输出设备和具有该动力输出设备的车辆

申请号 CN200580033044.3 申请日 2005-09-26 公开(公告)号 CN101031449B 公开(公告)日 2012-05-30
申请人 丰田自动车株式会社; 爱信艾达株式会社; 发明人 及部七郎斋; 石川哲浩; 峯泽幸弘;
摘要 动 力 输出设备(100)在第一与第二电动发 电机 (MG1、MG2)的 中性点 (N1、N2)之间产生商用AC 电压 (Vac)。动力输出设备(100)包括漏电检测装置(40),在漏电检测装置(40)检测到漏电时使AC输出截止 电路 (50)动作,并根据此时的运行状态停止第一与第二电动发电机(MG1、MG2)中的一个或二者。另外,在输出商用AC电压(Vac)之前,漏电检测装置(40)对来自控制装置(70)的测试 信号 (TZCT)做出响应地进行对漏电检测功能的检查。
权利要求

1.一种动输出设备,该设备包括:
第一与第二电动发电机(MG1,MG2);
第一与第二变换器(20,30),其分别被连接到所述第一与第二电动发电机(MG1,MG2);
控制装置(70),其控制所述第一与第二变换器(20,30)的运行,以便对所述第一与第二电动发电机(MG1,MG2)进行驱动并在所述第一与第二电动发电机(MG1,MG2)的中性点之间产生AC电压
AC输出截止电路(50),其被设置在输出线对(ACL1,ACL2)与输出端子(60)之间,所述输出线对(ACL1,ACL2)被连接到所述第一与第二电动发电机(MG1,MG2)的所述中性点,所述输出端子(60)用于将所述AC电压输出到AC负载(90);以及
漏电检测装置(40),当所述AC负载(90)经由所述输出线对(ACL1,ACL2)从所述中性点接收所述AC电压的供给时,基于由所述中性点之间所产生的电压差引起的在彼此相反的方向上流经所述输出线对(ACL1,ACL2)的电流之间的不平衡所产生的磁通,该装置检测存在/不存在漏电,并在检测出所述漏电时产生截止指令,以便使所述AC输出截止电路(50)截止所述AC电压的输出并停止所述第一与第二变换器(20,30)中至少一个的运行,其中,
当由所述不平衡产生的所述磁通在检测线圈的末端之间产生的电压差超过规定值时,所述漏电检测装置(40)检测出所述漏电。
2.根据权利要求1的动力输出设备,其中:
所述漏电检测装置(40)将所述截止指令输出到所述AC输出截止电路(50)以及所述控制装置(70),且
所述控制装置(70)在收到来自所述漏电检测装置(40)的所述截止指令时,根据所述第一与第二电动发电机(MG1,MG2)的运行状态,停止所述第一与第二变换器(20,30)中的一个。
3.根据权利要求2的动力输出设备,其中:
所述第一电动发电机(MG1)被耦合到车辆的内燃机(80),
所述第二电动发电机(MG2)被耦合到所述车辆的驱动轮(85),且
所述运行状态包括:
第一状态,其中,所述第二电动发电机(MG2)正在驱动所述驱动轮(85),以及第二状态,其中,所述第二电动发电机(MG2)并非正在驱动所述驱动轮(85),且所述第一电动发电机(MG1)处于再生运行。
4.根据权利要求3的动力输出设备,其中,在所述第一状态期间,当收到来自所述漏电检测装置(40)的所述截止指令时,所述控制装置(70)停止所述第一变换器(20)。
5.根据权利要求3的动力输出设备,其中,在所述第二状态期间,当收到来自所述漏电检测装置(40)的所述截止指令时,所述控制装置(70)停止所述第二变换器(30)。
6.根据权利要求1的动力输出设备,其中:
所述第一电动发电机(MG1)被耦合到车辆的内燃机(80),
所述第二电动发电机(MG2)被耦合到所述车辆的驱动轮(85),
所述漏电检测装置(40)将所述截止指令输出到所述AC输出截止电路(50)以及所述控制装置(70),且
在所述第二电动发电机(MG2)并非正在驱动所述驱动轮(85)且所述第一电动发电机(MG1)并非处于再生运行的时候,当收到来自所述漏电检测装置(40)的所述截止指令时,所述控制装置(70)停止所述第一与第二变换器(20,30)。
7.根据权利要求1-6中任意一项的动力输出设备,其中,在开始向所述AC负载(90)输出所述AC电压之前,所述漏电检测装置(40)进行关于漏电的存在/不存在能否被正常检测出的功能检查。
8.根据权利要求7的动力输出设备,其中:
所述漏电检测装置(40)包括:
测试电源线(TL),在所述功能检查时,电流在所述测试电源线(TL)上流动,集磁心(46),所述输出线对(ACL1,ACL2)与所述测试电源线(TL)伸过其中,线圈(47),其被绕卷在所述集磁铁心(46)周围,以及
