量产性外,还要考虑到后续制程工艺对该填充体10材料性能的要求,比如后续制程中注射成型该轴承胚体20时,该填充体10的材料熔点应比注射成型料射出时的温度高,即该填充体10的材料熔点比该注射成型料中黏结剂的熔点温度高,以避免该填充体10在与注射成型料接触时发生融熔变形;同时,后续制程的脱脂过程要求该填充体10的材料易于脱脂,且不会导致该动压轴承胚体20产生变形、弯曲或破裂等缺陷。根据以上要求,本发明的一实施例中的填充体10采用聚缩醛树脂,英文名为polyoxymethylene(简称POM),作为其成型材料。聚缩醛树脂为乳白色不透明结晶性线性热塑性树脂,聚缩醛树脂具有良好的综合性能和着色性,具有较高的弹性模量,很高的刚性和硬度,比强度(材料强度与材料密度的比值)和比刚性(材料刚度与材料密度的比值)接近于金属,素有金属塑料之称。聚缩醛树脂的尺寸稳定性好,表面光泽好;除了强酸、酚类和有机卤化物外,对其他化学品稳定,耐油;机械性能受温度影响小,具有较高的热变形温度。聚缩醛树脂的吸率大于0.2%,成型前应预干燥,聚缩醛树脂熔融温度与分解温度相近。采用聚缩醛树脂成型的制品可通过注射、挤出、吹塑、滚塑焊接、粘接、涂膜、印刷、电、机加工,其中注射成型是主要方法,因聚缩醛树脂成型收缩率大,模具温度宜高些,或进行退火处理,或加入增强材料(如无玻璃纤维),注射成型使用的主要设备是柱塞式或螺杆式往复注射机。该注射成型过程大致可分为:熔解-注射-冷却等三个阶段,其具体过程是:塑化好的熔体靠柱塞或螺杆的推力注入闭合的模腔内,经冷却固化定型,开模得到所需的制品。应根据填充体10的表面形状设计注射模具(图未示),对该注射模具的设计应着重考虑到制品收缩率的补偿及浇口的流畅;该注射模具的主要功能有:接受熔体和分配熔体、成型制品、保压冷却、顶出注射成品、承受模和注射压力、传递机械运动和引导模具内各部件的运动。
[0024] 在该动压轴承胚体20的成型过程中:用于成型动压轴承胚体20的中空轴承模具结构,需根据该动压轴承300结构尺寸并结合该填充体10的结构尺寸来设计;针对不同的填充体10的材料,可选用不同的成型方式来成型该动压轴承胚体20。本发明的一实施例中的填充体10采用聚缩醛树脂作为其成型材料,可选用粉末射出成型方式(Powder Injection Molding,简称PIM)来成型该动压轴承胚体20,在黏结剂的选择上,应选用熔点较填充体10的熔点低,且宜用脱脂或萃取方式去除的材料,比如以聚乙烯(PE)为主的黏结剂,在后续制程中,可采用热脱脂的方式去除。该动压轴承胚体20射出成型过程是:首先将金属或陶瓷粉末与黏结剂在高温下混合,使混合物具有类似塑料流变行为,然后将塑化后的混合物经射出成型机加热、加压射入中空轴承模具腔体以成型所需轴承胚体20。该粉末射出成型过程所用设备可采用与所述注射成型过程中相同的注射机,当轴承胚体20采用粉末射出方式成型时,应对螺杆式注射机的螺杆进行热处理,使其具有高耐磨性。通过粉末射出成形得到的制品具有很高的形状自由度,能够最大限度得到接近最终形状的零件,能有效减少后续加工量,且射出成型相对于其它成型方式更有利于制造高熔点、高强度、复杂形状的零件,易实现自动化、大批量生产。
[0025] 在脱脂过程中:可供选择的脱脂方法比如有热脱脂或催化脱脂,本发明的一实施例在将填充体10从轴承胚体20中移除时采用催化脱脂方法,催化脱脂又名为触酶脱脂,其具体脱脂过程如下:首先,将经射出成型后的动压轴承胚体20置于一脱脂炉内,在110℃~140℃温度下对该脱脂炉内的动压轴承胚体20施以硝酸蒸汽,聚缩醛树脂是一种对酸性气氛非常敏感的高分子聚合物,它在酸性气氛下可以迅速发生“拉链式”的解聚反应,而在反应受热过程中很容易分解出甲醛气体小分子,因此在此种硝酸蒸汽形成的酸性催化剂环境下,聚缩醛树脂将连续被分裂成甲醛气体,即该动压轴承胚体20内的填充体10与硝酸蒸汽反应分解生成甲醛而被脱除;接着,在该脱脂炉内通过氮气回流压力将分解生成的甲醛输送自高温燃烧区燃烧成二及二氧化氮等无害气体,从而有效地将该填充体10依序自动压轴承胚体20内排除。当批量生产动压轴承300时,热脱脂虽然具有工艺和设备简单的特点,但其耗时、高成本、工序复杂,催化脱脂利用气固界面反应,克服了热脱脂速度慢、易产生缺陷的不足,从而可有效避免该动压轴承胚体20因材料热膨胀系数不同所产生的变形、弯曲或破裂等缺陷,提高动压轴承300的量产性和尺寸精度,且脱脂后所产生的废物不会污染环境,利于环保。另外,除硝酸外,还可使用草酸以形成酸性气氛。
[0026] 在填充体10脱除后,接着可通过热脱脂的方法将该动压轴承胚体20中的黏结剂脱除。
[0027] 在脱脂过程后,由于黏结剂被去除,所得到的动压轴承胚体20往往比较疏松,需要对该动压轴承胚体20进行烧结使其变得更致密化,以得到高密度、高强度的制品。根据不同的轴承胚体20材料,可选择在真空、氧气或氮气等氛围下进行高温烧结。
[0028] 烧结后,该动压轴承胚体20将会发生收缩变形,可采用机械加工方式对该胚体20进行尺寸修整。常用的机加工方式有多种,比如拉刀修整,钻头修整,研磨,数控等等,也可使用化学蚀刻或电解放电方式,但其成本较高,一般不推荐使用。
[0029] 以上所述方法同样可用来制作具有“人”字形动压沟槽的转轴,不同之处是,应将填充体制作成内周面具有“人”字形凸起的中空圆柱形的轴承形状,该填充体内周面应与欲成型的转轴外周面相对应,接着通过射出成型成型转轴胚体,然后再经脱脂、去除黏结剂、烧结、机加修整等工序制得所需转轴。
[0030] 综上所述,本发明动压轴承中动压沟槽34的分叉流道342、342b或342c沿周向的弧形交界面可有效缓和流体产生动压效果时的压力变化,从而可避免压力暴冲问题,增加动压轴承稳定性。通过填充体10和射出成型制程一体成型该动压轴承300和动压沟槽34,有利于提高产品的量产性及稳定性。
QQ群二维码
意见反馈