信号产生单元(48),当所述线圈(47)的末端之间的电压差超过规定值时,该单元产生所述截止指令。
9.根据权利要求1-6中任意一项的动力输出设备,其中,所述AC电压为商用AC电压。
10.一种车辆,其包括权利要求1-6中任意一项所述的动力输出设备(100),其中,所述动力输出设备(100)向被连接到所述输出端子(60)的所述AC负载(90)供给所述AC电压。
11.根据权利要求1的动力输出设备,其中,所述在所述第一与第二电动发电机(MG1,MG2)的中性点之间产生AC电压包含在所述第一与第二电动发电机(MG1,MG2)的所述中性点上产生相位彼此相反的AC电压。

说明书全文

输出设备和具有该动力输出设备的车辆

技术领域

[0001] 本发明涉及动力输出设备和具有该设备的车辆,特别涉及能够产生商用交流(AC)电压并将之输出到外部AC负载的动力输出设备以及具有这种动力输出设备的车辆。

背景技术

[0002] 日本专利公开No.10-290529公开了一种安装到电气车辆的电源单元。该电源单元包括:电池电路系统,例如用来自电池的电力供电的行驶电机以及车上辅助机器;用于产生商用AC电压的变换器电路,其将来自电池的直流(DC)电压转换为应用于外部AC负载的商用AC电压;截止开关,其被设置在变换器电路与外部AC负载之间;漏电检测电路,其检测从电池泄漏的接地故障电流(ground-fault current),以便检测电路系统的漏电。在检测到漏电时,漏电检测电路停止变换器电路,并使截止开关动作以便首先截止到外部AC负载的供电,而不中断到例如行驶电机以及车上辅助机器等电路系统的供电。
[0003] 根据这种电源单元,当外部AC负载中发生漏电时,首先优先中断用于外部AC负载的电源电路系统。因此,在不损害对包括行驶电机以及车上辅助机器等在内的、电气车辆主体中的电路系统进行供电的情况下,可迅速防止例如触电、电气车辆本来功能下降等危险问题的发生。
[0004] 在日本专利公开No.10-290529中公开的电源单元中,用于外部AC负载的电源电路系统被配置为具有与包括行驶电机以及车上辅助机器的电路系统(为与用于外部AC负载的电源电路系统明确区分起见,下面也称为“主电路系统”)分立的系统。也就是说,日本专利公开No.10-290529中公开的电源单元包括这样的变换器电路:其与驱动行驶电机以及车上辅助机器等的变换器分立地产生商用AC电压。在检测到漏电时,仅停止用于外部AC负载的电源电路系统。
[0005] 然而,在系统被配置为使用主电路系统向外部AC负载供电而不是提供用于产生商用AC电压的附加变换器电路的情况下,出于缩小装置尺寸、降低成本的目的,在检测到漏电时简单地停止主电路系统的变换器以便截止到外部AC负载的供电可能对处于某种运行状态的行驶电机和/或车上辅助机器的运行产生不良影响。
[0006] 这里,尽管可以想到在不停止变换器的情况下仅操作截止开关以便停止到外部AC负载的供电,不能在两个步骤中或以两种方式可靠地停止输出,这导致缺乏安全性。
[0007] 另外,为了保证关于漏电的充分的安全性,在开始向外部AC负载供电之前需要对漏电检测功能的运行进行检查。

发明内容

[0008] 为解决上面描述的问题制造本发明。本发明的一个目标在于提供一种在漏电发生时充分确保安全性的动力输出设备。
[0009] 本发明的另一目标在于提供这样的一种动力输出设备:当漏电发生时,该设备在考虑对主电路系统的影响的同时充分确保安全性。
[0010] 本发明进一步的目标在于提供这样的一种车辆:该车辆装有在漏电发生时充分确保安全性的动力输出设备。
[0011] 本发明又进一步的目标在于提供装有这样的一种动力输出设备的车辆:当漏电发生时,该设备在考虑到对主电路系统的影响的同时充分确保安全性。
[0012] 根据本发明,动力输出设备包括:第一与第二电动发电机;第一与第二变换器,其分别被连接到第一与第二电动发电机;控制装置,其对第一与第二变换器的运行进行控制,以便驱动第一与第二电动发电机并在第一与第二电动发电机的中性点之间产生AC电压;AC输出截止电路,其被设置在被连接到第一与第二电动发电机中性点的输出线对与用于向外部AC负载输出AC电压的输出端子之间;漏电检测装置,其用于检测存在/不存在漏电,并在检测到漏电时产生截止指令,以便使AC输出截止电路截止AC电压的输出,并停止第一与第二变换器中至少一个的运行。
[0013] 优选为,漏电检测装置将截止指令输出到AC输出截止电路以及控制装置,且控制装置在收到来自漏电检测装置的截止指令时根据第一与第二电动发电机的运行状态停止第一与第二变换器中的一个。
[0014] 优选为,第一电动发电机被耦合到车辆的内燃机,第二电动发电机被耦合到车辆的驱动轮,运行状态包括第一状态与第二状态,在第一状态中,第二电动发电机正在对驱动轮进行驱动,在第二状态中,第二电动发电机并非正在对驱动轮进行驱动、且第一电动发电机处于再生运行。
[0015] 优选为,在第一状态期间,在收到来自漏电检测装置的截止指令时,控制装置停止第一变换器。
[0016] 优选为,在第二状态期间,在收到来自漏电检测装置的截止指令时,控制装置停止第二变换器。
[0017] 优选为,第一电动发电机被耦合到车辆的内燃机,第二电动发电机被耦合到车辆的驱动轮,漏电检测装置向AC输出截止电路以及控制电路输出截止指令,在第二电动发电机并非正在对驱动轮进行驱动且第一电动发电机并非处于再生运行的时候,当收到来自漏电检测装置的截止指令时,控制装置停止第一与第二变换器。
[0018] 优选为,在开始向外部AC负载输出AC电压之前,漏电检测装置进行关于能否正常检测出存在/不存在漏电的功能检查。
[0019] 优选为,漏电检测装置包括:测试电源线,功能检查时在测试电源线上流过电流;集磁心,输出线对与测试电源线伸过该铁心;绕卷在集磁铁心周围的线圈;信号产生单元,其用于在线圈末端之间的电压差超过规定值时产生截止指令。
[0020] 优选为,AC电压为商用AC电压。
[0021] 另外,根据本发明,车辆包括上面介绍的任何一种动力输出设备,且动力输出设备向被连接到输出端子的外部AC负载供给AC电压。
[0022] 在根据本发明的动力输出设备中,能被输出到外部AC负载的AC电压在第一与第二电动发电机的中性点之间产生。在由漏电检测装置检测到漏电时,由AC输出截止电路停止AC电压的输出,并且,基于来自漏电检测装置的截止指令,第一与第二变换器中至少一个的运行被停止,以便停止AC电压的产生。
[0023] 因此,根据本发明,AC电压的输出被双重地停止或用两种方式停止,这在漏电发生时充分确保安全性。另外,根据本发明,在不提供专用于产生AC电压的变换器的情况下,AC电压可被供到外部AC负载。
[0024] 另外,在根据本发明的动力输出设备中,漏电检测装置向AC输出截止电路以及控制装置输出截止指令。当控制装置收到来自漏电检测装置的截止指令时,其根据第一与第二电动发电机的运行状态停止第一与第二变换器中的一个,以便停止AC电压的产生。
[0025] 因此,根据本发明,由于将第一与第二电动发电机的运行状态考虑在内,在漏电发生时充分保证安全性的同时,可以抑制对主电路系统的影响。
[0026] 另外,在根据本发明的动力输出设备中,漏电检测装置将截止指令输出到AC输出截止电路和控制装置。当控制装置在第二电动发电机并非正在对驱动轮进行驱动且第一电动发电机并非处于再生运行的状态下收到来自漏电检测装置的截止指令时,其停止第一与第二变换器以便停止AC电压的产生。
[0027] 因此,根据本发明,在发生漏电时,可在将第一与第二电动发电机的运行状态考虑在内的情况下获得更高的安全性。
[0028] 另外,在根据本发明的动力输出设备中,在开始向外部AC负载输出AC电压之前,漏电检测装置进行对漏电检测功能的检查。也就是说,事先检查漏电检测装置能否在漏电发生时正常运行。
[0029] 因此,根据本发明,漏电发生时的安全性能够进一步得到提高。
[0030] 在根据本发明的车辆中,提供了上面介绍的动力输出设备。因此,根据本发明,可充分保证漏电发生时的安全性。另外,在漏电发生时的安全性得到充分保证的同时,对车辆运行的影响也能受到限制。另外,由于车辆不包括专门用于产生AC电压的变换器,可以在提供作为AC电源的附加功能的同时实现尺寸、重量以及成本的缩减。附图说明
[0031] 图1为根据本发明一实施例的动力输出设备的原理框图
[0032] 图2示出了在图1所示电动发电机之间流动的电流;
[0033] 图3示出了商用AC电压和占空总和(duty summation)的波形
[0034] 图4示出了图1所示漏电检测装置的构造;
[0035] 图5示出了在漏电被检测到时将被停止的电动发电机;
[0036] 图6为图1所示漏电检测装置的运行测试的流程图
[0037] 图7示出了在图6所示漏电检测装置运行测试时的信号波形;
[0038] 图8为一原理框图,其示出了本发明的动力输出设备被应用到混合动力车的情况。

具体实施方式

[0039] 下面将参照附图详细介绍本发明的实施例,在附图中,为相同或对应的部分分配同样的参考标号,且不再重复对其进行介绍。
[0040] 图1为根据本发明一实施例的动力输出设备的原理框图。参照图1,动力输出设备100包括电池B、升压转换器10、变换器20与30、电动发电机MG1与MG2、漏电检测装置40、AC输出截止电路50、连接器60、控制装置70、电容器C1与C2、电源线PL1与PL2、接地线SL、U相线UL1与UL2、V相线VL1与VL2、W相线WL1与WL2以及AC输出线ACL1与ACL2。
[0041] 例如,动力输出设备100被装在混合动力车中。电动发电机MG1被装在混合动力车中,其作为由发动机驱动的发电机运行,也作为能够起动发动机的电机运行。电动发电机MG2被装在混合动力车中,其作为对混合动力车的驱动轮进行驱动的电机运行。
[0042] 例如,电动发电机MG1与MG2各自由3相AC同步电动发电机组成。电动发电机MG1使用发动机的旋转力产生AC电压,并将所产生的AC电压输出到变换器20。另外,电动发电机MG1通过自变换器20接收的AC电压产生驱动力以便对发动机进行起动。通过自变换器30接收的AC电压,电动发电机MG2产生车辆的驱动转矩。在车辆再生制动时,电动发电机MG2产生AC电压并将之输出到变换器30。
[0043] 电池B为DC电源,其由例如镍氢二次电池或锂离子二次电池构成。电池B将所产生的DC电压输出到升压转换器10,另外,由来自升压转换器10的DC电压进行充电。
[0044] 升压转换器10包括电抗器L1、npn晶体管Q1与Q2以及二极管D1与D2。电抗器L1的一端被连接到电源线PL1,另一端被连接到npn晶体管Q1与Q2的连接节点。npn晶体管Q1与Q2串联连接在电源线PL2与接地线SL之间,并各自具有从控制装置70接收控制信号PWC的基极。二极管D1与D2分别被连接在npn晶体管Q1与Q2的集电极与发射极之间,以便使电流从发射极侧流到集电极侧。
[0045] 变换器20包括U相臂21、V相臂22与W相臂23。U相臂21、V相臂22与W相臂23并联连接在电源线PL2与接地线SL之间。U相臂21由串联连接的npn晶体管Q11与Q12组成,V相臂22由串联连接的npn晶体管Q13与Q14组成,W相臂23由串联连接的npn晶体管Q15与Q16组成。二极管D11-D16分别被连接在npn晶体管Q11-Q16的集电极与发射极之间,以便使电流从发射极侧流向集电极侧。
[0046] 经由U、V与W相线UL1、VL1与WL1,相应相臂中的npn晶体管的连接节点分别被连接到电动发电机MG1的对应相线圈在其中性点相对侧的末端。
[0047] 变换器30包括U相臂31、V相臂32与W相臂33。U相臂31、V相臂32与W相臂33并联连接在电源线PL2与接地线SL之间。U相臂31由串联连接的npn晶体管Q21与Q22组成,V相臂32由串联连接的npn晶体管Q23与Q24组成,W相臂33由串联连接的npn晶体管Q25与Q26组成。二极管D21-D26分别被连接在npn晶体管Q21-Q26的集电极与发射极之间,以便使电流从发射极侧流向集电极侧。
[0048] 在变换器30中,同样地,经由U、V与W相线UL2、VL2与WL2,相应相臂中的npn晶体管的连接节点分别被连接到电动发电机MG2的对应相线圈在其中性点相对侧的末端。
[0049] 电容器C1被连接在电源线PL1与接地线SL之间,以便减小由于电池B和升压转换器10的电压变动产生的影响。电容器C2被连接在电源线PL2与接地线SL之间,以便减小由于变换器20与30以及升压转换器10的电压变动产生的影响。
[0050] 基于来自控制装置70的控制信号PWC,升压转换器10将根据npn晶体管Q2的开关操作流动的电流在电抗器L1处存储为磁场能量,以便对来自电池B的DC电压进行升压。接着,其经由二极管D1将升压后的电压与npn晶体管Q2被关断的时刻同步地输出到电源线PL2。另外,基于来自控制装置70的控制信号PWC,升压转换器10对经由电源线PL2接收自变换器20和/或变换器30的DC电压降压转换为电池B的电压等级,由此对电池B进行充电。
[0051] 基于来自控制装置70的控制信号PWM1,变换器20将供自电源线PL2的DC电压转换为AC电压,并将该AC电压输出到电动发电机MG1。照此,电动发电机MG1被驱动以产生所希望的转矩。另外,基于来自控制装置70的控制信号PWM1,变换器20将由电动发电机MG1产生的AC电压转换为DC电压,并将该DC电压输出到电源线PL2。
[0052] 这里,基于来自控制装置70的控制信号PWM1,变换器20驱动电动发电机MG1,同时对其中性点N1上的电位进行控制,使得商用AC电压Vac在电动发电机MG1的中性点N1与电动发电机MG2的中性点N2之间产生。
[0053] 另外,在收到来自控制装置70的停止指令SDOWN1时,变换器20停止其运行。
[0054] 基于来自控制装置70的控制信号PWM2,变换器30将供自电源线PL2的DC电压转换为AC电压,并将该AC电压输出到电动发电机MG2。照此,电动发电机MG2被驱动以产生所希望的转矩。在电动发电机MG2再生制动运行中,基于来自控制装置70的控制信号PWM2,变换器30将输出自电动发电机MG2的AC电压转换为DC电压,并将该DC电压输出到电源线PL2。
[0055] 这里,基于来自控制装置70的控制信号PWM2,变换器30驱动电动发电机MG2,同时对其中性点N2上的电位进行控制,使得商用AC电压Vac在中性点N1与N2之间产生。
[0056] 在收到来自控制装置70的停止指令SDOWN2时,变换器20停止其运行。
[0057] 漏电检测装置40被设置在AC输出线ACL1与ACL2上。AC输出线ACL1与ACL2组成用于提取在电动发电机MG1与MG2的中性点N1与N2之间产生的商用AC电压Vac的电源线对。AC输出线ACL1将中性点N1连接到AC输出截止电路50,AC输出线ACL2将中性点N2连接到AC输出截止电路50。漏电检测装置40在检测到漏电时向AC输出截止电路50与控制装置70输出截止指令ZCT。漏电检测装置40对来自控制装置70的测试信号TZCT做出响应地使电流从电源节点42流向接地节点44,以便检查漏电检测功能的运行。
[0058] AC输出截止电路50包括继电器52与54。继电器52被连接在AC输出线ACL1与连接器60之间,继电器54被连接在AC输出线ACL2与连接器60之间。在收到来自控制装置70的输出启用指令EN时,AC输出截止电路50开通继电器52与54,以便将连接器60电气连接到AC输出线ACL1与ACL2。在收到来自漏电检测装置40的截止指令ZCT时,AC输出截止电路50关断继电器52与54,以便使连接器60从AC输出线ACL1与ACL2电气分离。
[0059] 连接器60是用于将在电动发电机MG1的中性点N1与电动发电机MG2的中性点N2之间产生的商用AC电压Vac输出到外部AC负载的输出端子。用于电器或用于家用后备电源的电源插头被连接到连接器60。当外部AC负载被连接时,连接器60向控制装置70输出H电平的信号CT。
[0060] 基于各电动发电机MG1与MG2的旋转数和转矩指令值、电池B的电压以及电源线PL2上的电压,控制装置70产生用于驱动升压转换器10的控制信号PWC,并将所产生的控制信号PWC输出到升压转换器10。各电动发电机MG1与MG2的旋转数、电池B的电压以及电源线PL2的电压由对应的传感器(未示出)进行检测。
[0061] 基于电源线PL2上的电压、电动发电机MG1的转矩指令值以及相电流,控制装置70产生用于驱动电动发电机MG1的控制信号PWM1。这里,控制装置70产生控制信号PWM1,同时,控制上臂的npn晶体管Q11、Q13与Q15以及下臂的npn晶体管Q12、Q14与Q16的占空总和,使得在电动发电机MG1的中性点N1与电动发电机MG2的中性点N2之间产生商用AC电压Vac。于是,控制装置70将所产生的控制信号PWM1输出到变换器20。
[0062] 另外,基于电源线PL2上的电压、电动发电机MG2的转矩指令值以及相电流,控制装置70产生用于驱动电动发电机MG2的控制信号PWM2。这里,控制装置70产生控制信号PWM2,同时,控制上臂的npn晶体管Q21、Q23与Q25以及下臂的npn晶体管Q22、Q24与Q26的占空总和,使得在中性点N1与N2之间产生商用AC电压Vac。于是,控制装置70将所产生的控制信号PWM2输出到变换器30。电流传感器(未示出)对电动发电机MG1、MG2中的各相电流进行检测。
[0063] 在外部AC负载被连接到连接器60的状态下,当规定的起动开关SW被开启时,控制装置70向漏电检测装置40输出测试信号TZCT,以便进行关于漏电检测装置40的漏电检测功能是否正常工作的功能检查。当判定为漏电检测功能正常时,控制装置70将输出启用指令EN输出到AC输出截止电路50。这使得在中性点N1与N2之间产生的商用AC电压Vac能从连接器60被输出到外部AC负载。
[0064] 在收到来自漏电检测装置40的截止指令ZCT时,根据电动发电机MG1与MG2在此时的运行状态,控制装置70判定哪一变换器应当停止运行。基于判定结果,控制装置70向应当停止运行的变换器输出对应的停止指令SDOWN1或SDOWN2。
[0065] 图2示出了在图1所示电动发电机MG1与MG2之间流动的电流。在图2中,代表性地示出了交流电流Iac从电动发电机MG1的中性点N1流到电动发电机MG2的中性点N2的情况。
[0066] 参照图2,被连接到U、V与W相线UL1、VL1与WL1的变换器20(未示出)基于来自控制装置70(未示出,下文亦然)的控制信号PWM1进行开关操作,以便使由电流分量Iu1_t与Iu1_ac组成的U相电流流到电动发电机MG1的U相线圈,使由电流分量Iv1_t与Iv1_ac组成的V相电流流到电动发电机MG1的V相线圈,使由电流分量Iw1_t与Iw1_ac组成的W相电流流到电动发电机MG1的W相线圈。
[0067] 被连接到U、V与W相线UL2、VL2与WL2的变换器30(未示出)基于来自控制装置70的控制信号PWM2进行开关操作,以便使由电流分量Iu2_t与Iu2_ac组成的U相电流流到电动发电机MG2的U相线圈,使由电流分量Iv2_t与Iv2_ac组成的V相电流流到电动发电机MG2的V相线圈,使由电流分量Iw2_t与Iw2_ac组成的W相电流流到电动发电机MG2的W相线圈。
[0068] 这里,电流分量Iu1_t、Iv1_t与Iw1_t用于在电动发电机MG1上产生转矩,电流分量Iu2_t、Iv2_t与Iw2_t用于在电动发电机MG2上产生转矩。电流分量Iu1_ac、Iv1_ac与Iw1_ac用于使交流电流Iac从电动发电机MG1的中性点N1流到AC输出线ACL1,电流分量Iu2_ac、Iv2_ac与Iw2_ac用于使交流电流Iac从AC输出线ACL2流到电动发电机MG2的中性点N2。电流分量Iu1_ac、Iv1_ac、Iw1_ac、Iu2_ac、Iv2_ac与Iw2_ac彼此相等,不对电动发电机MG1与MG2的转矩产生影响。电流分量Iu1_ac、Iv1_ac与Iw1_ac的合计值以及电流分量Iu2_ac、Iv2_ac与Iw2_ac的合计值各自对应于交流电流Iac。
[0069] 照此,变换器20与30在电动发电机MG1的中性点N1与电动发电机MG2的中性点N2之间产生商用AC电压Vac,同时,在电动发电机MG1与MG2上产生转矩。
[0070] 当电动发电机MG1和/或电动发电机MG2正在被停止时,用于在被停止的电动发电机上产生转矩的电流分量可被设置为零,且仅用于产生交流电流Iac的电流分量能流入相应的相线圈。
[0071] 图3示出了商用AC电压Vac以及占空总和的波形。参照图3,曲线k1表示变换器20的开关控制期间在占空总和上的变化,曲线k2表示变换器30的开关控制期间在占空总和上的变化。这里,占空总和指的是在各变换器中从上臂的导通占空(on-duty)减去下臂的导通占空得到的结果。在图3中,当占空总和取正值时,其表明在对应的电动发电机的中性点上的电位高于变换器输入电压Vdc(图1所示电源线PL2上的电压)的中间值(Vdc/2)。
当占空总和取负值时,其表明中性点上的电位低于电位Vdc/2。
[0072] 在动力输出设备100中,控制装置70根据曲线k1以商用频率(50Hz或60Hz)周期性地改变变换器20的占空总和,并根据曲线k2以该商用频率周期性地改变变换器30的占空总和。这里,以这样的相位周期性地改变变换器30的占空总和:该相位是对变换器20的占空总和进行改变的相位的反相。
[0073] 因此,在从t0到t1的时间段中,中性点N1上的电位高于电位Vdc/2,中性点N2上的电位低于电位Vdc/2,因此,在中性点N1与N2之间产生正的商用AC电压Vac。这里,当外部AC负载被连接到连接器60时,不能从变换器20的上臂流到下臂的多余电流从中性点N1经由AC输出线ACL1、外部AC负载以及AC输出线ACL2流到中性点N2,接着,其从中性点N2流到变换器30的下臂。
[0074] 在从t1到t2的时间段中,中性点N1上的电位低于电位Vdc/2,中性点N2上的电位高于电位Vdc/2。因此,在中性点N1与N2之间产生负的商用AC电压Vac。不能从变换器30的上臂流到下臂的多余电流从中性点N2经由AC输出线ACL2、外部AC负载以及AC输出线ACL1流到中性点N1,接着,其从中性点N1流到变换器20的下臂。
[0075] 通过这种方式,在动力输出设备100中,可在中性点N1与N2之间产生商用AC电压Vac。
[0076] 在电动发电机MG1和/或电动发电机MG2正在被停止时,可对与被停止的电动发电机对应的变换器进行开关控制,使得用于在被停止的电动发电机中产生转矩的电流分量被设置为零、且仅在相线圈上产生用于产生交流电流Iac的电流分量。例如,在与被停止的电动发电机对应的变换器中,可在同一时刻进行相应相臂的开关控制。
[0077] 图4示出了图1所示漏电检测装置40的构造。参照图4,漏电检测装置40包括集磁铁心46、线圈47、信号产生单元48、测试电源线TL以及pnp晶体管P1。集磁铁心46由例如坡莫合金材料等高磁导率材料制成,其聚集根据流经AC输出线ACL1、ACL2或测试电源线TL的电流在其附近产生的磁通。线圈47被绕卷在集磁铁心46的周围,在集磁铁心46中存在磁通时在其末端之间产生电压差。信号产生单元48被连接到线圈47的末端,并在当线圈47的末端上产生的电压差超过规定值时输出截止指令ZCT。
[0078] 测试电源线TL用于检查漏电检测装置40的漏电检测功能的运行。测试电源线TL被布置为与AC输出线ACL1与ACL2一起伸过集磁铁心46的内周侧。测试电源线TL的一端被连接到电源节点42,另一端被连接到pnp晶体管P1。pnp晶体管P1被设置在测试电源线TL与接地节点44之间,并具有从控制装置70(未示出)接收测试信号TZCT的基极。
[0079] 在测试运行以外的正常运行中,漏电检测装置40收到来自控制装置70的、H电平的测试信号TZCT。也就是说,在正常运行中,pnp晶体管P1被关断,且没有流经测试电源线TL的电流。
[0080] 在正常运行中,交流电流Iac以相反的方向流经AC输出线ACL1与ACL2。如果不存在漏电且流经AC输出线ACL1与ACL2的电流彼此相等,流经AC输出线ACL1的电流产生的磁通与流经AC输出线ACL2的电流产生的磁通相互抵消,使得在集磁铁心46中产生的磁通变为零。在这种情况下,在线圈47的末端不产生电压差,因此,信号产生单元48不输出截止指令ZCT。
[0081] 相反,当存在漏电时,丧失流经AC输出线ACL1的电流产生的磁通与流经AC输出线ACL2的电流产生的磁通之间的平衡,且集磁铁心46处产生磁通。根据所产生的磁通,这在线圈47的末端产生电压差。当电压差超过规定值时,信号产生单元48判定为发生漏电并输出截止指令ZCT。
[0082] 在测试运行中,漏电检测装置40收到来自控制装置70的、L电平的测试信号TZCT。对此做出响应地,pnp晶体管P1被开通,且电流经测试电源线TL从电源节点42流到接地节点44。因此,在集磁铁心46中产生磁通,且信号产生单元48输出截止指令ZCT。
[0083] 如上所述,在动力输出设备100中,通过从控制装置70向漏电检测装置40输出测试信号TZCT并通过检查存在/不存在输出自漏电检测装置40的截止指令,可以在不实际使电流流经AC输出线ACL1与ACL2的情况下检查漏电检测装置40的功能。
[0084] 如图1所示,在动力输出设备100中,漏电检测装置40向AC输出截止电路50以及控制装置70输出截止指令ZCT。当由漏电检测装置40检测到漏电时,使AC输出截止电路50动作,另外,对电动发电机MG1与MG2的运行状态做出响应地停止变换器20与30中的一个或二者。在检测到漏电时,这确保用于向连接器60输出AC电压的系统被双重截止或以两种方式截止,由此改善了安全性。
[0085] 图5示出了在检测到漏电时将被停止的电动发电机。参照图5,在装有动力输出设备100的混合动力车正在行驶的时候,当收到来自漏电检测装置40的截止指令ZCT时,控制装置70仅停止与电动发电机MG1对应的变换器20。因此,从变换器20到电动发电机MG1的电流供给被停止,在电动发电机MG1的中性点N1与电动发电机MG2的中性点N2之间不流动电流。在这种情况下,当电动发电机MG1正在产生电力时,电力的产生被停止。然而,电动发电机MG2没有被停止,因此防止了车辆行驶性能的立即下降。
[0086] 另一方面,在装有动力输出设备100的混合动力车正在被停止且电动发电机MG1处于再生运行(发电)的时候,当控制装置70收到来自漏电检测装置40的截止指令ZCT时,其仅停止与电动发电机MG2对应的变换器30。因此,从变换器30到电动发电机MG2的电流供给被停止,在中性点N1与中性点N2之间不流动电流。由于电动发电机MG1没有被停止,电动发电机MG1的再生运行得以继续。
[0087] 另外,在装有动力输出设备100的混合动力车正在被停止且电动发电机并非正在进行再生运行的时候,当控制装置70收到来自漏电检测装置40的截止指令ZCT时,控制装置70停止变换器20与30。也就是说,由于电动发电机MG1与MG2均未运行,变换器20与30均被停止以保证更高的安全性。
[0088] 在上面的阐述中,根据车辆的运行状态停止变换器20与30中的一个或二者。通过实现除借助AC输出截止电路50的截止以外的截止,这保证了高度安全性,并防止了车辆的本来功能在漏电发生时劣化。对于没被停止的变换器,优选为随后迅速停止其运行。
[0089] 注意,在上面的阐述中,混合动力车正在行驶的状态对应于“第一状态”,混合动力车被停止且电动发电机MG1处于再生运行的状态对应于“第二状态”。
[0090] 图6为图1所示漏电检测装置40的运行测试的流程图。参照图6,在外部AC负载被连接到连接器60的状态下,当规定的起动开关SW被开启时,启用AC输出模式,其中,商用AC电压Vac可从连接器60被输出(步骤S2)。作为对AC输出模式启用的响应,控制装置70向漏电检测装置40输出L电平的测试信号TZCT,以便进行漏电检测装置40的功能检查(步骤S4)。因此,在漏电检测装置40中,电流经测试电源线TL流动。
[0091] 当收到来自漏电检测装置40的截止指令ZCT时(步骤S6中的是),控制装置70判定为漏电检测装置40的漏电检测功能正常(步骤S8)。当没有收到来自漏电检测装置40的截止指令ZCT时(步骤S6中的否),控制装置70判定为漏电检测装置40的运行异常(步骤S10),并在显示装置等等之上显示漏电检测功能异常。
[0092] 图7示出了在图6所示漏电检测装置的运行测试时的信号波形。参照图7,在时刻t1,控制装置70将被输出到漏电检测装置40的测试信号TZCT从H电平变为L电平。此时,如果漏电检测装置40正常,其将向AC输出截止电路50和控制装置70输出H电平的截止指令ZCT。如果漏电检测装置40异常,其不会输出截止指令ZCT。
[0093] 在时刻t2,控制装置70将测试信号TZCT从L电平变为H电平。如果漏电检测装置40正常,其将使被输出到AC输出截止电路50和控制装置70的截止指令ZCT返回为L电平。
[0094] 上面已经阐释了基于从漏电检测装置40被输出到AC输出截止电路50与控制装置70的截止指令ZCT进行漏电检测装置40的运行测试。作为替代的是,可配置为也对变换器20与30中的停止处理以及AC输出截止电路50的运行进行检查。
[0095] 如上所述,动力输出设备100能够在电动发电机MG1的中性点N1与电动发电机MG2的中性点N2之间产生商用AC电压Vac,并将该电压从连接器60输出到外部AC负载。由于分别对电动发电机MG1与MG2进行驱动的变换器20与30用于产生商用AC电压Vac,专门用于获取商用AC电压Vac的变换器不是必需的。
[0096] 另外,动力输出设备100具有漏电检测装置40,在由漏电检测装置40检测到漏电时,其使得AC输出截止电路50动作、并停止变换器20和/或30。因此,商用AC电压Vac的输出被双重中断或用两种方式中断,由此确保了高度安全性。
[0097] 在由漏电检测装置40检测到漏电时,动力输出设备100根据此时电动发电机MG1与MG2的运行状态停止变换器20与30中的一个或二者。因此,在通过如上所述的、输出的双重中断来保证安全性的同时,对动力输出设备100的本来功能的影响能够受到限制。
[0098] 另外,当商用AC电压Vac的输出模式被启用时,动力输出设备100进行漏电检测装置40的功能检查。这保证了更高的安全性。
[0099] 图8为一原理框图,其示出了将本发明的动力输出设备100应用到混合动力车的情况。参照图8,电动发电机MG1被耦合到发动机80,以便对发动机80进行起动以及通过发动机80的旋转力发电。电动发电机MG2被耦合到驱动轮85以便对之进行驱动,以及在混合动力车再生制动期间发电。
[0100] AC负载90的插头65被连接到连接器60,动力输出设备100经由连接器60和插头65向AC负载90供给50Hz或60Hz、100V的AC电压。因此,AC负载90能够通过接收来自动力输出设备100的商用AC电压的供给运行。
[0101] 在这种方式下,在装有动力输出设备100的混合动力车中,充分保证了发生漏电时的安全性,且漏电对车辆功能的不良影响受到抑制。另外,由于混合动力车不具有专门用于产生商用AC电压Vac的变换器,在实现车辆尺寸、重量以及成本缩减的同时,可向车辆提供作为商用AC电源的实用价值。
[0102] 尽管上面阐释了将动力输出设备100安装到混合动力车的实例,本发明不限于此。动力输出设备100可被安装到电气车辆或燃料电池车辆。另外,本发明通常适用于使用两个电动发电机的车辆。在动力输出设备100被装在电气车辆或燃料电池车辆中的情况下,电动发电机MG1与MG2被耦合到其驱动轮。
[0103] 应当明了,这里公开的实施例在任何方面是说明性而不是限制性的。本发明的范围由权利要求书的条款而不是由上面的说明书限定,并包括属于与权利要求书条款等同的含义和范围的任何修改
QQ群二维码
意见反馈